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Abgrger Post processing  of  medical images  often  needs
interpolation. Taking cues from human visnal system, we propose
here an interpolation kernel consisting of linear combination of
Gaussians at different scales. We compare the efficacy of the
proposed kernel with other interpolation kernels, particularly in
the processing of medical images. The basic algorithm has been
implemented on a T1 DM642 based hardware platform for real-
time filkering and programmed for post-processing of ultrasound
video frames (20fames's) from the commercially available Siemens
Medical Ultrasound S canner.
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L INTRODUCTION

In the post processing of medical images, the Laplacian based
edge detection and image enhancement is a well-known
technique. This approach is a direct consequence of the
psychophysical findings of Mach [1]. who pointed out that the
derivatives of light mtensity form the basis of human visual
system (HVS) at the retinal level. Marr and Hildreth [2] used
the Laplacian operator alomg with a Gaussian smoothing
operation for the purpose of edge detection. This was termed as

the Laplacian of Gaussian or the LOG { V¥ ) operator, where
(7 15 a zero-mean Gaussian, whose standard diviation will later
be denoted by « . In this paper we propose a new multi-scale
model of HVS, that generalizes the above-mentioned findings
in order to compute general even order rotationally-symmetric
Craussian derivatives and combinations thereof, that vield a
new class of filters for the purpose of edge detection and image
enhancement. In this paper, the usefulness of such higher order
Craussian  derivatives as  interpolation kemel would be
mvestigated. Use of interpolation  kemels consisting  of
combinations of Gaussian and its partial derivatives was first
proposed by Appledorn [3]. He exploited the near ideal spatial
and frequency domain behavior of those filters. Such kemels
are locally compact in the space and have excellent frequency
domain characteristics. We propose, in this paper a novel
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approach for the generation of interpolation kemel from the
linear combinations of Gaussians at different scales taking
mspiration from a theorem of Ma and Li [4], that expresses the
sum of (n/2+1) Gaussians of different scales as the 0™ order
derivative of a Gaussian funmction.

I PROPOSED METHOD

It has been shown [5], with the help of Ma and Li's theorem [4]
that in one dimension the fourth order Gaussian derivative
filter can represent retinal receptive field (non-classical) by
combining  center, swround, extended swround as a
combination of three multi-scale Ganssian finctions, so that in
two dimensions we finally arrive at:

ViGir.o)=mViGir.c ) + Vi G(r.a) (1

This means, the fourth order derivative can in fact be expressed
as a linear combination of two second order derivative
operators,

Again, following similar procedure it has also been shown [6]:

VG(r = mVGR +aV G+ VG (D)
so that with the help of equation (1), we get:
VOG(r) = mV G+ V' IG(r) (3
So proceeding in the same way,
VG = mV G P + VG ) 4

As in the previous deductions [35, 6], if we assume that the
Laplacian of Gaussian in Equation (4) is computed at a very

narrow scale { & — (), then

ViG(r) = m&ry+VoGir) (3

Therefore using (3),

VG = mI(r )+ nV G+ VEF) {6)



So for any intensity distribution [ | for an insignificantly wide

smoothing function ie. & — 0, from equation (6) we may

write:

VH =T +aVT+VH W]

Whereas by taking m =1, in equation (1) (here & — 0), we
may in the same way arrive at Mach's model [1] ma new light:

(8)

In this new light, equation (7) may be perceived as a more
generalized wversion of Mach's model, that mmplies a
computation of still higher order derivatives as a linear
combination of lower order ones. Kemels derived from such
combinations of derivatives by using finite difference

Vi =T+V

Fig. | An X-ray image {&) enhanced by {b) Laplacian kemel and (¢} a kemel
derived froma linear combination of Laplacian and Bi-Laplacian

approximation, can be very useful in edge enhancement of
medical images compared to Laplacian kemel based image
enhancement (popularly known as unsharp masking). Fig. |
shows the superiority of the proposed model with an example
from a medical x-ray image. The same may also be shown for
ultrasound mmages [7].

On the other hand, interpolation is a very important technigque
in medical image processing in application areas such as
translation, rotation, warping, magnification, reduction of the
image for the purpose of registration and visualization.
Particularly, zooming and rotating medical images, with least
error, after their acquisiion may be of enormous help m
computer aided diagnosis (CAD) and swrgery (CAS). The
purpose of interpolation s to construct a two-dimensional
signal ¢l x, v) from sample

continuous the discrete

d(i, jywith ¢,x, v€ Rand i, j€ N". This is obtained by

convoluting the discrete samples with a continuous response
function of a filter as

ox, )= d(, j)-h(x—i,y— j).

{Lil1]

Interpolation kemels are, generally symmetrical and separable,
so that f{x, v) = h(x)- A ¥). Considering the 1-D case we
can generally write a kernel with a linear combination of n
Caussians as:
" =
W= 3 kG g O

i=1

2,
where G(x, §) = e * 2B is the Gaussian function with
zero mean and variance J[ &].
If we consider the case for i=4 only, then:
h{x}=k](".r{x,,{i] }—k?G{.t,,{i?}+k3G{x,ﬁ3} —.I:46'{.1:,ﬁ4 ).

Using Ma-Li's theorem [4], the above equation can easily be
expressed as a sixth order derivative of Gaussian or as a linear
combination of Gaussian derivatives as in equation (3) and as
proposed in Appledom’s interpolation method [3]. We shall
next see the performance of the proposed kemel in
mterpolation of medical images as compared to Appledom’s
Gaussian  derivative  based kemel and other well-known
mterpolators.

[ RESULTS

In Fig. 2, we demonstrate the results of using the interpolator
proposed in the previous section on an ultrasound mmage [7] for
the purpose of zooming and compare these with those obtained
with the help of the standard interpolators namely the “nearest
neighborhood” and “bi-cubic’ mterpolator. Visual mspection
reveals that results from the proposed method is at least
comparable to bi-cubic interpolation and definitely outperforms
the "nearest neighborhood’ mterpolator.

In Fig. 3, an attempt has been made to compare the
mterpolation errors in two different types of images using bi-
cubic mterpolator, Appledorn’s interpolator and the proposed
mterpolator [9]. One of these is a simple constant-intensity
synthetic image, while the other is an X-ray image of chest.
The images in Fig 3a and Fig 3c are down-sampled by
exclusion of points and then interpolated back to the original
size by the above-mentioned methods, the scale being reflected
by the abscissa in Fig. 3b and Fig. 3d, while the ordinate
represents the square of the departures of the gray levels in the
final image from the original image. A two-fold down-
sampling implies eliminating three pixel wvalues from a
2= 2 array of pixels and so on. In case of the constant intensity
image of gray value 0.502 in Fig. 3a, we find that the Fig. 3b
clearly shows that the performance of the bi-cubic interpolator
far exceeds the other two, though the proposed interpolator
performs  better as compared to Appledom’s  imterpolator.
However in case of the X-ray image of the chest n Fig. 3c, it is
clearly evident from Fig. 3d that the performance of the bi-
cubic interpolator gradually falls with ncreasing value of
sampling frequency as compared to the other two, where again
the proposed interpolator performs slightly better. So the “near-
ideal” interpolator derived in this work may be of particular
help for producing less number of artifacts in vital instances of



image registration. For a simple synthetic image the ideal de-
constancy  behavior of the bi-cubic interpolator plays the
dommant role, which is why the proposed function also
performs better as compared to Appledom’s kemel, which is
only an “approximator”. However for the medical image,
particularly for a sampling frequency in excess of 2, the poor
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Fig. 2 A selocted region {marked by white outline) from (a) an ultrasound
image of four-chamber heant has been zoomed eight times by (b neanest
nig hbor haod method {c) bi-cubic methed and {d) the proposed interpolaior

frequency domain  behavior of bi-cubic  interpolator  as
compared to both Appledom and the proposed kernel, results m
its had performance, where again the proposed kemel is
marginally better as compared to Appledorn’s kermnel. Only one
of the cases has been reported here, although similar behavior
has been noted in many other medical images.

The methodologies proposed in this work therefore provide us
with new kemels that are applicable both in Edge based Image
Enhancement and Interpolation of medical images. The kernels
are of finite length and are therefore very suitable for hardware
implementation. General FIR filter implementation technigues
are also applicable for these kernels. We shall deal with these
hardware aspects and real-time applications of our proposed
methodologies, including real-time processing of images
acquired from an ultrasound imaging system used for medical
diagnosis, in the next section.

IV. HARDW ARE IMPLEMENTATION

Post processing of captured images is an essential part of any
imaging system used for diagnostic purpose. This is especially

true for ultrasound images because of its lower SNR, poor
contour representation and lower contrast. Most of the image
based diagnostics are carried owt by visibly evaluating the
diagnostically relevant features. Post processing of images is
therefore used to primarily increase the SNR and enhance the
diagnostically relevant features. In this endeavor we have
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Fig. 3 Comparative intempolation emor for bi-cubic interpolaior {cubic),
Appledom”s interpolater (Gaus|) and the proposed inmterpolator (Gaus2) (a)
Constant gray image, () imerpolation emror for the image in {a), {c¢) chest X-
ray image and {d) imerpolation error for the case of the image in {c)
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Fig. 4. Schematic fir the real-time processing semp. Input for
DM 64 2 board is from a Ultrasoend Machine, Processed output is
displayed on a RGE monitor in real-time. The computer controls
the hardwarne and downloads processing algorithms.
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Fig. 5. The experimental real-time processing setup is shown inthis figure. Input for the DM 642 hased hardware {mark od (b))
board is given from a Siemens Medical Ultrasound Machine {marked {a)) on the right of the figure and the processed output is
heing displayed on a separate RGB monitor {marked{c)) in real-time on the lefi of the figure. The board in front of the RGBE

maniter is the DM 642 based hardware.

implemented the basic algorithm proposed in this paper for
Edge Detection, Image Enhancement and Interpolation on a Tl
DMG42 based hardware platform for realtime filtering and
programmed for post-processing of Ultrasound video frames
{20fames/s) from any standard Ultrasound machine. The
schematic of the experimental setup is shown in Fig. 4 and the
real setup is shown in Fig. 5. The real-time processing is
performed on DM 642 processor because of the huge
computational requirement of processing of ultrasound video
frames at a rate of 20-30 frames/s. We have been able to handle
this high rate of processing with our optimized C/C+ code
embedded on T1 DM642 based prototype hardware platform.
We have also exploited the positive symmetries of the kemels
to reduce the number of multiplication operation. This
prototype  platform  is capable of acceptmg  wvideo with
PAL/NTSC/RGB coding. The input video is decoded,
processed  frame-by-frame on the TI DMG642 hardware,
encoded and finally displayed on a suitable RGB monitor. Fig.
5 shows the complete prototype setup. The Ultrasound video
was taken from a commercially available Siemens Medical
Ultrasound  Scanner (on the right of the picture) and the
processed ultrasound video was displayed on a RGB computer
monitor {center of the picture). Though we have made the
system external to the ultrasound machimes, to make it flexible
enough to be machine independent the best scenario would be
to incorporate the techniques in the ultrasound machines.
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V. CONCLUSION

We have proposed an mterpolation kemel consisting of a linear
combination  of Gaussians, which gives comparable
performance as compared to Appledom’s  kemel. The
performance of the proposed kernel is worse than bi-cubic
kemnel at low sampling frequency, but outperforms the latter at
high sampling frequency. Bi-cubic  interpolation  is
computationally costly and difficult to be implemented in real
time processing. Considering  the low  computational
complexity of the proposed kernel, it is an ideal candidate for
online real time medical image processing. We have designed a
prototype  hardware  platform to test the algorithm by
performing an online image processing of medical images from
an ultrasound imager. We are able to process real time data at
the rate of 25 frames’s. In fitwre the hardware will be
mecorporated m the machine itself.
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