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Abstract- The problem of conventional window based FIR 1 -

filter design lies in its very limited design flexibility and more
specifically the lack of control over band edges. We propose an

'F 0.5 -

alternative Gaussian window approach for FIR filter design that XI
overcomes these problems of conventional window method. We 7)
show that sum of mean shifted Gaussians can be used for flexible °
filter design. We also derive relations to compute the
corresponding impulse response effectively in a non-recursive -20 -10 0 10 20
manner. These relations give precise control over band-edge 1 A
frequencies. Comparison of precision in control and
computational time with other methods is also presented. Dt
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I. INTRODUCTION Frequency

The basic idea of conventional window based approach to FIR
filter design is to choose an appropriate ideal frequency Fig.1 Basic principle of filter design by adding mean shifted
selective filter that always has a noncausal infinite impulse Gaussians. The graphs are drawn with arbitrary units of frequency.

The magnitudes are normalized for the sake of illustration. The topresponse. The next step is to obtain a causal, linear phase g
finitimplse espose (IR)ilte by trnatn th ide lfgure shows the effect of summation of Gaussians and the bottomfinite impulse response (FIR) filter by tiruncating the ideal one is the zoomed version of the top figure depicting various

impulse response with an appropriate window function [1]. parameters described in Equation (3). The thicker curve is the
The choice of an ideal filter and a proper window function is Consider the sum of mean shifted Gaussians G(c, o, a) shown
therefore very important in this design approach. The most
commonly used windows are Rectangular window, Hanning in Fig 1 for the specific case of low-pass (LP) filter design.
window, Hamming window, Blackman window and the For the sum of 2N ±1 Gaussians
Kaiser window. The major disadvantage of these methods is N N (c a)2
the lack of design flexibility [2-4]. Band edge frequencies E G(c, 07, a)= E exp 2-_ 2

cannot be specified precisely due to the smearing effect of n=-N Of
windowing. We propose an alternative method where the filter with the mean defined as a = nkuf (2)
is constructed by adding mean-shifted Gaussians with same N depends on the bandwidth cp , k is a suitable constant
standard deviation. The number of required Gaussians and the (usually .I) to be defined later and is the standard
standard deviation is a function of filter design parameters.
We have derived relations to compute non-recursively the deviation. Each Gaussian is therefore shifted by an amount
impulse response and also demonstrated the precise control kUf from its nearest neighbour. From Fig. 1 we can write the
over band edge frequencies and ripple magnitudes. A similar transition bandwidth (tb ) as:
methodology with Gaussian derivatives has been reported in tb tbo tb = -
[5], where the solutions were achieved in a recursive manner. 0 c s

Here, tbo =w -N/cu1 = SF -NKcu (3)
II. THEORWTICALFOUNDATION N/cu= a-P =NKcu -kp

where tbo is the approximate estimate of the transition band
width measured from the mean position of the furthest
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Gaussian, tb, is the correction term for the transition band to relate various control parameters in (1) - (3) to the filter
width, w), and cs are the passband and stopband edge design parameters namely, passband and stopband edge
frequencies respectively, frequencies (c,, c), passband and stopband ripple
The real part of Gaussian and its Fourier transform pair is magnitudes (A, As). All these are input parameters for the
related by [6]: filter. Defining normalized tb as tbn = tb / uf we can write:

X 1 2 2c (c- a)2 Where, from equation (3),sI cos(xa) exp -- u x exp 2 (4),w2;r 2 < 2u7 tb1 = tb /uf = tbo I of +tb/I7f = tbon + tbk
Using the above expression, the impulse response of the filter tbo = ks - NK (7)
represented by equation (1) can be written as tb = NK

N 2 (
2

h(x) = ' cos(nxk-f )exp(-- 2:fx) i.e. tbOn and tbcn are independent of of . We can, therefore,
n=-N 29zT 27eP-

N(+ l)xko-f Nxku-f estimate tbo and tb, numerically for any given cf and obtain

X_f 1 2 2
CO

2 2 OOn and tbkn through normalisation. To find an empirical=522exp - 2 Utx ) 1 + 2 xka relation between tbn and As we first draw plots similar to Fig.
siln 1 with k=0.001 and Tf =0.01. The value of uf was chosen2

(5) arbitrarily, but is kept small to reduce the rounding-off error
(N + I)x . Nx ofN as discussed earlier. We estimate tbo and tbk numericallyN cos s1n

using the relation [7] cos(nx) 2 2 (6) by searching for appropriate w)P and w) with magnitudes A1n=1 sin and AS on the curve in Fig. 1 and obtain tbn and tbcn after

proper normalization as defined in equation (7). For everyFrom equation (5) we see that the summation of Gaussians as gvnvleo P,tnadt r siae ueial o
in (1) is equivalent to windowing by Gaussian. This gives a gv v
number of advantages compared to the conventional window each of the values of As=50, 100, 150, 200, 250, 300 dB. We
method of filter design. The major advantage is that the thus get six values of tbn corresponding to six values of As.
question of smearing of the corner frequencies does not arise On the contrary we get only one value of tbcn because for a
in this methodology. We are going to show that this
expression gives precise control over the parameters for FIR pg
filter design. These expressions can also be easily extended step we express tbn as a fifth order polynomial function of As
for bandpass and highpass filters. with the help of least square curve fitting. The fifth order

polynomial is chosen because it produced the best fit. This
First, we discuss the procedure for ripple estimation. Fig. 1 procedure is repeated for all values of AP and therefore for
depicts the basic principle of ripple generation due to the
superposition of Gaussians. It is evident from the figure that each A we obtained a fifth order polynomial expression of

the ripple magnitude depends on the amount of overlap A. as an estimate of tbn . In equation (8) four such estimates
between adjacent Gaussians. The higher the overlap the lower of tbn and tknare shown
the ripple magnitude and vice versa. By definition the overlap for A2 1a103
is determined by kUf . The lower the value of kUf the higher

P
, 1

be

and 10edB. The last pres
for

the overlap and consequently lower the ripple magnitude. It is A
also well known that the peak amplitude of any Gaussian have been included to check the accuracy of our algorithm
given by (1) is unity and the magnitude at any point ccY7 away
from its mean position, where c is any real number, is A =10tIdB, tb = 2.27600000000068,
independent of the magnitude of a1f . Therefore k is the only -12 5-9x 4

x 6x3tb =2.4xlO xA -2.64xlO 9xA4±1.194x10- xA3
parameter that determines the ripple magnitude. Simulation n s s s
shows that for k < 0.5 the ripple magnitude in the passband is - 0.0002982 x A2 + 0.059 xA + 2.688.
of the order of 10-15 when the computation is done in double s s

precision on a 32 bit Pentium-IV processor and remains nearly 2
the same for lower value of k. It should also be noted that A = 10 dB, tb = 3.04800000000068,
lower the value of k higher is the number of Gaussians (1\) b12 54 6
necessary for the construction of a filter. We have therefore t s - -9 s 1 x 3 (8)
assigned a much lower typical value k =0.001 to increase N. -0.0002982xA2 +±0.059xAX + 3.44 .
This will help to reduce the error due to the rounding of N to s s
its nearest integral value.

Secondly, we explain how to evaluate cxj and the
associated N from the input specifications. To do this, we try
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-3 ~~~~~~~~~~~~~~~~~~~~~~~~1.2A -=103dB, tb = 3.68200000000068, (a) 2ndp 'cn'(a2n

tb =2.36xlO12xA5 2.61x109xA4 +1.1855x106xA3 0.8 3rd

-0.00029708 x A2 + 0.058942 x A + 4.0755. m 0.4
s s E

0

A =10-8 dB, tb = 5.97450000000121, 0.4

b12 5 3 9 A4 6 3 0 50 100 150 200
tb =2.3333xlO1 xA _2.5783xlo vxA+1.1725xlO xA Filterlength

-0.00029473 x A2 + 0.05875 x A + 6.3735. (b)
0.2-

We can now estimate o7 from (3) as * 0.1
f CL~~~~~~~~~~~~~E

Co1 - CO
Cf =) -0S (9) 0 V

tb,
andN can be evaluated from (3) as given by -0.1l

t(, + cop
0 50 100 150 200

N = round (1 0) Filter length

Fig. 3. Illustration of windowing operation represented by (5) for a
The last point that we shall discuss now, is how to typical filter. In (a) the behaviour of the 2nd and the 3rd terms in (5) is

determine the length of the window. We shall again take the presented and in (b) the resultant impulse response is shown. Both
help of numerical procedure to find an empirical relation the curves in (a) are shown in a normalized scale for the sake of
between the truncation length and the stopband attenuation. illustration.
The truncation length is expressed in units of standard
deviation of the Gaussian as where m is a constant to be evaluated. Fourier spectrums of

the 2nd and the 3rd term of equation (5) are shown in Fig. 2 for
x =round(m lUf) (11) different truncation lengths. The second term is similar in

5 _ nature to sinc function and therefore the attenuation in the
_______________ spectrum in Fig. 2(a) does not depend on the truncation length

whereas in the spectrum of the Gaussian window in Fig. 2(b),
2> (a)the attenuation is very much sensitive to the truncation length.

-1Q 40 The resultant attenuation is simply governed by the truncation
C-15 5 length of the Gaussian window. To find an empirical relation
X -20 between m and A, we choose A,= 30, 50, 70, 100, 150, 200,.M 20 .As

-25_____ 250 and 300 dB for stopband attenuation keeping other design-25 - 10 .-_____________ __ Aparameters fixed at some arbitrarily chosen values.
0 1 02 03. Substituting equation (11) in equation (5) the magnitude

Normalsed frequency response of the filter is plotted and m is manually tuned to
fulfill the stopband attenuation requirement given by each
A,and obtain m=1.1512, 2.2128, 2.8041, 3.7673, 4.9968,

-1M )\ l -l 1 5.9904, 6.8472 and 7.6117 respectively. A fourth order
n -23 Z I ==40 Xtt / t ; t Vl polynomial curve fitting of m versus A, gives the following

55 relation
~70

-300 ------- 85 m=-1.135xlO9xA4+9.4594xlO7xA3- 3.1119x104xAxA2 12

- 100 s (12)
400

+ 0.065988 x A -0.529
0 O05 0.1 015 02 025

Normalised frequency This equation is valid for 30 < A, < 300 dB.

Fig. 2. Illustration of the Fourier spectra of (a) of the 2nd term in (5) II EUT
WhiCh iS a Gaussian and (b) the 3rd term in (5) for different II EUT
truncation lengths. For the sinc like function in (a) the attenuation
does not depend on the truncation length whereas for the Gaussian in Let us first summarise the steps necessary for filter design.
(b) it is very sensitive to the truncation length. The values with the Input parameters for the filter are cop, wS, Ap, As and we need to
legends represent the number of taps for various curves.
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Fig. 4. Magnitude response curves of the filters obtained by (a) the Normalised frequency
proposed Gaussian window method, (b) Kaiser window method and
(c) optimal method (Parks-McClellan algorithm) are shown for Fig. 5. Magnitude response curves of the filters obtained by (a)
stopband attenuations 100, 150, 200, 250 and 300dB. The passband proposed method, (b) Kaiser window method and (c) optimal method
edge was =0.1 and the stopband edge was f 0.25 for all the (Parks-McClellan algorithm) are shown with the passband edge
cases. frequency fp 0.08 with amplitude Ap= 10-3dB and different

stopband edges fS=0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36, 0.40, 0.44
evalute th requred mpuls respnse (x) fom (5 for and 0.48 with amplitude A = 150dB For illustration, only portions of

the whole magnitude response curves are presented. The figure
which we need to know a,N and x. First we have to clearly shows all the filter curves in Fig. 5(a) pass through the

evaluate affrom (9) with the help of (8). In this work a set designated passband edge. In comparison performance of Kaiser
window is very poor while the accuracy of the optimal method is

of eight fifth order polynomial relations have been generated quite satisfactory.
forA =10', 10-2, i0-3, i0-4, i0-5, 10-6, i07, 10~8dB fromwhich
the first three have been shown in (8). Next we evaluate N
from (10) and the truncation length x from (11) and (12). The achieve stopband attenuation beyond 200 dB and 32 bit

accuracy offered by Pentium 4 machine iS probably notrequired impulse response h(x) iS then obtained from (5)- sufficient.
Equations (7) to (12) are general and are valid any set of input In Fig. 5 comparison of the accuracy of band edge
specifications with the only restriction given by frequency control is presented. From the figure it is clear that
30.<As .300 dB. the performance of the proposed method in Fig. 5(a) is the
The efficacy and the flexibility of this design methodology best. All the curves pass through the designated passband

is depicted with the help of Fig. 3 to Fig. 5. Fig. 3(a) edge. Performance ofthe optimal method is quite satisfactory
illustrates the Gaussian windowing operation represented by except with cases with fs close to 0.5 while the Kaiser
(5) while Fig. 3(b) shows the resultant impulse response. window performs very badly. Comparison of computational
Comparison of magnitude response with other methods for cost for various transition bands and for different methods is
different stopband attenuation is presented in Fig. 4. Filters
designed with proposed method could achieve stopband TABLE I
attenuation as low as 300 dB. The maximum that we can COMPARISON OF FILTER COMPUTATION TIME BY DIFFERENT METHODS
achieve with our proposed method is about 320 dB on a 32bit fp 0.1,A4 =T1-dB, As 150dB
Pentium IV computer. On the other hand Kaiser Window 0.0 .0 .0 .1 .5 .0 .5 .5
method could achieve a maximum stopband attenuation of time(s) 0.1013015010010020020040
270 dB while the optimal method (Parks-McClellan algorithm tPrsMclla * 3.980 1.420 0.385 0.065 0.056 0.054 0.053
implemented in Matlab R2006a) is unable to go beyond 200 Pak-clln
dB. The dotted curves in Fig. 4(c) are for the failed cases with tKaiser. 0.150 0.125 0.125 0.120 0.118 0.117 0.117 0.117
stopband attenuations 250 dB and 300 dB respectively. The tGauswin 0.102 0.099 0.099 0.098 0.096 0.094 0.092 0.092
high complexity of computations involved in the evaluation of * did not converge
the filter using optimal method, requires higher accuracy to ** time is expressed in seconds
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presented in Table 1. tparks-McC1e11anI tKiser and tGauswin are
computation times for the Optimal method, Kaiser window
method and the proposed Gauusian window method
respectively. Computation time for the optimal method (Parks-
McClellan algorithm) increases sharply with the decrease in
transition band width where as for Kaiser and the proposed
Gaussian window method the time remains nearly the same.
On an average the computation time for our proposed method
is lesser though the time taken by the optimal method is the
minimum only for higher transition band widths.

In all the examples the number of taps taken by our
proposed method is comparable to Kaiser window method.
Compared to the Optimal method the taps required for our
method is on an average 1.6 times larger. It should be here
noted that by increasing the number of taps does not improve
the performance to be comparable to the one in Fig. 5(a). A
demo of the filter is available in [8].

IV. CONCLUSION
We have shown that superposition of the mean shifted

Gaussians can be used to construct filters. We have also
derived relationships to evaluate the corresponding impulse
response in a computationally efficient and non-recursive
manner. We show that this method is equivalent to windowing
operation by an appropriate Gaussian and demonstrate that
this gives precise control over band-edge frequencies and
ripple magnitude unlike conventional windowing operation. A
comparison with Kaiser and optimal method (Parks-
McClellan algorithm) shows that our proposed method have
more precise control over band edge frequencies and is
capable of designing filters with stop-band attenuation as high
as 300 dB. We also show that this method is computationally
efficient too. The only drawback is that the number of taps
required for our method is on an average 1.6 times larger
compared to that of the Optimal method. We also note that by
increasing the number of taps in the Optimal method does not
improve the control over band edge frequencies nor does it
increase the maximum attainable stopband attenuation.
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