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Land Cover Classification Using Fuzzy Rules
and Aggregation of Contextual Information
Through Evidence Theory

Arijit Laha, Member, IEEE, Nikhil R. Pal, Fellow, IEEE, and Jyotirmoy Das

Abstraci—Land cover classification using multispectral satellite
images is a very challenging task with numerous practical appli-
cations. We propose a multistage classifier that involves fuzzy rule
extraction from the training data and then the generation ofa pos-
sihilistic label vector for each pixel using the fuzzy rule base. To
exploit the spatial correlation of land cover types, we propose four
different information aggregation methods which use the possi-
hilistic class label of a pixel and those of its eight spatial neigh-
hors for making the final classification decision. Three of the ag-
gregation methods use the Dempster—Shafer theory of evidence,
while the remaining one is modeled after the fuzzy k-NNrule. The
proposed methods are tested with two benchmark seven-channel
satellite images, and the results are found to be guite satisfactory.
They are also compared with a Markov random field model-hased
contextual classification method and found to perform consistently
hetter.

Index Terms—Classifier, evidence theory, fuzy k-NN, fuzzy
rules, rule extraction.

L. INTRODUCTION

AND cover classification in remotely sensed images is
L considered 1o be a cost effective and reliable method for
generating up-to-date land cover informaton [ 1], Usually, such
tmages are captured by multspectral scanners (such as Landsat
TM ) that acquire data at several distnet spectral bands pro-
ducing muluspectral images. Automated analysis of such data
calls for sophisticated techniques for data fusion and pattern
recognition. The most widely used technigues include statis-
tical modeling ivolving discnminant analysis and maximum
likelihood classification and artificial neural networks-based ap-
proaches [2]-[5]. However, these classifiers usnally classify a
sample to the class for which maximum support is obtained, no
matter how small this amount of support may be orif there may
be another class for which the suppon is very close to the max-
imum. This particular feature is often criticized [1] in context
of their applicability in land cover classification. “Soft” clas-
sifiers can be useful for such problems as they can produce a
measure of confidence in support of the decision as well as indi-
cate measures of confidence in support of alternative decisions,
which can be used for further processing using awxiliary infor-
mation. This can result in a more robust and accurate system.
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In developing soft classifiers for land cover analysis, two ap-
proaches have gained popularity. These are based on 1) the fuzzy
settheory [ 7] and 2) Dempster and Shafer s evidence theory [6].
There is, of course, the probabilistic approach that we do not
pursue further.

Different fuzzy methodologies for land cover classification
in multispectral satellite images have been imvestigated by var-
ious researchers. For example, [ 1] uses the fuzzy c-means algo-
rithm, while Kumar er al. [9] applied a fuzzy integral method.
Fuzzy rule-based systems have been used for classification by
many researchers [ 7], [8] for diverse fields of application. Fuzey
rules are attractive becaose they are mterpretable and can pro-
vide an analyst a deeper msight into the problem. Use of fuzzy
rule-based systems for land cover analysisis a relatively new ap-
proach. Recently, Biardossy and Samaniego [10] have proposed
a scheme for developing a fuzzy rule-based classifier for anal-
ysis of muluspectral mages, where the randomly generated ini-
tial rules are fine tuned by simulated annealing. In[11], Kulkami
and MeCaslin used fuzzy neural networks for rule extraction.

The other approach to design soft classifiers use the evidence
theory developed by Dempster and Shafer [6], [12], [13]. As
observed by Lee eral. in [ 14], for mulispectral image analysis
there may be a great incentive for applying Dempster—Shafer
theory of evidence. Since the theory of evidence allows one
to combine evidences obtained from diverse sources of infor-
mation in support of a hypothesis, it seems a natural candidate
for analyzing multispectral images for land cover classification
[15-[17]. In all of these works, the approach 1s 1o treat each
channel image as g separate source of informaton. Each image
15 analyzed to associate each pixel with some degree of behiel
pertaining toits belonging to each memberof a set of hypotheses
known as the frame of discermment. Usually, some probabilistic
techniques are employed o assign the degree of belief. In the
next stage, these belief values from all images for a pixel are
combined using Dempster’s rule [6] to caleulate the total sup-
port for each hypothesis. In arecent paper [18], Jouan and Allard
used evidence theory for combining information from multiple
sources for land use mapping.

In a satellite image, usually the landeover classes form spa-
tial clusters, 1.e., a pixel belonging o a particular class 1s more
likely to have neighboring pixels from the same class mther
than from other classes. Thus, the mclusion of contextual n-
formation from the neighboring pixels is likely o increase clas-
sification accuracy. An overview of common contextual patiern
recognition methods can be foundin [19]. In this paper, we pro-
pose several schemes for classifier design that uses both fuzey
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sels theory and Dempster—Shafer evidence theory. These are two
stage schemes. In the first stage, a fuzzy rule-based classifier is
developed using a small training set. This classifier is noncon-
textual and for each pixel it generates a possibilistic label vector.
In the next stage, we aggregate the responses of the fuzey mles
over a 3 x 3 spatial neighborhood of a pixel o make the clas-
sification decision about that pixel. Thus, the decision making
process lakes into consideration the information available from
the spatial neighborhood of the pixel. Here, we propose four
methods for contextual decision making. In the expenmental
results, we compare the performance of the contextual clas-
sifiers with the fuzey rule-based noncontexial classifiers de-
signed in the first stage. We also provide a comparison of the
performance of the proposed classification schemes with a re-
cent Markov random field (MRF) model-based contexiual clas-
sification scheme proposed by Sarkar er al. [20].

II. DESIGNING THE FUZZY RULE B ASE

We use a multistage scheme for designing fuzzy rule-based
classifiers. The set of gray values corresponding 1o a pixel in
the channel images is used as the feature vector for that pixel.
In the first stage, a set of labeled prototypes representing the
distribution of the tmining data s generated using a Self-orga-
mzing Feature Map (SOFM) [23] based algorithm developed in
[24]. The algorithm dynamically decides the number of proto-
Lypes based on the trimning data. Then, each of these prototy pes
15 converted 1o a fuzey rule.

Next, the fuzzy rules are tuned by modifying the position of
the peaks as well as the spreads of the fuzzy sets associated with
the rules. The tuned rules can readily be vsed o classily un-
known samples based on the firing strengths of the rules. Typi-
cally, a test sample is classified to the class of the rule generating
the highest firing strength. For the sake of completeness, we first
give a brief description of SOFM.

A. Kohonen’s SOFM Algorithm

SOFM is formed of neurons placed on aregular (usually ) one-
dimensional (1-D) or tao-dimensional grid. Thus, each neuron
is identified with a index corresponding Lo its position in the grid
(the viewing plane). Each neuron ¢ s represented by a weight
vector w, & It where ¢ is the dimensionality of the input space.
In the -th traming step, a data point x C R 1s presented o
the network. The winner node with index » 18 selected as » =
are minf||x — w;,__||}. w,.;—1 and the other weight vectors
S, :

associated with cells in the spatial neighborhood N, ) of ¢ are
updated using the rule
W = Wy -1 — 'r}:[t:l"lr'."x':__t:“:x — W.'..'.—'-_::

where (/] is the learning rate and N1 (1) is the neighborhood
kernel (usually Ganssian). The keaming rate and the mdios of
the neighborhood kernel decrease monotonically with time.
During the iterative training the SOFM behaves like a flexible
net that folds onto the “cloud” formed by the input data. A
trained SOFM exhibits remarkable and vseful properties of
topology preservation and density matching and often used for
visualization of metrc-topological relationships and distribu-
tional density properties of trining data ¥ = {x). ... . X5}
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in SRT through their mapping onto the viewing plane. From
a clustering viewpoint, SOFM has the advantage of avoiding
underutilization of the prototypes.

B. Generation of Prototypes

First, we train a 1-D SOFM with ¢ nodes, where ¢ 15 the
number of classes. We do so because the smallest number of
rules that may be required is equal to the number of classes.
Al the end of the tmining, the weight vector distribution of
the SOFM reflects the distrbution of the input data. Then the
tramning data s divided into a ¢ partibon accordimg o their close-
ness to ~ weight vectors V" = [+ v <7} ¢ 3, Each
of the prototypes is labeled based on the class information of
corresponding partition using majority veting. However, such a
setof prototypes may not classify the data satisfactorily because
the class information 1s not vsed in the trmining resulting in the
possibility that a prototype may represent data from more than
one class significantly.

We use the prototype refinement scheme described in [24].
The basic idea behind this refinement algorithm is that a useful
prototype should satisfy two criteria: 1) it should represent an
adequate number of points and 2) only one of the classes should
be strongly represented by i

The prototype refinement scheme applies four operations,
deletion, modification, merging, and spfitting on the set of
prototypes while trying to fulfill the above conditions. In the
training data X = [%.... %5}, let there be & points from
class j. The refinement stage uses just mwo parameters K and
Fato dynamically generate ¢ | 1 retention thresholds known as
a global retenton threshold o and a set of class-wise relention
threshold F; (one foreach class ) 1o evaluate the pedommance of
cach prototype. « and 3, are computed dynamically (not fixed)
for the {-th ileration using the following formulae:

of = (i VI T and g = (R V0 T
where ‘r'}:_l =iy el oi= g,

Here, 1'* 7 is the set of protolypes obtained after it 1) iter-
ations of the algorithm. To consider a prototype useful, it must
represent more than «'Y training points. Further, a prolotype
must represent more than [3{ %, points from class & to be con-
sidered a (potential) prototype for class .

Finally, the set of prototypes is again refined by SOFM algo-
rithm with winner-only update strategy. Afer a few ilerations,
this algorithm produces a set of adequate number of prototypes
that represents the traimng data much better than the initial one.
For details, the readers are referred to [24]. The final set of pro-
totypes ¥l = [yfinnl B where & = oo, 15 used to
zenerate the set of initial fuzey rules.

C. Designing Fuzzy Rule Base

A prototype v; represents a cluster of points for class fe. This
cluster can be described by a fuzey rle of the form: ;- 1 x is
CLOSE TO w; then class is & This rule can be further translated
nto

KTy i1 CLOBEE TO o, AND
- AND I CLOSE TO g thew class is b
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MNote that this 1 just one possible interpretation of “x s CLOSE
TO ;" The first form requires a multidimensional member-
ship function, while the second form requires several 1-D mem-
bership functions and a conjunction operator. In general, the
two forms will not produce the same output. Depending on the
choice of the membership function and the conjunction oper-
ator, the fomms may lead to the same output, but since the rep-
resentation by the atomic clawses 15 a plausible realzatnon of
the multidimensional form, the performance of the systems built
using either form is not going to be much different.

The fuzey set CLOSE TO iy, can be modeled by tiangular,
trapezowdal, or Gavssian membership function. In this mvest-
gation, we use the Gawssian membership function
T

A e _iir..f
pi v oy ) = B 3
Given a data point X with unknown class, we first find the firing
strength of each rule. Let e, {x) denote the firing strength of the
i-th rule on a data point x. We assign the point x o class & if
My = m:]m{n:*l;x]:l and the r-th rule represents class &.

The performance of the classifier depends crucially on the
adequacy of the number of rules used and proper choice of the
membership functions. In our case, each fuzey set is chamcter-
ized by two parameters +; and ;. Let the initial set of fuzey
rules be &' = {KY | i = R .} The parameters r”_f and
’T:rl_. for fuzzy sets in the antecedent part of a rule £ & H" are
obtained from the prowtype v L

=T
&

as follows:

.;-'1_._[\”.-"'{ E f;.!,'.[:_r' - 'f:_‘J;J_f'U']]E:I

Mpi

A,

at = Q.'E-lml

; 0
i G and a7 =

where X, is the set of training data closest o vf““] and k., =
{1l is a constant parameter that controls the initial width of the
membership function. I &z, is small, then the specificity of the
fuzzy sets defining the rules will be high, and, hence, each rule
will model a small area in the input space. On the other hand,
a high o, will make each rule cover a bigger area. Since the
spreads are tuned, in principle, &, should not have much impact
on the final performance, but, in practice, the value of &, may
have a significant impact on the classification performance for
complicated data sets because of the local minimum problem of
gradient descent technigques. In the current work, the values of
k5 are found experimentally. One can use a validation set for
Lhis.

The initial rule base R? thus obtained can be further fine
tuned o achieve better pedommance, but the exact tuning algo-
rithm depends on the conjunction operator (implementing AND
operation for the antecedent part) vsed for computation of the
firing strengths. The firing strength can be calculated using any
T-nomm [7]. The wvse of different T-norms results in different
classifiers. The produet and the minimum are the most pop-
ular choices of T-norms.

Though it is much easier o formulate a caleulus-based
tuning algorithm if the product is used, its use is concep-
tually somewhat unattractive. To illustrate the point, let vs
consider a rule having two atomic clavses moits antecedent.
If the two clauses have truth values « and &, then, inwitively,
the antecedent is satisfied at least o the extent of miufo, D0
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However, 1if the product 15 used as the conjunction operator, we
always have b <0 ininiw. b} Thus, we always underdetermine
the importance of the rule. This does not cause any problem
for nonclassifier fuzzy systems because the defurzification
operator usually performs some kind of nommalization with
respect to the firing strength, but in classifier-type applications,
a decision may appear 1o be made with a very low confidence,
when it 15 actually notthe case. In certain cases, such a situation
may lead to overemphasis on total ignorance under evidence
theory framework. Thus, to avoid the use of the product and,
at the same time, 1o be able w apply caleulus o denve update
rules, we use a sofl-min operator.

The soft-mateh of o positive numbers w, a0, .., 15 de-
fined by

’_']‘!T + ']"T_, + s + _‘T" 4 Liy
-5‘;1-.!'(;,';_,;;;3....,;;;.;.(;‘_!={l-! = L .

I
where 5 is any real number. 534 is known as an aggregation
operator with upper bound of value 1 when a, & [0, ]9 This
operator is used by different authors [25], [26] for different pur-
poses. [Uis easy tosee that as g =2, the sof-match operator
behaves like the “min™ operator. Thus, we define the softmin
operator as the soft match operator with a sufficiently negative
value of the parameter . The firing strength of the rth rule com-
puted using softmin is

i=p A

_ELEMv.f (w5 20g 0 117

J_

Ep Ir'?::’I =
P

Al the value ¢ =10, 1ts behavior resembles very closely the
min operator, s0 we use ¢ = — L A very low value of ¢ may
lead to numerical imstability in the computation.

D, Tuning of the Rule Base

Let x < .Y be from class o and fi, be the rule from class
¢ giving the maximum firing swength o, for x. Also, let i .
be the rule from the incorrect classes having the highest firing
sirength «x . for x. We use the error function &

IR o ST (1)
xy

This kind of error function has been used in [29]. We mim-
mize f owith respectlo ey, v o and oo g ol the two rules
L. and I, using gradient decent. Here, the index ; corme-
sponds o clavse number in the comesponding rule. The wning
process is repeated until the rate of decrement in T becomes
negligible resulting in the rule base fefes!

Since a Gaussian membership function is extended to infinity,
for any data point, all rules will be fired to some extent. In our
implementation, if the firing strength is less than a threshold ¢
(=2 [LIFL), then the rule is not assumed o be fired. The threshold
is set considering approximate 2o limit of the Gaussian mem-
bership functions. Thus, under this situation, the rule base ex-
tracted by the system may not be complete with respect o the
tramning data. This can happen éven when we use membership
functions with triangular or rapezoidal shapes. Thisis nota lim-
itation but a distinet advantage, although, for the data sets we
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used, we did not encounter such a situation. If no rule 1s fired
by a data point, then that point can be thought of as an outhier. 1T
such a silwaton occurs for some test data, then that will indicate
an observation nol close enough o the trimmng data, and, con-
sequently, noconclusion should be made about such test points.

1. DECISION MAKING WITH AGGREGATION OF
SPATIAL CONTEXTUAL INFORMATION

In this section, we describe four decision making schemes.
The first one involves a simple aggregation of the fuzzy label
vectors of the neighboring pisxels. The scheme is modeled
after the well known fuzzy k-nearest neighbor algorithm pro-
posed by Keller er all [27]. The other three methods use the
Dempster—Shafer theory of evidence. For the sake of complete-
ness, we give a brief introduction of Dempster-Shafer theory
of evidence before we describe the decision making methods
in detail.

A. Dempster—Shafer Theory of Evidence

Let & be the universal set and F[8) be its power set. A fune-
tion v Q) — 0,1 iscalled a basic probability assignment
(BPA) whenever i) = 0and 3~ -, mi1] = 1. Here, m[1]
is interpreted as the degree of evidence supporting the claim that
the “truth™ is in A and in absence of further evidence no more
specific statement can be made. Every set A < P for which
il A1 = U is called a focal element of ve. Evidence obtained
in the same context from two distinct sources and expressed by
two BPAs ! and »* on the same power set {1} can be com-
bined by Dempster’s rule of combination o obtain a joint BPA
m ot as

S aim )
e

- : 4
0, if A=10.
Here, ' = >~ ;.0—a (e,

Equation (2) is often expressed with the notation m!= =
nr T, The rule is commutative and associative. Evidence
from any number (say &) of distinet sources can be combined by
repetitive application of the rule as m = miomds o ahm® =

i ks

Taro vt

To select the optimal decision from the evidence embodied
in a BPA typically, we construct a probability function #* on
. This is done through a transformation known as pignistic
transformation [ 28], The pignistic probability for § & £ can be
expressed in tenms of BPAs as follows:

Z rrel A)

ATEESA | A | -

= (3)
Optimal decision can now be chosen in favor of f;, with the
highest pigmistic probability.

B. Aggregation of Context Information for Decision Making
Let there be o classes, © = {¢4.¢%, .. ¢ }. For each pixel
I, the fuzey rule base generates a fuzzy label vector ¢ = 0¥
such that the value of the th componentof e, ooy (0 < e <21)
represents the confidence of the rule base supporting the fact
that the pixel I! belongs to class (. Strctly speaking, @ £ R”
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is a possibilistic label vector [7]. The value of «, is computed
as follows,

Let v be the number of rules in the fuzzy rule base. Since
il e, there could be muluple rules comesponding o a class.
Then, ¥y, is the highest firing strength produced by the rules
corresponding Lo the class ¢, for pixel i, We treat this value as
the confidence measure of the rule base pertaining to the mem-
bership of pixel 7 1o the class O However, if g, is less than a
threshold, say (0001, 1t s set o O,

Inour decision-making schemes, we consider a pixel together
with the pixels within its 3 = 3 spatial neighborhood. We wen-
tif'y the pixel p under consideration as p* and its eight neighbors
as -;llg ,UE, i .-;rE'. The cormesponding possibilisuc label vectors
assigned to these nine pixels are denoted as n''. o', o

1) Method I Aggregation of Possibilistic Labels: This 1s
a simple aggregation scheme modeled after the fuzey k-NN
method of Keller e af [27]. Given a set of nine label vectors

T, e, . . ee®), an agegregated possibilistic label vector ot is
computed as follows:
A
>
A =l
—_— 4
0 9 (4)

The pixel p" is assigned to class €., such that et = 'y

i
1.2, ...« Note that, though the label vector o comresponds o
the pixel 1o be classified, no special emphasis (imporance) is
given Lo ibin this aggregation scheme.

2) Method 2: Aggregation With Bayesian Belief Modeling:
This aggregation method as well as the next two vse the ev-
idence theoretic framework of Dempster—Shafer. Within this
framework, the set of classes {7 is identified as the frame of dis-
cemment. A body of evidence is represented by a BPA v over
subsets of 7. The value yif A ) denotes the belief in support of the
proposition that the trwe class label of the pixel of interest is in
A o O lnthe context of our problem, we shall: 1) identify dis-
tinct bodies of evidence (BOE); 2) formulate a realistic scheme
of assigning the BPAs o the relevant subsets of O 3) combine
evidences provided by all BOEs; 4) compute the pignistic prob-
ability for each class from the combined evidence; and 5) make
a decision using the maximum pignistic probability principle.

In this scheme, we identify eight BOEs for eight neighbor
pixels with corresponding BPAs denoted as ! il
We consider the Bayesian belief structure, ie., each focal ele-

o
VHET

ment has only one element. Assigning BPA 1o a subsel essen-
tially involves committing some portion of belief in favor of the
proposition represented by the subset. So, the scheme followed
for assigning BPAs must reflect some realistic assessment of the
information available in favor of the proposition. We define m*
as follows:

foeh + o

w4 m

K L2 (5)

Z:,r: fexy, + ¢ 1 is a normalizing factor. Thus, each
BPA contains ¢ focal elements, one corresponding to each class,
and the assigned value »/( {7 1) is influenced by the magni-
tudes of firing sirengths produced by the rule base in suppont
of class ¢, for the pixel of interest 3~ and its i-th neighbor 7,
Clearly, the label vector o influences all eight BPAs. Hence. it
is expected that, in the final decision making, the influence of

where 5
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ce” will be higher than any neighbor. Such an assignment is mo-
tivated by the fact the spatial neighbors usoally are highly cor-
related, ie., pixel p” and its immediate neighbors are expected
from the same class.

Thus, for eight neighboring pixels, we oblain eight separate
BPAs. These BPAs are combined to get the global BPA applying
the Dempster’s rule repeatedly. It can be easily seen that the
global BPA 1™ is also Bayesian and can be computed as

L )]

>, me
i1

L
."”'f:':{f_-;rk }-\I i rl_[é

(6}

In this case, the pignistic probability 777, is the same as
™ {10 So, the pixel p" is assigned 1o class ¢, such that
W FO L 2 TGV e L

3) Method 3: Aggregation With Non-Bayesian Belief: Here,
the BOEs are also identified in the same way as in the previous
method. However, we allow the assignment of belief 1o sub-
sets of C having two clements, e, the subsets {CL Oy o 0 <

v and {oan = 102,000 ) We define v’ as follows:
- . |:r}:i_ | |"I.-':I ;I
w1 = Tﬁk =12,....¢ {7)
—— L e = (nf 4l
w00 =2 — (#)
' 25
L= 1,2,...,c where
e i=v—1 wm=c
5 i i . G ;
5= Z_I‘n:c + i+ Z z day 4l — Dy, +
=l I=1l e=l41

In Method 2, we exploited only the correlation of spatial
neighbors. However, for satellite images, when a pixel falls at
the boundary of some land cover type, it may correspond o
more than one land cover type. Since the chance of a pixel 1o
have representation from more than two land cover types is
not high, we restrict the cardinality of the focal ses 10 wo.
Using (8) for eight neighboring pixels, we oblain eight sepa-
rate bodies of evidence. The global BPA for the focal elements
15 then computed applying Dempster’s rule repeatedly. In our
previous method, we could vse (6) to compute the global BPA
since we dealt with singleton focal elements only. In this case,
we have to compute the global BPA in steps, combining two
bodies of evidence at a time and preparing an intermediate BPA
which will be combined with another BPA, and so on. Once the
global BPA 15 computed, the class label 1s assigned according
to highest pignistic probability.

d4) Method 4: Aggregation Using Evidence Theoretic k-NN
Rufe: This method is fashioned after the evidence theoretic
le-NN method [12]. Here, nine BPAs ", m, . m™ are
identified comesponding o the possibilistic label vectors
o' e The BPA o' is assigned as follows: Let
@ arg maxiog ], then

.

L.
"

m {0 = o (9)
w01 =1 = (10}

T
wittd) =04 & PO E {1k (11)
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Thus, there is only one focal element containing one element
in each BOE. The rest of the behiel 15 assigned o the frame
of discernment C, which can be interpreted as the amount of
ignorance. The evidences are then combined using Dempster’s
rule and the class label 15 assigned according Lo lighest pignistic
probability.

Like Method 1, in this method, no special emphasis 1s given
to the pixel under consideration ¢ over the neighboring pixels,
whereas in Methods 2 and 3, " influences all the BPAs, i.e.,
e plays a special role. It can be seen in Section 1V that these
two approaches provide different classification efficiencies de-
pending on the nature of the spatial distribution of the classes.
Intuitively, if pixels corresponding o different land cover types
are scattered all over the image, neighbonng pixels may not be
given the same importance as that of the centrmal pixel for op-
timal performance of the classifier. On the other hand, if pixels
of a particular land cover Lype form spatial clusters, then giving
equal importance 1o the neighboring pixels may be desimble.
However, the optimal weight o be given o the neighbonng
pixels o get the best performance should depend on the distribu-
tion of different land cover types on the image being analyzed.
To realize this, we modify the BPA assignment scheme of cur-
rent method as follows. Let ¢ = ane nm.:i-:'f.ri], then

L

L
e .:.1'!:!, fore =1 (12}
i e = Tn'.'-'}Z:;: oltherwise (13)
mMC) =1 — ), fori=0 (14)
wi =1 — rrrr}‘;. olherwise (15)
A — DA & DI G L (16)

where () =0 @ <0 1 is a weight factor that controls the contribu-
tion of the neighboring pixels in the decision making process.
The optimal value of w for best classification performance de-
pends on the image under investigation and can be learnt during
tranmg using grid search.

IV, EXPERIMENTAL RESULTS AND DISCUSSIONS

We report the perdformances of the proposed classifiers for
two multispectral satellite images. We call them Satimagel and
Satimage2. Satimagel 15 a Landsat-TM image available along
with full ground truth in the catalog of sample images of the
ERDAS software and used for testing various algorithms [9].
The image covers the city of Atlanta, GA, and its sumroundings.
Satimage? is also a Landsat-TM image depicting outskins of
the city of Vienna, Austna [3].

The Satmage ] 15 of stee 512 1 512 pixels captured by seven
detectors operating in different spectral bands from Landsat-
TM3. Each ol the detectors generates an image with pixel valoes
varying from 0 to 255, The 512 » 512 ground truth data pro-
vide the actual distribution of classes of objects captured in the
tmage. From this data, we produce the labeled data set with each
pixnel represented by a seven-dimensional feature vector and a
class label. Each dimension of a feature vector comes from one
channel, and the class label comes from the ground truth data.
Fig. 1{a) shows the ground truth for Satimagel where different
classes are indicated with different shades of gray.
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Fig. 1. {a) Ground truth for Satimagel. {(b) Classified image for Satimagel
{Method 3, Training set 1. () Ground truth for Satimage2. {d) Classified image
for Satimage? {Method 4, Trining set 1).

Satimage? alsois a seven channel Landsat-TM image of seee
512 = 512 However, due to some characteristic of the hardware
used in capturing the mmages, the first row and the last column
of the images contam gray valoe 0. 5o, we did not inclode those
pixels in our stwody and effectuvely worked with 511 % 511 1im-
ages. The ground truth contanming four classes 15 used for la-
beling the data. Fig. Lic) shows the ground truth for Satimage2
where different classes are indicated with different shades of
grey.

In our study, we generated four sets of traiming samples
for each of the images. For Satmagel, each training set
containg 200 data points randomly chosen from each class.
For Satumage2, we mmclude in each traiming set 800 mndomly
chosen data points from each of the four classes. The classifiers
designed with the traming data are tested on the whole images.

The classification  results of the noncontextual  fueey
ruke-based systems are summanezed in Table Lia) and (b)
for Satmagel and Satimage2, mespectively. Table I(a) and
(b) summanezes the pedomances of the four classifiers vsing
different methods of aggregation of spabal imformation for
Satimage ] and Satmage2, respectively. We used the same
fuzey rule bases for respectve raining sets as vsed previously,
but the decision-making step 15 modified o vse the proposed
four methods.

A companison between Tables Ila) and 1{a) shows that, for
Satimage 1, Method 3 performs the best with improvements
vaned between 1.12% and 2.05%, and the best performing
classifier (for raining set 4) achieves an emor mie as low as
10.45%. Thas 15 closely followed by Method 2. Methods 1 and
4 show marginal improvement for tmining sets 1 and 2, while,
for training sets 3 and 4, their performance degrades a hitle.
A companson of Tables (b)) and (b)) shows that, although
the classifiers using Method 3 increase the classification ac-
curacy by about 1.5%, Method 1 1s cleardy the best perfommer
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TABLE 1
PERFORMANCES OF NONCONTEXTUAL FUZZEY RULE-BASED CLASSIFIERS
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TABLE 11

PERFORMANCES OF FUZZY RULE-BASED CONTEXTUAL CLASSIFERS
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2 11.55% 12.75% 12405 11.H3"%:

i 11.24% 12.45% 12.2%% 11, %50

1 11.2:% 12.53% 12.28% 11.:1%

for Satimage? with improvements ranging between 2.49%
and 2.99%. Similar pedormances are achieved by Method 4.
Method 4 used »0 = | for both Table 1l(a) and (b). Fig. 1(b)
shows the classified image corresponding o training set 1 and
Method 3 for Satimagel. Fig. Lid) displays classified image
(for tramning set 1, Method 4) for Satimage?.

Our expenmental resulls demonstrale that for Satimagel
Methods 3 and 2 work well while the other methods work
better for Satimage2. These differences of performances can be
explained if we look into the way the neighborhood information
15 aggregated in each method and the nature of the spatial distri-
bution of the classes in the images. In Method 1, the Tueey label
vectors of the central pixel (the pixel of nterest) and 1ts eight
neighboring pixels are treated in same way for aggregation.
The same 15 true for Method 4, though the evidence theoretic
approach 15 vsed for mformation aggregation. In Methods 2
and 3, eight BPAs are defined; each of them 1s assigned vsing
the possibilistic label vector of the central pixel and that of one
of the eight neighbonng pixels. Thus, all the BPAs are heavily
mfluenced by the central pixel and, consequently, so 18 the final
decision. Hence, 1t 15 expected that for the mmages dominated
by large stretches of homogencous areas (1e., area covered by
single land cover type) can be classified better by Methods 1
and 4. Also, for Method 4, there may exist an optimal weight
(different from 1) with improved pedommance. We shall see
later that this s, indeed, the case. Comparmg Fig. Lic) (ground
truth for Satimage2) with Fig. 1(a) (ground truth for Satimagel )
revieals that Satimage] mostly consists of small (often very
smally patches of land cover types, while Satimage2 has large
patches of land cover types. So, for Satmagel, neighborhood
information needs 1o be used judiciously to get an improved
classifier. This 1s what 15 achieved by Methods 2 and 3.
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TABLE 11
CLASS-WISE AVERAGE CLASSIFICATION PERFORMANCE
FOR THE FOUR PROPOSED METHODS 1-4
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To have a closer look at class-wise perfformances of the pro-
posed methods, we have presented the class-wise classification
performances in Table HI It can be seen from the table that, for
Satimage?, all four methods perform comparably for each of
the four classes, with a slender edge in favor of Methods 1 and
4. However, for Satumagel, which contains more complicated
spatial distribution of the classes, there is significant class-spe-
cific variation of performance among different methods. For the
classes Forest, Water, Urban area, and Clouds, all methods per-
form neardy equally well (the vanation is within 3% approxi-
mately ); however, for other classes, the performances differ sig-
nificanty. For Agriculture, the second largest class, Methods 2
and 3 have an accuracy of over 83%, while Methods 1 and 4 ane
68.49% and 60.12% accurate, respectively. For the class Bamne
eround, Methods 2 and 3 outperform the others comfortably. For
the class Shadow, there 15 a huge performance gap between the
Methods 2—3 (=96% ) and the Methods 1 and 4 (49% and 40%).
However, since the frequency of the Shadow class is very small,
this variation does not affect the overall accuracy significantly.

It can be observed from Tables 1-111 that, i a few cases, classi-
fiers with fewer number of rules perform better than those with
larger number of rules. This is due to the fact that each clas-
sifier is wained with different randomly generated training sets
and there 15 some randomness involved in the SOFM -based pro-
totype generation scheme. These result in different rule bases,
where one with more number of rules may have a few rules in
partal conflict.

The experiments are carried outl vsing a desklop computer
with P4 processor (3.0 GHe) and 256-MB memaory. Apart from
the mmage sizes, the computaton tme depends largely on the
number of rules and number of classes. For an image, the com-
putation time can be divided into two parts: computation of
the fuzey label vectors using rule base and decision making
by applying the evidence theoretic methods. The first par is
the same across all four methods and requires approximately
5005 for Satimage 1 (25-30 rules and eight classes) and 25 s for
Satimage? (11-14 rules and four classes). The decision making
using Methods 14 require 2, 10, 50, and 5 s, respectively, for
Satimagel and 1, 5, 10, and 2 5, respectively, for Satimage2. As
expected, Method 1 is the fastest one because it involves simple
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Fig. 2. Resultof godsearch for optimal valve of w using 100 = 100 subimages
of {0) Satimagel and (h) Satimage?. The mimbers beside the plots correspond
to the rule base number.

TABLE IV
CLASSIFICATION PERFORMANCES OF CLASSIFIERS LSING
MODIFIED METHOD 4 WITH ¢ — 1030 0N SATIMAGEL

Tranine Sel 1 2 3 4
Erear saue LLIE 1024w [ LA [ 12y |

averaging of the label vecors. On the other hand, Method 3 re-
quires dealing with both singleton and doubleton sets of classes
that increase the computation time almost quadratically with
number of classes.

To investigate the possibility of optimization of Method 4,
we now use the modified (12)—(16) that incorporate & weight
factor - for controlling the contribution of the information from
the neighborhood i the decision making process. The value
wr = LU makes the method same as the ongimal Method 4. To
find an optimal value of 1, we use a 100 x 100 subimage from
cach image and find an optimal v based on these blocks. Weuse
grid search to find the optimal . Note that the rule bases are the
same as used earlier. For example, for Satimagel, for each of
the four rule sets, we find the optimal w using the classification
error on the selected block of image. Fig. 2(a) depicts the vad-
ation of classification emor as a function of w for Satimage 1.
It is interesting to observe that for Satimage 1 for all four rule
bases the best performances are achieved around w = (1345
S0 we should use the modified Method 4 with w = (133 for
each of the four rule bases and Table IV displays the classifi-
cation errors for the whole image. Comparing Table IV with
column five of Table l{b), we find a consistent improvement
with v = 085 o all four cases. The improvement varied be-
tween 2.14% and 2.75%. We also tried to find an optimal .« for
each of the four rule bases for Satimage?. Fig. 2(b) displays the
classification error as a function of w. In this case, for all four
rule bases we find an optimal value of w = 1.1 This again con-
firms the fact that when different land cover types form spatially
compact clusters, neighbors and central pixels play equally im-
portant roles in decision making.

A. Comparison With an MRF Model-Based Classifier

Recently, contextual methods based on MEF models have
become popular for classification of multispectral [20], as
well as multisource [21], [22] saellite images. Typically, a
Bayesian framework 15 used 1w model the postenor proba-
bality. To estimate the model parumeters, an encrgy function
15 minmized wsing an optrmzation wechmgue hke simulated
annealing, genetic algorithm, ete. These methods usually utiliee
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TABLE ¥
CoMparISON OF CLASSIFICATION PERFORMANCE { PERCENTAGE ERRORS)
oF MEFE-BASED METHOD WITH THE PROPOSED METHODS
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the contextual information in the training stage. Also, their
accuracy depends on the correcimess of assumption about
the class-conditional density functions. Here, we compare
the proposed methods with the MREF model-based approach
mtroduced by Sarkar er al. [20]. This approach 1s based on
capturing intrinsic characters of tonal and textural regions
of a multspectral image. Using an mmtally oversegmented
image and the multispectral image, it defines an MRF over the
region adjacency graph (RAG) of the initial segmented image.
Because of the energy minimization of the associated MRE the
oversegmented regions are hikely 1o be merged. To compare the
similarty of adjacent regions, a multivariate statistical test is
incorporated while minimizing the energy function associated
with the undedying MRE A cluster validation technigue is also
used for finding optimal segments.

The implementation of the MR F-based scheme used for the
experiments here is capable of handling only up w four chan-
nels. Therefore, we used channels 3, 4, 5, and 7 for Satimage
and channels 2, 3, 5, and 7 for Satimage2. The choice is based
on visual inspection of the channel images as well as some ex-
periments with varous combinations of channels with a view to
finding a good combination of features suitable for the MRF-
based method. Using the same raiming-lest data sets as used
by the previous experiments, for Satimagel, the MRF-based
method fails to discriminate some of the classes, for example,
a significant part of the water becomes forest. So, we used a
more detaled wn-class ground truth data, Unfortunately, this
detaled ground truth is incomplete, 1e., does not cover the en-
tire image. Therefore, we used a training set with 1463 data
points and a test set with 1480 data points. For Satmage2, the
training set consisted of 3200 points as earlier. The classification
performance of the MRF-based method, noncontextual fuzey
ruks-based method, and proposed contextual decision making
schemes on the test sets 15 summarteed m Table Vo All exper-
tments are condocted with the same taining and test data sets
for respective images as descnbed in this section.

Table V shows that for Satimage] the error rate of the ordi-
nary {noncontextual) fuzey rule-based classifier is almost half of
that by the MRF-based method. All of the four proposed con-
textual decision making schemes reduce the ermor rate further
with Method 4 achieving the lowest error rate of 5.81%. 1o the
case of Satimage2, the error rate for the noncontextual fuzey
ruke-based classifier is also about 1.4% less than the MRF-based
method. The proposed contextual schemes again produce fur-
ther improved classification pedormance. Here, again, Method
4 exhibits the lowest error rate of 12.45% closely followed by
Method 1 (12.55%). Thus, it can be observed that for both the
images the ordinary fuzzy rule-based classifiers, as well as the
four contextual classifiers perform consistently better than the
MRF-model based method tested here.
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V. CONCLUSION

We proposed a comprehensive scheme for designing con-
textual classifiers for land cover classification in multispeciral
satellite images. This 15 a mulustage scheme. Frst, an SOFM-
based dynamic prowotype generation algorithm is used o gen-
erate an adequate number of prowtypes. Then, the prototypes
are converted into fuzey rules and they are further fine-tuned
to design an efficient fuzzy rule-based classifier. However, this
classifier is a noncontextual one. Since the landeover classes
usually appear in spatial clusters, a classification scheme using
contextual information can be more efficient than noncontextual
one. Hence, we develop four decision making schemes which
use information from spatial neighborhood of the pixels. For
assigning a class label to a pixel, the schemes use the mfonma-
tion generated by the fuzey rule base in the form of possibilistic
label vectors for the pixel under consideration as well as its eight
spatial neighbors. Three of the proposed schemes use evidence
theoretic framework and the remaining one is based on the fuzey
l--ININ rule.

The suitability of a particular scheme depends to some extent
on the nature of the image (o be classified. The performance of
the methods on the tmining/validation data can be used o decide
on the best classifier for a given sitwation. One of the methods
has a parameter that can be tuned based on the tmming/valida-
tion data to get a classifier with improved pedformance.
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