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Abstract

We use the Gazeau-Klauder formalism to construct coherent states of non-Hermitian quantum systems. In particular we use this formalism to
construct coherent state of a T symmetric system. We also describe the construction of coherent states following Klauder's minimal prescription.

1. Introduction

In recent years non-Hermitian quantum mechanics have
been extensively studied from various stand points [1]. Among
the different non-Hermitian systems, there is a class of prob-
lems which are PT invarant, P and T being the parity
and time reversal operator respectively and it was shown that
some of the non-Hermitian P77 symmetric problems admit real
epzenvalues [2]. Subsequently it was pointed out that the reality
of the spectrum is essentially due o p-psendo Hermiticity [3].
Interestingly some of the y-pseudo-Hermitian systems are also
PT symmetric. Because of this property and also because of
their intrinsic interest PT symmetric and g-pseudo-Hermitian
potentials have been examined widely [4,5].

On the other hand coherent states play an important role in
the context of Hermitian quantum mechanics [6]. Recently the
concept of coherent states was also introduced 1o PT symmet-
ric quantum mechanics [ 7] However, as in Hemmitian models,
coherent states corresponding Lo arbitrary non-Hermibian poten-
tials are not easy 1o construct. This is mainly due 1o the fact that
symmetry of the problem ie., a knowledge of the ladder opera-
tors may not always be known. This difficulty can however be
overcome by using the Gazeau—Klander (GK) approach [8]. Re-
cently Klauder [9] has suggested a set of requirements which a
coherent state should satisfy and he proposed a method of con-
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structing coherent states for solvable potentials. This method is
simple and has been applied successfully o a number of exactly
solvable Hermitian potentials with discrete [10] as well as con-
tinuous spectrum [ 8], Here our objective is to show that with an
appropriately chosen inner product the GK formalism can also
be extended to non-Hermitan potentials. In particular we shall
use this technigue to construct coherent states of the PT sym-
metric Scarf | potential. We shall also construct coherent stales
of the same potential satisfying a minimal set of requirements.

2. Some results on PT symmeiric systems
Let us consider a Hamiltonian M such that

Hujny (x) = Egifrp(x) = wey il ey =1L (1)
Then H is said to be PT symmetric if

H=PTHPT, (2)
where

P x—=—x, p— —p 3
T: x—x, p——p, i——il|’ 3)

Furthermore, if in addition to (2) the wave functions are also
PT nvariant i.c.,

T]T‘f{’n = :l:‘f["n . ()

then PT symmelry is said to be unbroken. On the other hand
if the Hamilonian is P7 invariant while the wave functions
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are not, then PT symmetlry is said 1o be spontancously bro-
ken. It may be noted that systems with spontaneously broken
PT symmetry are characterised by complex conjugate pair of
eigenvalues. Here we shall only consider systems with unbro-
ken PT symmetry.

A major difference between the non-Hemmitian theories and
the Hermitian ones lies in the definition of inner product. In the
case of PT symmetric systems neither the standard definition
of inner product nor the straightforward generalisation, namely,

{1l 1’5_”}'?’?' = f[‘f—"fﬁrm Iy dx =(-1 }'nﬁmn (5)

work because the norm becomes negative for some of the states.
Consequently a modification is necessary so that the norm is
always positive. Indeed it has been shown that for n-pseudo-
Hermitian gquantum mechanics it is possible to define an inner
product which is positive definite i.e., the Hamilionian is Her-
mitian with respect to that inner product [3]. For PT symmetric
cases g convenient option is to use the CPT norm. For PT
symmetric theories with unbroken PT symmetry the CPT in-
ner product is defined by [11]

{‘ﬁfm!-‘fcﬁr}c.p’r = f[cpf‘g&mw’n dx =dma, (£

where C is called the charge operator and is defined by [11]

Clx, )= YulX)ymly). (7)

=il

The action of the charge operator on the eigenfunctions is given
by

Cifrpix) = ff-'l[r._t‘}y’:rnl[_v}d_l‘: (— 1) e (x). (8)

Another property which would be very useful later is the com-
pleteness of eigenfunctions. In coordinate space the complete-
ness property can be expressed in terms of the charge operator
a5

Y b O[CPT (0] = 3 (=1 ¥ (v) = 8x — ).
n=ll n=I(
9

3. GK formalism for PT symmetric systems

It 15 known that coberent states can be constructed using
different echniques (e.g., a coherent stale may be defined as
a minimum uncertainty state, annihilalion operator eigenstale,
ete.) and usually they have different propenies. In the GK for-
malism a coherent state should satisfy the following criteria [8]:

i1y continuity of labelling;
(2) temporal stability;

i3) resolution of identity;
(4) action identity.

For PT symmetric systems a GK coherent state is a two
parameter state defined by [8,9]

1 = Jiexpi—iyen)
1.-'f;' (J) s A P

where J 20 and —o¢ < p = 400 are Iwo pammeters and
i, (x) are the eigenstates. In (10), g, are a sel of numbers de-
fined as

Yix .yl = Waix), (1)

L

F'Jr:l_[fi- (11}

=1

=1,

It is now necessary o determine the normalisation con-
stant A(J). Now using the CPT inner product (6) the nor-
malisation constant A(J) can be obtained from the condition

Wi Loy (s 4, ) SFT =1
S i 1

NW=) "=, 0<J<R= lim(p)s. (12)
n=ll Pn i

Let us now examine whether or not the coherent states (10)
satisfy the criteria mentioned above. From the construction it is
clear that the coherent states are continuous in their labels e,
()= (J oy =i oy, x) — Wix: I ") It may also
be noted that although H is not Hermitian, the time evolution
operator is still given by e~ Using (1) and (10) the pseado-
unitary time evolution is found to be

e M (xs L y) = wix J.y +wi). (13)

From i 13) we find that the GK coherent states are temporally
stable. We now show that the coberent state also admits a reso-
lution of unity:

fdu{y, N[CPTY(y: 4. )] FI W (x: I, y)

I ok
1
- fJme 5 dy f[ﬂ?—"?’ﬁr{}‘: J, }*}I]y!r{r: Joyifidydd
-r 0
=) D ¥ Pnls) fJ” f,m di=éx—y) (14)
n=ll Pn ﬂl{h”

if the following moment problem has a solution:

oo

F-'Jr:f-f

1]

n I . (15)
N
Thus we find that the GK coherent state for PT symmelric sys-
tems provide a resolution of unity subject W the solution of the
moment problem (15).

We now proceed to check the action identity. Using (12) it
can be easily checked that

(WIHpCPT
) ; o0 Jr[Jr-a-Ju].n'?,,_,—"?["-'-'_*"‘f*]trk'n{_l}nwr [}
- = o

=il
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| oo Jintm ];IE —iy ey —em)
TN ot ' PmPn

ey b
(=10 8

s that the eriteria (4) 1s also satisfied. Thus the coherent state
(10} satisfy all the criteda (1)—i4). It may be noted the con-
struction ultimately boils down to a solution of the moment
problem (15).

4. GK coherent states for PT symmetric Scarf | potential

As an example we shall now construct GK coberent state of
an exactly solvable PT symmetric potential. Thus we consider
the PT symmetric Scarf | potential [12-14]. The Schridinger
equation s given by

x

!l_
[— s vm]x;rn = Ey i, (17)
dx=

where the potential Vix) 1s given by

2+ -1 1 (o’ — A7) sin(x)
4 cos2ix) 2 cos2ix)
a+p+1)? T X
oo re[——,—], (1%)
4 22
where o and 8 are complex parameters such that 4% = o and
g = % The eigenvalues and the corresponding eigenfunctions
are given by [12-14]

Vix)=

E,=we,=nin+2ap4+ 1),
W "
VY (1) = N (1 —sinn) E53(1 +sinn) TH =B (inx),  (20)

e S .
where N, denotes the normalisation constant and F:?"l ! are Ja-

cobi polynomials [ 15]. It may be noted that the Hamilonian is
PT symmetdce as well as P-pseudo-Hermitian:

n=0,1,2, ..., (193

H=PTHPT,

H =7 'HP. (21)
Also the wave functions are PT invariant:

P, (x) =, (x) (22)

and they satisfy the relation

f [CPT gin ()]s (x) dx = S (23)
In this case

ey = Rnin + ), m=1,
Fin+1Cin4+v+ 1)
B = v+ 1)
where v=2ap+ 1.
Thus the GK coberent state for the Scad 1 potential (in the
coomdinate representation) 15 given by

R =nc, (24)

il expl—iyey)

1
fix; I, ¥)=
vl J.y) Nh 2 ¥r=

Y (), (25)

where 1, (x) and g, are given by (20) and (24), respectively.
From (12) the normalisation constant s found 1o be

. 3 J o Jn
NN = |:1"{1 ki ””2 T+ DI v+ 1}]

=J 2T (v + DL(2VT), (26)

where T, (x) stands For the Bessel function of the first kind [ 15].
It 15 now necessary 1o show that the moment problem (15)
has a solution. Using the relation [15]

]

1 4 1 — 4
fr“Kg;{ﬂ.r}d.r=2"‘_Iﬂ_"‘_ll"( i it )I"( 2 )
0

2 2

Be(p +14£48) =0, Reja) =0 (27)
we find that
1 -
fl) = ;fl.{zJJ}Kl.{zﬁ} =0 (28)

provides a solution 1o the moment problem (15). Now it can be
shown that

fduu, N [CPT: 1 ] FIW(x: 1.y)

b oo

- % dyfdi NI Wi g, y}[ﬂ‘?—"fﬁr{}': g, y}l]
0 i
= Z{—I}" Wi (x )lrply) = d{x — ¥). (29)
n=il

Thus the coherent state provide a resolution of unity. It can now
be easily shown that the states (25) have many other properties
characteristic of coherent states e.g. they are non-orthogonal:
CPT
(W 29 W (x: L))
oo

{J’J’I }Jr.l'l

s 'iv41) Z
VNN = Tin+DCn+v+1)

fjn[.lr-i— VI ="

(309

From the above example it is thos clear that subject o the

solution of the moment problem (135}, it is possible 1o construct

GK coherent states of any exactly solvable PT symmetric or
n-pseudo-Hermitan potential with real spectrum.

4.0 Minimal coherent state for non-Hermitian potentials

In the last section we considered coherent states satisfying
four conditions. However, if we relax conditions (2) and (4) and
construct coherent states following Klauder's minimal prescrip-
tion [ 16], then a wider class of such states can be generated [ 17].
In this case a coherent state is required to satisfy two of the four
criteria, namely, (1) continuity in labelling and, (2) resolution of
identity, mentioned earlier. Thus a coherent state comesponding
o (18) is defined as

wrix: )= Walx), (31)

1 i i
VAUAD n=il “'ﬁ
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where § = re'” is a complex number and v, (x) are given by
(20). Here g, are a set of positive constants which would be
specified later. The nomalisation constant is determined from

the condition (¥ {x; Bl (x: 51T =1 and is given by

N(181) = E@ (32)

n=il FAn

Cleady 8 — 8" = rix; 8) — r(x; A7) e, the coherent state
(31) 15 continuous in the label. Futhermore

f::Iﬁ[c:'fnrm_r:ﬁ}]f{ml}w{x:ﬁ}

B DO [ oo SO,
=2y = f e (33)
=il 0

Thus (31) admits resolution of unity if the positive constants o,
are such that the Sueltjes moment problem (15) has a solution

O
r)
n frmr"'l i"ﬁdr = Py. (34)
i

In a recent work [17] solutions to such moment problems for
a number of different forms of g, have been found by using
Mellin trans form technique. Here we consider a simple example
and take pin) =T(2n + 1), In this case we find from (32)

Niry = coshir). [RE)]

Now using the result

O
f e dr =T(2n+ 1) (36)
0
fir)is found 1o be

S 1 & a7
flry= e 3T

Since fir) = 0, the coherent state

i}

g
J/eosh(r) Jgﬂ B, o Ll (38)

with v, (x) are given by (20), admits a resolution of identity.
Also it can be shown that overlap between two coherent states
15

rix: Al =

ut‘}sh{\f ﬁr’;‘:f}l
Jeosh{rcoshir)
Thus (38) fumishes a new coherent state of the PT symmetric
Scarf | potential. We note that in contrast to the GK coherent
state (23), the minimal coherent state (38) is not temporally sta-
ble.

(e oy e )T = (39)

5. Conclusion

Here it has been shown that by suitably modifying the nor-
malisation procedure, it is possible w0 extend the GK formal-
ism o non-Hermitian systems. Furthermore new families of
coherent states may also be constructed following Klauder's
minimal prescription. One such state with g, = U{2n + 1) has
been constructed here. Finally we note that the construction
of coherent states outlined here may also be extended w n-
pseudo-Hermitian systems which are not necessarily P7T sym-
metric [18].
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