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1. INTRODUCTION

In this paper we continue our study on the theory of the Euler class group of a
polynomial algebra A[T ], where A is a commutative Noetherian ring (containing
Q) of dimension n. For such a ring A, in [Da], we defined the notion of the nth
Euler class group En(A[T ]) of A[T ]. For simplicity let us call it E(A[T ]). In [Da]
we also studied the relations between E(A[T ]) and E(A), where E(A) is the nth
Euler class group of A. For example, there is canonical map Φ : E(A) −→ E(A[T ])
which is an injective group homomorphism and it is an isomorphism when A is a
smooth affine domain [Da, Proposition 5.7]. In general, these two groups are not
isomorphic (see discussion preceding [Da, Proposition 5.7]). In this context, the
following question is natural.

Question. Does there exist a group homomorphism, say, Ψ : E(A[T ]) −→ E(A) such
that the composition ΨΦ is the identity map on E(A)?

In this paper we give an affirmative answer to the above question.

A few words about the proof are in order. Let R denote A or A[T ]. We may
recall that E(R) is a free abelian group modulo some relation (see the section on
Preliminaries for definition) and elements ofE(R) are classes of pairs (I, ωI) where
I is an ideal of R of height n and ωI : (R/I)n � I/I2 is a surjection. One attempt
to define a map from E(A[T ]) to E(A) could be by restriction at T = 0, meaning,
given (I, ωI) ∈ E(A[T ]) we may try to associate it to something like (I(0), ωI(0))
in E(A) where I(0) = {f(0)|f(T ) ∈ I} and ωI(0) : (A/I(0))n � I(0)/I(0)2 is the
surjection induced by ωI . But I(0) may not have height n and therefore (I(0), ωI(0))
may not be a legitimate element of E(A). On the other hand, since A contains Q,
there exists λ ∈ Q such that I(λ) is an ideal of height ≥ n. In this case (I(λ), ωI(λ))
is an element of E(A) but since the element λ depends on I and may vary for
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different ideals, we may not find a single λ for the whole group E(A[T ]) so that we
can apply the restriction T = λ.

To tackle this problem we note that, however, the ideal I(0)/I(0)2 is generated
by n elements and applying some “moving lemma” (which is an application of
Eisenbud-Evans theorem) we can find an ideal K of A of height ≥ n, residual to
I(0), and a surjection ωK : (A/K)n � K/K2. We define Ψ(I, ωI) = −(K,ωK) and
prove the following

Theorem 1.1. The map Ψ : E(A[T ]) → E(A), described above, is a homomorphism of
groups such that if (I, ωI) ∈ E(A[T ]) has the property that I(0) is an ideal of A of height
n, then Ψ((I, ωI)) = (I(0), ωI(0)).

To prove that Ψ is well defined and is a group homomorphism we require the so
called “addition” and “subtraction” principles in a little more generality which we
prove to fit our needs.

Indeed Ψ is surjective and the composition ΨΦ : E(A) → E(A[T ]) is the identity
map. Furthermore, Ψ is an isomorphism when A is a smooth affine domain.

Let us recall one important result from [Da] which is very much relevant to
this context. In [Da], given an ideal I ⊂ A[T ] of height n and a surjection ωI :
(A[T ]/I)n � I/I2, we associated an element (I, ωI) ∈ E(A[T ]). One of the prime
objectives was to show that this element (I, ωI) ∈ E(A[T ]) is the precise obstruc-
tion for the surjection ωI to lift to a surjection θ : A[T ]n � I ([Da, Theorem 4.7]).
For proving this theorem we first showed that we can assume ht I(0) = n and
then argued “since (I, ωI) = 0 in E(A[T ]), we have (I(0), ωI(0)) = 0 in E(A)”.
This argument essentially assumes the existence of the group homomorphism Ψ :
E(A[T ]) → E(A) with the property mentioned in Theorem 1.1 above. However,
the question of existence of such a group homomorphism has not been addressed
there. In this sense, we now get a complete proof of [Da, Theorem 4.7].

As discussed above, while working on the group homomorphism Ψ, our prime
concern was the fact that given an ideal I of A[T ] of height n, I(0) may not have
height n. But the form of Theorem 1.1 led us to believe that that while working
on E(A[T ]), we may restrict ourselves to the “nice” ideals I of A[T ] for which I(0)
has height n. In this context, we define a “restricted” Euler class group E′(A[T ]) of
A[T ] which concerns only those “nice” ideals and prove thatE(A[T ]) is isomorphic
to E′(A[T ]) (Proposition 3.7).
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Let A be an affine algebra of dimension n over an algebraically closed field k of
characteristic zero. Then E(A) is isomorphic to E0(A) (can be easily deduced from
[B-RS 2, Lemma 3.4]). In Section 4 we investigate the Euler class group E(A[T ])
and the weak Euler class group E0(A[T ]) when A is an affine algebra over an alge-
braically closed field and prove that E(A[T ]) and E0(A[T ]) are canonically isomor-
phic (Corollary 4.4).

In Section 4 we also address the following question.

Question. Let A be a Noetherian ring (containing Q) of dimension n ≥ 3. Let (I, ωI) ∈
E(A[T ]) be an arbitrary element. Does there exist a projective module P of rank n (with
trivial determinant) together with an isomorphism χ : A[T ] ' ∧n(P ) such that e(P, χ) =
(I, ωI)?

In general, the answer to this question is negative as one can take A to be the
coordinate ring of an even dimensional real sphere, any real maximal ideal J of
A and set I = J [T ]. We show, using Corollary 4.4 and the following theorem of
Bhatwadekar-Raja Sridharan that the above question has an affirmative answer if
A is an affine domain over an algebraically closed field of characteristic zero.

Theorem 1.2. [B-RS 5, Theorem 2.7] Let A be an affine domain of dimension n ≥ 3
over an algebraically closed field k of characteristic zero. Let I ⊂ A[T ] be a local complete
intersection ideal of height n such that I/I2 is generated by n elements. Then there exists a
projective A[T ]-module P of rank n with trivial determinant and a surjection Φ : P � I .

We also give an alternative proof of Theorem 1.2 using Euler class computations.
Our proof appears simpler with the use of Euler class techniques. We may note
that when Bhatwadekar-Raja Sridharan proved this result, the Euler class group of
a polynomial algebra was not defined.

Let dimA = n and P be a projective A[T ]-module of rank n with trivial deter-
minant together with an isomorphism χ : A[T ] ∼→ ∧n(P ). To the pair (P, χ), in
[Da], we associated an element e(P, χ) in E(A[T ]), called the Euler class of (P, χ).
We proved that P has a unimodular element if and only if e(P, χ) = 0 in E(A[T ]).
In the proof we crucially used a theorem of Bhatwadekar-Raja Sridharan [B-RS 4,
Theorem 3.4]. Here we give an independent proof of [Da, 4.11].
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2. PRELIMINARIES

In this section we define some of the terms used in the paper and record some
results which are used in later sections.

All rings considered in this paper are commutative and Noetherian and all mod-
ules considered are assumed to be finitely generated. The projective modules are
assumed to have constant rank.

We start with an easy lemma.

Lemma 2.1. Let B be a Noetherian ring of dimension n and J ⊂ B be an ideal which
is contained in the Jacobson radical of B. Suppose that K ⊂ B[T ] is an ideal such that
K + JB[T ] = B[T ]. Then any maximal ideal of B[T ] containing K has height ≤ n and
hence dim (B[T ]/K) = 0.

Now we state a useful lemma. The proof of this lemma can be found in ([B-RS 1],
3.3).

Lemma 2.2. Let A be a Noetherian ring containing an infinite field k and let I ⊂ A[T ] be
an ideal of height n. Then there exists λ ∈ k such that either I(λ) = A or I(λ) ⊂ A is an
ideal of height n, where I(λ) = {f(λ) : f(T ) ∈ I}.

Definition 2.3. Let A be a commutative Noetherian ring and P be a projective
A-module of rank n ≤dimA. By a generic surjection of P we mean a surjection
α : P � J where J is an ideal of A of height n. It follows from a theorem of
Eisenbud-Evans ([E-E],[Pl]) that generic surjections exist.

Definition 2.4. LetA be a commutative Noetherian ring, P a projectiveA[T ]-module.
Let J(A,P ) ⊂ A consist of all those a ∈ A such that Pa is extended from Aa. It fol-
lows from ([Qu], Theorem 1), that J(A,P ) is an ideal and J(A,P ) =

√
J(A,P ).

This is called the Quillen ideal of P in A.

Remark 2.5. Let A, P , J(A,P ) be as in the above definition. Then it is easy to
deduce from Quillen-Suslin theorem ([Qu], [Su1]) that height of J(A,P ) is at least
one. If determinant of P is extended from A, then by [Pl, Corollary 2], ht J(A,P ) ≥
2.
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Definition 2.6. Let A be a ring A[T ] be its polynomial extension. We denote by
A(T ), the ring obtained fromA[T ] by inverting all the monic polynomials inA[T ].It
can be proved easily that dimension of A(T ) is same as dimension of A.

The proof of the following lemma can be found in [B-RS 1, Remark 3.9].

Lemma 2.7. Let A be a ring, I ⊂ A[T ] be an ideal such that I = (f1, · · · , fn) + I2.
Assume further that either I(0) = A or I(0) = (a1, · · · , an) such that fi(0) = ai mod
I(0)2. Then we can find g1, · · · , gn ∈ I such that I = (g1, · · · , gn) + (I2T ) with the
properties: (1) gi = fi mod I2, (2) gi(0) = ai.

We now quote a theorem of Mandal. The following version is implicit in [M 1,
Theorem 1.2].

Theorem 2.8. Let A be a Noetherian ring and I ⊂ A[T ] be an ideal containing a monic
polynomial. Suppose that I = (f1, · · · , fr)+ I2, where r ≥dim(A[T ]/I)+2. Then, there
exist g1, · · · , gr ∈ I such that I = (g1, · · · , gr) and fi = gi mod I2.

The following theorem is also due to Mandal [M 2, Theorem 2.1].

Theorem 2.9. Let A be a Noetherian ring and I ⊂ A[T ] be an ideal containing a monic
polynomial. Suppose that I = (f1, · · · , fr) + (I2T ), where r ≥dim(A[T ]/I) + 2. Then,
there exist g1, · · · , gr ∈ I such that I = (g1, · · · , gr) and fi = gi mod (I2T ).

The following result is a special case of [M-RS, Theorem 2.3].

Theorem 2.10. Let A be a Noetherian ring. Suppose K3 = K1 ∩K2 be the intersection of
two comaximal ideals K1, K2 of A[T ] such that :

(1) K1 contains a monic polynomial in T .
(2) K2 is an extended ideal.
(3) K1 = (f1(T ), · · · , fn(T )) with n ≥dimA[T ]/K1 + 2.
(4) K3(0) = (c1 · · · , cn) with ci − fi(0) ∈ K1(0)2.

Then K3 = (h1(T ), · · · , hn(T )) with hi(0) = ci.

We will refer to the following lemma as “moving lemma”. This lemma can easily
be proved adapting the proof of [B-RS 3, Corollary 2.14].

Lemma 2.11. Let A be a Noetherian ring of dimension n ≥ 2. Let J be an ideal of A of
height ≥ 1 such that J = (a1, · · · , an)+J2. Let K be any ideal of A of height at least one.
Then there exists an ideal J ′ ⊂ A such that
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(1) J ′ is comaximal with J ∩K and ht J ′ ≥ n.
(2) J ∩ J ′ = (c1, · · · , cn) where ci = ai mod J2.

In the rest of this section we briefly sketch the definitions of the Euler class groups
E(A[T ]) and the weak Euler class groups E0(A[T ]) (where A is a commutative Noe-
therian ring containing Q of dimension n ≥ 2) and quote some results that are
relevant to this paper. The notions of E(A[T ]) and E0(A[T ]) have been defined and
studied in [Da]. We refer the reader to [Da] for a detailed account of these topics.

Definitions of E(A[T ]) and E0(A[T ]) :

Let A be a Noetherian ring of dimension n ≥ 2 containing Q. Let I ⊂ A[T ] be an
ideal of height n such that I/I2 is generated by n elements. Two surjections α and
β from (A[T ]/I)n � I/I2 are said to be related if there exists σ ∈ SLn(A[T ]/I) such
that ασ = β. This is an equivalence relation on the set of surjections from (A[T ]/I)n

to I/I2. Let [α] denote the equivalence class of α. We call such an equivalence class
[α] a local orientation of I .

It was shown in ([Da], Proposition 4.4) that if α : (A[T ]/I)n � I/I2 can be lifted
to a surjection θ : A[T ]n � I then so can any β equivalent to α. We call a local
orientation [α] of I a global orientation of I if the surjection α : (A[T ]/I)n � I/I2 can
be lifted to a surjection θ : A[T ]n � I .

Let G be the free abelian group on the set of pairs (I, ωI) where I ⊂ A[T ] is
an ideal of height n such that Spec (A[T ]/I) is connected, I/I2 is generated by n

elements and ωI : (A[T ]/I)n � I/I2 is a local orientation of I .

Let I ⊂ A[T ] be an ideal of height n and ωI a local orientation of I . Now I can
be decomposed uniquely as I = I1 ∩ · · · ∩ Ir, where the Ik’s are ideals of A[T ] of
height n, pairwise comaximal and Spec (A[T ]/Ik) is connected for each k. Clearly
ωI induces local orientations ωIk

of Ik for 1 ≤ k ≤ r. By (I, ωI) we mean the element
Σ(Ik, ωIk

) of G.

Let H be the subgroup of G generated by set of pairs (I, ωI), where I is an ideal
ofA[T ] of height n generated by n elements and ωI is a global orientation of I given
by the set of generators of I . We define the Euler class group of A[T ], denoted by
E(A[T ]), to be G/H .

The weak Euler class group E0(A[T ]) is defined in a similar way, just dropping
the orientations, as follows:

Let F be the free abelian group on the set of ideals I where ht I = n, I/I2 is
generated by n elements and Spec (A[T ]/I) is connected. For an ideal I of A[T ]
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of height n such that I/I2 is generated by n elements, we take its decomposition
into connected components (as above), say, I = I1 ∩ · · · ∩ Ir, and associate to I the
element (I) := ΣIk of F . Let K be the subgroup of F generated by elements of the
type (I), where I ⊂ A[T ] is an ideal of height n and I is generated by n elements.
We define E0(A[T ]) to be F/K.

Let P be a projective A[T ]-module of rank n with trivial determinant. Fix a triv-
ialization χ : A[T ] ' ∧n(P ). Let α : P � I be a generic surjection (i.e., I is an
ideal of height n). Note that, since P has trivial determinant and dimA[T ]/I ≤ 1,
P/IP is a free A[T ]/I-module. Composing α ⊗ A[T ]/I with an isomorphism γ :
(A[T ]/I)n ' P/IP with the property ∧n(γ) = χ⊗A[T ]/I we get a local orientation,
say ωI , of I . Let e(P, χ) be the image in E(A[T ]) of the element (I, ωI) ofG. (We say
that (I, ωI) is obtained from the pair (α, χ)). It can be proved that the assignment
sending the pair (P, χ) to e(P, χ) is well defined (see [Da]). We define the Euler class
of P to be e(P, χ).

3. MAIN RESULTS

We begin this section with the following addition and subtraction principles.
Here we have only relaxed the condition on height of the ideals concerned. The
methods of proof are similar to the usual addition and subtraction principles (one
can look at [B-RS 6, Propositions 3.1, 3.2]). However we include the proofs for the
sake of completeness.

Proposition 3.1 (Addition Principle). Let A be a Noetherian ring of dimension n ≥ 3
and I, J be two comaximal ideals of A, each of height ≥ n − 1. Assume further that
I = (a1, · · · , an) and J = (b1, · · · , bn). Then, I ∩ J = (c1, · · · , cn) such that ci = ai

mod I2 and ci = bi mod J2.

Proof. Note that we can always perform elementary transformations on (a1, · · · , an)
and (b1, · · · , bn) and no generality is lost doing so. To see this, let us assume that
(a1, · · · , an) is elementarily transformed to (ã1, · · · , ãn) and (b1, · · · , bn) is elemen-
tarily transformed to (b̃1, · · · , b̃n). Suppose we can find a set of generators c̃1, · · · , c̃n
of I ∩ J satisfying c̃i = ãi mod I2 and c̃i = b̃i mod J2. Then we can use the sur-
jectivity of the canonical map En(A/I ∩ J) −→ En(A/I) × En(A/J) to transform
(c̃1, · · · , c̃n) to (c1, · · · , cn), so that I ∩ J = (c1, · · · , cn) with ci = ai mod I2 and
ci = bi mod J2.
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Let B = A/(b1, · · · , bn) and bar denote reduction mod (b1, · · · , bn). Since I +
J = A, (a1, · · · , an) ∈ Umn(B). Now dimB ≤ 1 and n ≥ 3. Therefore we can
elementarily transform (a1, · · · , an) to (1, · · · , 0). Applying [RS1, Lemma 2] we can
apply an elementarily transformation and assume that ht (a1, · · · , an−1) = n − 1.
Note that this transformation preserves the fact that a1 = 1 modulo J . Therefore,
(a1, · · · , an−1) + J = A.

Now let C = A/(a1, · · · , an−1) and bar denote reduction mod (a1, · · · , an−1).
Consider the unimodular row (b1, · · · , bn) ∈ Umn(C). Using similar arguments as
in the above paragraph we finally obtain :

(1) (a1, · · · , an−1) + (b1, · · · , bn−1) = A.
(2) ht (a1, · · · , an−1) = ht (b1, · · · , bn−1) = n− 1.

In A[T ] we consider the ideals

I1 = (a1, · · · , an−1, T + an), I2 = (b1, · · · , bn−1, T + bn)

and let K = I1 ∩ I2. Note that I1 + I2 = A[T ]. Therefore, using the Chinese
remainder theorem we can choose g1(T ), · · · , gn(T ) ∈ K such that

K = (g1(T ), · · · , gn(T )) +K2

satisfying gi(T ) = ai mod I2
1 , gi(T ) = bi mod I2

2 , 1 ≤ i ≤ n−1; gn(T ) = T +an mod
I2
1 , gn(T ) = T + bn mod I2

2 .

Now ht (a1, · · · , an−1) = ht (b1, · · · , bn−1) = n− 1. Also note that dimA[T ]/I1 =
dimA/(a1, · · · , an−1) and dimA[T ]/I2 = dimA/(b1, · · · , bn−1). Therefore, it fol-
lows that dimA[T ]/K ≤ 1. Since n ≥ 3, the conditions of Theorem 2.8 are sat-
isfied for K. Applying Theorem 2.8 we obtain K = (h1(T ), · · · , hn(T )) such that
hi(T ) = gi(T ) mod K2. Let hi(0) = ci. Then I ∩ J = (c1, · · · , cn) with ci = ai mod
I2 and ci = bi mod J2. 2

Proposition 3.2 (Subtraction Principle). LetA be a Noetherian ring of dimension n ≥ 3
and I, J be two comaximal ideals of A, each of height ≥ n − 1. Assume further that I =
(a1, · · · , an) and I ∩ J = (c1, · · · , cn) such that ci = ai mod I2. Then J = (b1, · · · , bn)
such that ci = bi mod J2.

Proof. First note that we can perform elementary transformations on (a1, · · · , an)
because we can apply the same elementary transformations on (c1, · · · , cn) to re-
tain the relation that ci = ai mod I2. Let B = A/J2 and bar denote reduction
modulo J2. Since ht (J) = n − 1, dimB ≤ 1. Therefore, performing elementary
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transformations as in the proof of the above proposition we may assume that: (1)
ht (a1, · · · , an−1) = n− 1, (2) an = 1 mod J2.

Consider the following ideals in A[T ] :

I1 = (a1, · · · , an−1, T + an), I2 = JA[T ], K = I1 ∩ I2.

Applying Theorem 2.10 we obtain a set of generators (h1(T ), · · · , hn(T )) of K such
that hi(0) = ci. Let bi = hi(1 − an). Then J = (b1, · · · , bn). Since an = 1 mod J2,
bi − ci = hi(1− an)− hi(0) = 0 mod J2. This proves the proposition. 2

We are now ready to show that there is a group homomorphism from E(A[T ])
to E(A) such that if (I, ωI) ∈ E(A[T ]) has the property that I(0) is an ideal of A
of height n, then this group homomorphism takes (I, ωI) to (I(0), ωI(0)) in E(A),
where ωI(0) is the local orientation of I(0) induced by ωI . This is done in Theo-
rem 3.3 below. To prove this theorem we mainly need addition and subtraction
principles proved above and Lemma 2.11.

Theorem 3.3. Let A be a Noetherian ring containing Q of dimension n ≥ 3. There is
a group homomorphism Ψ : E(A[T ]) −→ E(A) such that if (I, ωI) ∈ E(A[T ]) has the
property that I(0) is an ideal of A of height n, then Ψ((I, ωI)) = (I(0), ωI(0)) in E(A),
where ωI(0) is the local orientation of I(0) induced by ωI . If I(0) = A, Ψ((I, ωI)) = 0.

Proof. We give the proof in steps.

Step 1. Recall that E(A[T ]) is defined as G/H , where G is the free abelian group
on the set of pairs (I, ωI), where I ⊂ A[T ] is an ideal of height n having the
property that Spec (A[T ]/I) is connected and I/I2 is generated by n elements,
and ωI : (A[T ]/I)n � I/I2 is a local orientation of I . Let us pick one such el-
ement (I, ωI). Let the local orientation ωI be given by I = (f1, · · · , fn) + I2.
Now I(0) is an ideal of A (not necessarily proper) with ht (I(0)) ≥ n − 1 and
I(0) = (f1(0), · · · , fn(0)) + I(0)2. Let J = I ∩A.

Now applying Lemma 2.11 we can find an ideal K ⊂ A of height ≥ n such
that K is comaximal with J and K ∩ I(0) = (a1, · · · , an), where ai = fi(0) mod
I(0)2. First assume that both I(0) and K are proper ideals of A. Let us call the local
orientation of K, induced by a1, · · · , an, to be ωK . To the element (I, ωI) of G we
associate the element −(K,ωK) of E(A). In the case when I(0) = A or K = A,
(I, ωI) is associated to the zero element of E(A).

We need to show that this association does not depend on the choice of K. To
prove this, let K ′ be another ideal of A of height n such that K ′ is comaximal with
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J and K ′ ∩ I(0) = (b1, · · · , bn), where bi = fi(0) mod I(0)2. Let ωK′ be the local
orientation ofK ′ induced by b1, · · · , bn. We claim that (K,ωK) = (K ′, ωK′) inE(A).
In the next paragraph we prove this claim.

First note that, by repeated use of addition and subtraction principles and mov-
ing lemma (Lemma 2.11), we may assume that K ′ is comaximal with K. Now we
can find an ideal L ⊂ A of height n and a local orientation ωL of L such that L is
comaximal with each of J , K and K ′ and (L, ωL) + (K,ωK) = 0 in E(A). Therefore
it is enough to prove that (L, ωL)+(K ′, ωK′) = 0 inE(A). In order to do so, we first
apply the addition principle to the two comaximal ideals L∩K andK ′∩I(0) to see
that L ∩K ∩K ′ ∩ I(0) is generated by n elements (with appropriate set of genaer-
ators). Next we apply the subtraction principle to the comaximal ideals K ∩ I(0)
and L ∩ K ′ to conclude that L ∩ K ′ is generated by n elements (with appropriate
set of generators), i.e., (L, ωL) + (K ′, ωK′) = 0 in E(A). Thus the claim is proved.

Step 2. Extending to whole of G, we get a group homomorphism ψ : G −→ E(A).
Note that in the above definition we nowhere used the fact that Spec (A[T ]/I) is
connected. So, given any (I, ωI) ∈ E(A[T ]) (where Spec (A[T ]/I) is not necessarily
connected), following the above procedure, we can also associate an element, say
−(K,ωK) of E(A). We claim that the image of (I, ωI) under ψ is actually−(K,ωK).

Proof of the claim : Consider a decomposition of I into its connected componenets,
say, I = I1 ∩ · · · ∩ Ir. Now since Ii’s are pairwise comaximal, ωI induces local
orientation ωIi of Ii, i = 1, · · · , r and we have, (I, ωI) =

∑r
i=1(Ii, ωIi). Suppose that

ψ((Ii, ωIi)) = −(Ki, ωKi) (∈ E(A)). In view of Lemma 2.11, we can clearly assume
that Ki’s are pairwise comaximal. For simplicity we work out the case when r = 2.

By definition of ψ, we have ψ((I, ωI)) = −(K1, ωK1) − (K2, ωK2) in E(A). Since
K1 and K2 are comaximal, we can write ψ((I, ωI)) = −(K1 ∩K2, ωK1∩K2), where
ωK1∩K2 is induced by ωK1 and ωK2 .

Now by the definition ofψ we haveK1∩I1(0) is n-generated with appropriate set
of generators. Same is true for K2∩ I2(0). Since the ideals K1∩ I1(0) and K2∩ I2(0)
are comaximal and each has height ≥ n − 1, applying addition principle we have
K1 ∩ I1(0) ∩ K2 ∩ I2(0) n-generated with appropriate set of generators. In other
words, I(0) ∩ (K1 ∩K2) is n-generated. Now keeping track of the generators and
proceeding as in last paragraph of Step 1, we can easily conclude that (K,ωK) =
(K1 ∩K2, ωK1∩K2). This proves the claim.
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Step 3. Recall that E(A[T ]) = G/H , where H is the subgroup of G generated by
pairs (I, ωI) ∈ G such that ωI is a global orientation. We now show that H is in the
kernel of ψ.

First let (L, ωL) ∈ G be such that ωL is a global orientation. This means that there
exist f1, · · · , fn ∈ L such that L = (f1, · · · , fn) and ωL is induced by this set of
generators of L. But then L(0) = (f1(0), · · · , fn(0)) and hence from the definition
of ψ it follows that ψ((L, ωL)) = 0 in E(A). Now an element of H is of the form

(I, ωI) =
r∑

i=1

(Ii, ωIi)−
s∑

j=r+1

(Ii, ωIi),

where ωIi , ωIj are global orientations. It is now clear that ψ((I, ωI)) = 0 in E(A) as
each of the elements on the right hand side is mapped to zero.

Therefore, we have a group homomorphism Ψ : E(A[T ]) −→ E(A).

Step 4. Let (I, ωI) ∈ E(A[T ]) be such that ht (I(0)) = n. In this case ωI induces
a local orientation ωI(0) of I(0) and (I(0), ωI(0)) ∈ E(A). The way we picked up
K and ωK in Step 1 actually means in this case that (I(0), ωI(0)) + (K,ωK) = 0 in
E(A). Therefore, Ψ((I, ωI)) = −(K,ωK) = (I(0), ωI(0)). This completes the proof
of the theorem. 2

We now use the above theorem to give a complete proof of the following theorem
([Da, Theorem 4.7]).

Theorem 3.4. Let A be a ring of dimension n ≥ 3, I ⊂ A[T ] be an ideal of height n such
that I/I2 is generated by n elements and let ωI : (A[T ]/I)n � I/I2 be a local orientation
of I . Suppose that the image of (I, ωI) is zero in the Euler Class group E(A[T ]) of A[T ].
Then, I is generated by n elements and ωI can be lifted to a surjection θ : A[T ]n � I .

Proof. Let Ψ : E(A[T ]) −→ E(A) be the group homomorphism, as defined in the
theorem above. Suppose ωI is given by I = (f1, · · · , fn) + I2. We first assume that
I(0) is a proper ideal of A. We have, I(0) = (f1(0), · · · , fn(0)) + I(0)2. Suppose
that Ψ((I, ωI)) = −(K,ωK), where K ⊂ A is an ideal of height ≥ n such that
K∩I(0) = (c1, · · · , cn) where ci = fi(0) mod I(0)2 and ωK is induced by c1, · · · , cn.
Since (I, ωI) = 0 in E(A[T ]), Ψ((I, ωI)) = 0 in E(A) and therefore, (K,ωK) = 0
in E(A). This implies, by [B-RS 3, Theorem 4.2], that K = (a1, · · · , an) such that
ai = ci mod K2. Now applying subtraction principle (Proposition 3.2) we see that
I(0) = (b1, · · · , bn) such that bi = ci mod I(0)2. Consequently, bi = fi(0) mod
I(0)2. Therefore, using Lemma 2.7, it follows that ωI can be lifted to a surjection
θ : A[T ]n � I/(I2T ).
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On the other hand, if I(0) = A, then again, applying Lemma 2.7 we can lift ωI to
a surjection θ : A[T ]n � I/(I2T ).

InE(A(T )) also, the element (IA(T ), ωIA(T )) is zero, which, by [B-RS 3, Theorem
4.2], implies that ωIA(T ) (and hence θ ⊗ A(T )) can be lifted to a set of generators of
IA(T ). Applying [Da, Theorem 3.10], we conclude that θ can be lifted to a surjec-
tion α : A[T ]n � I . Clearly α lifts ωI . So ωI is a global orientation. 2

Remark 3.5. Let us review the group homomorphism Ψ : E(A[T ]) −→ E(A). Re-
call that we already have a canonical group homomorphism Φ : E(A) → E(A[T ])
and it follows from Theorem 3.4 that Φ is injective. Further, it is easy to see that the
composition ΨΦ is the identity onE(A). Clearly Ψ is surjective. Of particular inter-
est is the kernel. Let (I, ωI) ∈ E(A[T ]) be an element of Ker (Ψ). Then, as shown in
the proof of Theorem 3.4 above, ωI can be lifted to a surjection θ : A[T ]n � I/(I2T ).
Ker (Ψ) precisely consists of these elements (i.e., roughly, the ideals I of A[T ] of
height n such that I/(I2T ) is generated by n elements). We may recall that from
[B-RS 1, Theorem 3.8] it follows that if A is a smooth affine domain over an infinite
perfect field, Ker (Ψ) is trivial and hence Ψ becomes an isomorphism. If A is not
smooth, there is an example [B-RS 1, 6.4] of a normal affine domain A for which
Ker (Ψ) is not trivial. We expect Ker (Ψ) = 0 when A is a regular ring containing Q.
The “local-global principle” for Euler class groups [Da, Theorem 5.4] suggests that
it is enough to prove Ker (Ψ) = 0 when A is a regular local ring containing Q.

The main point of Theorem 3.4 is that for an ideal I ⊂ A[T ] of height n, I(0) may
not have height n and therefore given (I, ωI) ∈ E(A[T ]), something like (I(0), ωI(0))
may not make sense. This makes sense only when I(0) has height n or I(0) = A.
Then we started wondering what happens if we work only with those ideals I for
which I(0) has height n or I(0) = A. This is reflected in the following definition
and the proposition after that.

Definition of a group :

We define a group E′(A[T ]) which may be regarded as the “restricted” Euler
class group of A[T ]. The definition of E′(A[T ]) is similar to that of E(A[T ]).

Let G′ be the free abelian group on the set of pairs (I, ωI), where I ⊂ A[T ] is
an ideal of height n having the properties : (i) I(0) ⊂ A is an ideal of height n or
I(0) = A (we point out here that this is the “restriction” and only at this point the
definition differs from that of E(A[T ])) (ii) Spec (A[T ]/I) is connected (iii) I/I2 is
generated by n elements; and ωI is a local orientation of I .
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Let I ⊂ A[T ] be any ideal of height n such that I/I2 is generated by n elements.
Let I = I1 ∩ · · · ∩ Ik be the decomposition of I into its connected components.
Let ωI be a local orientation of I . Then ωI induces local orientations ωIi of Ii for
i = 1, · · · , k. By (I, ωI) we mean the element Σ(Ii, ωi) of G′.

Let H ′ be the subgroup of G′ generated by the set of pairs (I, ωI) where ωI is a
global orientation of I .

We define E′(A[T ]) to be the group G′/H ′.

Remark 3.6. Clearly the obvious map ∆ : E′(A[T ]) −→ E(A[T ]) which sends
(I, ωI) ∈ E′(A[T ]) to (I, ωI) ∈ E(A[T ]), is a group homomorphism.

Proposition 3.7. The map ∆ : E′(A[T ]) −→ E(A[T ]), as described above, is an isomor-
phism of groups.

Proof. By the very definition of E′(A[T ]) and by Theorem 3.4, it follows that ∆ is
injective. To prove the surjectivity, let (I, ωI) ∈ E(A[T ]) be an arbitrary element. So
I(0) may not necessarily be of height n. To prove that ∆ is surjective it is enough
to find some (I ′, ωI′) ∈ E(A[T ]) such that ht (I ′(0)) ≥ n and (I, ωI) = (I ′, ωI′) in
E(A[T ]).

Suppose that ωI is given by I = (f1, · · · , fn)+I2. Then, I(0) = (f1(0), · · · , fn(0))+
I(0)2. Let J = I ∩ A. Since ht J ≥ n − 1 ≥ 2, we can find an element s ∈ J2

such that ht (s) = 1. Let bar denote reduction modulo s. Since dimA ≤ n − 1, it
follows by a result of Mohan Kumar [Mo, Corollary 3], that I(0) = (a1, · · · , an),
where ai = fi(0) modulo I(0)2. By adding suitable multiples of s to a1, · · · , an,
we may assume by the Eisenbud-Evans theorem (see [B-RS 3, Corollary 2.13]) that
(a1, · · · , an) = I(0) ∩ K, where K ⊂ A is an ideal of height n and K + (s) = A.
Note that K = (a1, · · · , an) +K2. Let us call the local orientation corresponding to
this set of generators of K/K2 by ωK .

Let I1 = I∩K[T ]. Then I1 is an ideal ofA[T ] of height n. Since I andK[T ] are co-
maximal ideals, the local orientations ωI and ωK⊗A[T ], of I andK[T ] respectively,
induce a local orientation ωI1 of I1, say, given by I1 = (g1, · · · , gn) + I2

1 . Now

I1(0) = I(0) ∩K = (a1, · · · , an)

and we have gi(0) = ai mod I1(0)2. Therefore we can lift g1, · · · , gn to a set of
n generators of I1/(I2

1T ), which also corresponds to ωI1 . In E(A[T ]) we have the
equation :

(I1, ωI1) = (I, ωI) + (K[T ], ωK ⊗A[T ]).
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Since ωI1 is given by a set of generators of I1/(I2
1T ), we can apply [Da, Lemma

3.9] to find an ideal I2 of A[T ] of height n and a local orientation ωI2 of I2 such that
(i) I2(0) = A and (ii) (I1, ωI1) + (I2, ωI2) = 0 in E(A[T ]).

Therefore we have the equation

(I, ωI) + (K[T ], ωK ⊗A[T ]) + (I2, ωI2) = 0

inE(A[T ]). Since (K[T ], ωK⊗A[T ]) and (I2, ωI2) both belong toE′(A[T ]), the result
follows. 2

Let A be a ring (containing Q) of dimension n ≥ 3. Let P be a projective A[T ]-
module of rank n having trivial determinant and χ be a trivialization of ∧nP . To
the pair (P, χ) we can associate an element e(P, χ) inE(A[T ]), called the Euler class
of (P, χ) (see Preliminaries for the definition). In [Da] we proved that e(P, χ) = 0 in
E(A[T ]) if and only if P has a unimodular element. In that proof we crucially used
a theorem of Bhatwadekar-Raja Sridharan [B-RS 4, Theorem 3.4]. Here we give an
independent proof of this result. Further, we derive a version of [B-RS 4, Theorem
3.4] using our theorem.

Theorem 3.8. Let A be as above. Let P be a projective A[T ]-module of rank n having
trivial determinant and χ be a trivialization of ∧nP . Then, e(P, χ) = 0 in E(A[T ]) if and
only if P has a unimodular element.

Proof. Let α : P � I1 be a surjection where I1 is an ideal in A[T ] of height n and ωI1

be the local orientation of I1 induced by (α, χ). Then, e(P, χ) = (I1, ωI1) inE(A[T ]).

Suppose that P has a unimodular element. We show, under this condition, that
(I1, ωI1) = 0 in E(A[T ]). In view of the isomorphism ∆ in Proposition 3.7, we can
assume that either I1(0) = A or ht I1(0) = n. Since P has a unimodular element, it
follows that the projective A-module P/TP and the projective A(T )-module P ⊗
A(T ) both have unimodular elements. Consequently, by [B-RS 3, Corollary 4.4],
we have (I1(0), ωI1(0)) = 0 in E(A) and (I1A(T ), ωI1 ⊗A(T )) = 0 in E(A(T )). Now
following the arguments as in Theorem 3.4, it is easy to see that (I1, ωI1) = 0 in
E(A[T ]).

Let us now assume that e(P, χ) = 0 in E(A[T ]). We prove that then P has a
unimodular element. We give the proof in steps.

Step 1. In this step we show that the projective A-module P/TP has a unimodular
element.
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Recall that we have α : P � I1, a generic surjection of P and ωI1 is the local
orientation of I1 induced by (α, χ). Therefore, e(P, χ) = (I1, ωI1) in E(A[T ]). As
usual, we may assume that either I1(0) = A or I1(0) is a proper ideal of height
n. If I1(0) = A, then clearly the A-module P/TP has a unimodular element. Now
suppose that I1(0) is a proper ideal of height n. Then, following the definition of the
Euler class of a projective module we have, e(P/TP, χ⊗A[T ]/(T )) = (I1(0), ωI1(0))
in E(A). Since (I1, ωI1) = 0, in E(A[T ]), it follows that (I1(0), ωI1(0)) = 0 in E(A).
Therefore, e(P/TP, χ⊗A[T ]/(T )) = 0 inE(A) and hence by [B-RS 3, Corollary 4.4],
P/TP has a unimodular element.

So in any case P/TP has a unimodular element.

Step 2. Let J(A,P ) denote the Quillen ideal of P in A. Write J = J(A,P ). In this
step we prove, using a theorem of Mandal, that P1+J has a unimodular element.

Since determinant of P is extended (actually free), by Remark 2.5, htJ(A,P ) ≥ 2.
Since dimA/J ≤ n−2, it follows that the projective (A/J)[T ]-module P/J [T ]P has
a unimodular element i.e., there is a surjection P/J [T ]P � (A/J)[T ]. Using this
fact and the Eisenbud-Evans theorem ([E-E],[Pl]) it is easy to see that (since P is
projective), there is a generic surjection β : P � I such that I is comaximal with
J [T ].

Let ωI be the local orientation of I induced by (β, χ). Then e(P, χ) = (I, ωI) in
E(A[T ]).

Consider the ring B = A1+J . We want to prove that the projective B[T ]-module
P1+J has a unimodular element. If IB[T ] = B[T ], we are done. Therefore, suppose
that IB[T ] is a proper ideal of B[T ] of height n and note that it is comaximal with
JB[T ] and JB is contained in the Jacobson radical of B.

Let us elaborate how ωI is obtained from (β, χ). Since P has trivial determinant,
P/IP is a free A[T ]/I-module. We choose an isomorphism λ : (A[T ]/I)n ' P/IP

such that ∧nλ = χ ⊗ A[T ]/I . ωI is the surjection (β ⊗ A[T ]/I)λ from (A[T ]/I)n to
I/I2, say, given by I = (f1, · · · , fn) + I2.

Since e(P, χ) = 0, we have (I, ωI) = 0 in E(A[T ]) and hence by Theorem 3.4,
I = (g1, · · · , gn) such that gi = fi modulo I2. So we have IB[T ] = (g1, · · · , gn) and
IB[T ]+JB[T ] = B[T ]. Therefore (g1, · · · , gn) is a unimodular row over (B/JB)[T ]
and since dim (B/JB) ≤ n − 2, it is elementarily completable. Using this and the
fact that elementary matrices can be lifted via surjection of rings, it is easy to see
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that we can alter the above set of generators of IB[T ] by an elementary matrix
σ ∈ En(B[T ]) and assume that

(1) ht (g1, · · · , gn−1) = n− 1,
(2) (g1, · · · , gn−1) + JB[T ] = B[T ] and hence,
(3) dimB[T ]/(g1, · · · , gn−1) ≤ 1.

We set C = B[T ], R = C[Y ], K = (g1, · · · , gn−1, Y + gn). Let us denote P1+J by
P ′. Note that

C[Y ]/K ' B[T ]/(g1, · · · , gn−1),

and so we have dimC[Y ]/K ≤ 1. Therefore, it follows that the projective C[Y ]/K-
module P ′[Y ]/KP ′[Y ] is a free module of rank n. We choose an isomorphism

τ(Y ) : (C[Y ]/K)n ∼→ P ′[Y ]/KP ′[Y ]

such that ∧nτ(Y ) = χ ⊗ C[Y ]/K. Since ∧nλ = χ ⊗ B[T ]/IB[T ], it follows that
τ(0) and λ differ by an element of SLn(B[T ]/IB[T ]). Since IB[T ] + JB[T ] =
B[T ] and JB is contained in the Jacobson radical of B, by Lemma 2.1, we have
dim (B[T ]/IB[T ]) = 0. Therefore, SLn(B[T ]/IB[T ]) = En(B[T ]/IB[T ]). Since ele-
mentary transformations can be lifted via surjection of rings, we may alter τ(Y ) by
an element of SLn(C[Y ]/K) and assume that τ(0) = λ. Let γ(Y ) : (C[Y ]/K)n �

K/K2 denote the surjection induced by the set of generators (g1, · · · , gn−1, Y + gn)
of K.

Thus, we obtain a surjection

δ(Y ) = γ(Y )τ(Y )−1 : P ′[Y ]/KP ′[Y ] � K/K2.

Since τ(0) = λ, β ⊗ B[T ]/IB[T ] = ωIλ
−1 and γ(0) = ωI , we have δ(0) = β ⊗

B[T ]/IB[T ].

Therefore, applying Mandal’s theorem [M 2, Theorem 2.1], we obtain a surjec-
tion η(Y ) : P ′[Y ] � K. Specializing at Y = 1 − gn, we obtain a surjection from P ′

to B[T ].

Step 3. So far we have proved that P/TP has a unimodular element (Step 1) and
P1+J has a unimodular element (Step 2), where J is the Quillen ideal of P in A. In
this step we combine these two facts and appeal to a patching argument of Plum-
stead to conclude that P has a unimodular element



THE EULER CLASS GROUP OF A POLYNOMIAL ALGEBRA II 17

Now P1+J has a unimodular element. Let us call it p1. We have already seen that
P/TP has a unimodular element, say p. We claim that there is an elementary auto-
morphism σ of P1+J such that σ̄p̄1 = p̄, where “bar” denotes reduction modulo T .
To see this, let us consider the ring D = B/J(B) where J(B) denotes the Jacobson
radical of B. Since dimD ≤ n− 2 it follows that there is an elementary automor-
phism τ of P1+J ⊗D such that τp1 = p over D. Since elementary automorphisms
can be lifted via a surjection of rings, we have, by repeated use of this argument, a
σ ∈ E(P1+J) such that σ̄p̄1 = p̄. Let q denote the unimodular element σp1 of P1+J .

Since P1+J has a unimodular element, we can find s ∈ J such that P1+sA has a
unimodular element. We still call it q. Since Ps is extended from As, it has a uni-
modular element, namely p. Since p and q are equal modulo T , i.e. over As(1+sA),
it follows using a patching argument of Plumstead [Pl] that P has a unimodular
element. 2

We can now derive the following version of a theorem of Bhatwadekar-Raja Srid-
haran [B-RS 4, Theorem 3.4].

Theorem 3.9. Let A be a Noetherian ring containing Q of dimension n ≥ 3. Let P
be a projective A[T ]-module of rank n with trivial determinant. Suppose that Pf has a
unimodular element for some monic polynomial f ∈ A[T ]. Then P has a unimodular
element.

Proof. Since Pf has a unimodular element and f is monic, by [B-RS 4, Lemma 3.1] it
follows that there is an ideal I ofA[T ] of height at least n and a surjection α : P � I

such that I contains a monic polynomial. If ht I > n, it follows that I = A[T ] and
there is nothing to prove. So we assume ht I = n. Fix an isomorphism χ : A[T ] ∼→
∧n(P ). Now (α, χ) induces a local orientation ωI of I and hence e(P, χ) = (I, ωI)
in E(A[T ]). Since I contains a monic polynomial, it follows from a theorem of
Mandal (Theorem 2.8) that ωI is a global orientation, i.e., (I, ωI) = 0. Consequently,
e(P, χ) = 0 in E(A[T ]). By the above theorem, P has a unimodular element. This
proves the theorem. 2

We end this section with another nice application of Proposition 3.7, giving an
alternative proof of the main theorem of [D-RS].

Theorem 3.10. Let A be a commutative noetherian ring containing the field of rationals
with dimA = n (n even) and let P be a projective A[T ]-module of rank n such that its
determinant is free. Suppose there is a surjection α : P � I where I is an ideal of A[T ] of
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height n which is generated by n elements. Assume further that P/TP has a unimodular
element. Then P has a unimodular element.

Proof. Fix a trivialization χ : A[T ] ' ∧nP . Then (α, χ) induces e(P, χ) = (I, ωI)
in E(A[T ]), where ωI is a local orientation of I (induced by α and χ). Now I is
generated by n elements, say, f1 · · · , fn. Therefore, applying [Da, Proposition 6.7]
we see that there exists a stably free A[T ]-module Q′ of rank n, a generator χ1 of
∧n(Q′) such that e(Q′, χ1) = (I, ωI) in E(A[T ]). Since Q′ is stably free of rank n and
A contains Q, by a result of Ravi Rao [Ra], Q′ is extended. Therefore, Q′ = Q[T ] for
some stably free A-module Q. So we have e(Q[T ], χ1) = (I, ωI) in E(A[T ]).

Therefore, in order to prove that P has a unimodular element it is enough to
prove that Q[T ] has a unimodular element. In what follows we prove that the A-
module Q has a unimodular element.

Note that, in view of Proposition 3.7, we may assume that I(0) is an ideal of
height n or I(0) = A. Since Q[T ] maps onto I , it follows that Q maps onto I(0).
Therefore, if I(0) = A, then Q has a unimodular element and we are done in this
case. So assume that ht I(0) = n.

We have a surjection α ⊗ A[T ]/(T ) : P/TP � I(0). Then (α ⊗ A[T ]/(T ), χ ⊗
A[T ]/(T )) induces the Euler class of P/TP as

e(P/TP, χ⊗A[T ]/(T )) = (I(0), ωI(0)),

where ωI(0) is also the local orientation induced by ωI .

On the other hand we have, e(Q[T ], χ1) = (I, ωI) inE(A[T ]). Restricting at T = 0
we obtain

e(Q,χ1 ⊗A[T ]/(T )) = (I(0), ωI(0)) = e(P/TP, χ⊗A[T ]/(T )).

But P/TP has a unimodular element and it implies that (I(0), ωI(0)) = 0. Conse-
quently, e(Q,χ1 ⊗ A[T ]/(T )) = 0 and therefore Q has a unimodular element. This
proves the theorem. 2

4. POLYNOMIAL EXTENSION OF AN AFFINE ALGEBRA OVER AN ALGEBRAICALLY

CLOSED FIELD AND A THEOREM OF BHATWADEKAR-RAJA SRIDHARAN

Let A be an affine algebra of dimension n over an algebraically closed field of
characteristic zero. It is known that in this case, the canonical map from E(A) to
E0(A) is an isomorphism of groups (can be easily deduced from [B-RS 2, Lemma
3.4]). In this section we investigate E(A[T ]) and E0(A[T ]) for a ring A as above and
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prove that E(A[T ]) and E0(A[T ]) are canonically isomorphic. To prove this we first
show that if B is an affine algebra of dimension n over a C1-field of characteristic
zero then E(B) ∼→ E0(B). Then we use the injectivity of the canonical map from
E(A[T ]) to E(A(T )), proved in [Da, Proposition 5.8].

Proposition 4.1. Let R be an affine algebra of dimension n ≥ 3 over a C1 field k of
characteristic zero. Let J ⊂ R be an ideal of height n such that J is generated by n

elements. Then any set of n generators of J/J2 can be lifted to a set of n generators of J .

Proof. Suppose J = (a1, · · · , an). Let us take an arbitrary set of generators of J/J2 :

J = (b1, · · · , bn) + J2.

We want to show that there exists c1, · · · , cn ∈ J such that J = (c1, · · · , cn) and
bi = ci mod J2.

Clearly we may assume that ht (a3, · · · , an) = n − 2. Since any two surjec-
tions from (R/J)n to J/J2 differ by an element of GLn(R/J), there exists a ma-
trix δ ∈ GLn(R/J) such that (a1, · · · , an)δ = (b1, · · · , bn). Let u ∈ R be such that
u =det (δ)−1. Then (u, a1, · · · , an) ∈ Umn+1(R). Let B = R/(a3, · · · , an). Then B is
an affine algebra over k of dimension ≤ 2. Therefore, all stably free modules over
B are free by [Su2, Theorem 2.4]. So the unimodular row (u, a1, a2) ∈ Um3(B) is
completable. Applying [RS2, Lemma 2.4] we have a set of generators of J , say J =
(d1, · · · , dn), and a matrix δ′ ∈ SLn(R/J) such that (d1, · · · , dn)δ′ = (b1, · · · , bn).
Since dim (R/J) = 0, we have SLn(R/J) = En(R/J) and therefore we can lift δ′ to
a matrix ∆ ∈ En(R). Suppose (d1, · · · , dn)∆ = (c1, · · · , cn). Then J = (c1, · · · , cn)
is the desired set of generators. 2

Corollary 4.2. Let R be an affine algebra of dimension n ≥ 3 over a C1 field k of charac-
teristic zero. Then E(A) ' E0(A).

Proof. We know that the canonical map from E(A) to E0(A) is surjective. To prove
injectivity, let (J, ωJ) be in the kernel. Then, by [B-RS 2, Lemma 3.3] we have

(J, ωJ) +
r∑

i=1

(Ji, ωi) =
s∑

k=r+1

(Jk, ωk),

where Ji, Jk are ideals of height n such that each of them is generated by n el-
ements. By the above proposition, each of the local orientations ω1, · · · , ωs is a
global one. Consequently (J, ωJ) = 0 in E(A). This proves the corollary. 2
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Proposition 4.3. Let A be an affine algebra of dimension n ≥ 3 over an algebraically
closed field k of characteristic zero. Let I ⊂ A[T ] be an ideal of height n. Assume that I
is generated by n elements. Then any set of n generators of I/I2 can be lifted to a set of n
generators of I . In other words, (I, ωI) = 0 in E(A[T ]) for any local orientation ωI of I .

Proof. We will use the injectivity of the canonical map from E(A[T ]) to E(A(T )),
where A(T ) is the ring obtained from A[T ] by inverting all monic polynomials.
This has been proved in [Da, Proposition 5.8]

Note that A(T ) is an affine algebra over a C1 field. Therefore, if we consider the
image (IA(T ), ωI ⊗ A(T )) of (I, ωI) in E(A(T )), it follows by Proposition 4.1 that
(IA(T ), ωI ⊗A(T )) = 0 as IA(T ) is generated by n elements. Therefore, (I, ωI) = 0
in E(A[T ]). 2

The following corollary is now immediate.

Corollary 4.4. Let A be an affine algebra of dimension n ≥ 3 over an algebraically closed
field k of characteristic zero. Then E(A[T ]) ' E0(A[T ]).

4.1. A theorem of Bhatwadekar-Raja Sridharan. Let A be any commutative Noe-
therian ring of dimension n containing Q. Now we may ask the following ques-
tions.

Question 1. Let (J, ωJ) be any element of E(A). Does there exist a projective A-module
of rank n with trivial determinant together with an isomorphism χ : A ∼→ ∧n(P ) such that
e(P, χ) = (J, ωJ)?

Question 2. Let (I, ωI) be any element of E(A[T ]). Does there exist a projective A[T ]-
module of rank n with trivial determinant together with an isomorphism χ : A[T ] ∼→
∧n(P ) such that e(P, χ) = (I, ωI)?

These questions do not have affirmative answers in general. One can take A to
be the coordinate ring of the real three sphere and J be any real maximal ideal.
Then it is known that J is not surjective image of a projective A-module of rank n.

If A is an affine algebra over an algebraically closed field, it follows from a theo-
rem of Murthy [Mu, Theorem 3.3] that Question 1 has an affirmative answer.

In this note we discuss a theorem of Bhatwadekar-Raja Sridharan [B-RS 5, Theo-
rem 2.7] which essentially says that Question 2 has an affirmative answer when A
is an affine algebra over an algebraically closed field of characteristic zero. We may
note that when Bhatwadekar-Raja Sridharan proved this theorem, the Euler class
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group of a polynomial algebra was not defined. Below we give a proof of their
theorem using Euler class computations.

The following lemma is an improvement of [B-RS 4, Lemma 4.1] and is crucial
for later discussions.

Lemma 4.5. Let B be a ring of dimension n ≥ 3 such that height of the Jacobson radical
J(B) is at least one. Let I ⊂ B[T ] be an ideal of height n such that : (1) I + J(B)[T ] =
B[T ] (so I is zero dimensional) (2) I = (a1, · · · , an−1, f(T )) where a1, · · · , an−1 ∈ B

and ht (a1, · · · , an−2) = n − 2. Then any set of n generators of I/I2 can be lifted to a set
of n generators of I (i.e., any local orientation of I is a global one).

Proof. Let ωI be a local orientation of I , corresponding to a set of generators of I/I2.
We show that (I, ωI) = 0 in E(B[T ]). We do this using [B-RS 4, Lemma 4.1] and the
local-global principle for Euler class groups [Da, Theorem 5.4].

Let m be any maximal ideal of B of height n. Consinder Bm[T ]. Now by [B-RS 4,
Lemma 4.1], (I, ωI) = 0 in E(Bm[T ]). Since it happens for every maximal ideal m
of B of height n, we have, by the local-global principle for Euler class groups [Da,
Theorem 5.4] that (I, ωI) comes from E(B). But since ht J(B) ≥ 1, it follows from
[Mo, Corollary 3] that E(B) = 0. Therefore, (I, ωI) = 0 in E(B[T ]). 2

We now quote the following two propositions from [B-RS 5].

Proposition 4.6. Let A be a Noetherian ring with dimR = d ≥ 1. Let I ⊂ R[T ] be an
ideal with ht (I) ≥ 2. Suppose that I/I2 is generated by n elements where n ≥ d+1. Then
I is generated by n elements.

Proposition 4.7. Let A be an affine domain of dimension n over an algebraically closed
field of characteristic zero. Let I ⊂ A[T ] be an ideal and let b ∈ I ∩A be a nonzero element
such that Ab is regular. Suppose there exists a projective A1+bA[T ]-module P ′ of rank n
with trivial determinant and a surjection β : P ′ � I1+bA. Assume further that P ′

b is
free. Then there exists a projective A[T ]-module P of rank n with trivial determinant and
a surjection from P to I .

We are now ready to prove the following theorem of Bhatwadekar-Raja Sridha-
ran [B-RS 5, Theorem 2.7].

Theorem 4.8. Let A be an affine domain of dimension n ≥ 3 over an algebraically closed
field k of characteristic zero. Let I ⊂ A[T ] be a local complete intersection ideal of height n
such that I/I2 is generated by n elements. Then there exists a projective A[T ]-module P
of rank n with trivial determinant and a surjection Φ : P � I .
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Proof. We will replace Step 1 and Step 2 of the proof of [B-RS 5, Theorem 2.7] by
some Euler class computations. We briefly outline the part preceding these steps
from their proof.

Let ωI be a local orientation of I given by I = (g1, · · · , gn) + I2. Let J = I ∩ A.
Let b be a nonzero element of J2 which also belongs to the singular locus of A. Let
R = A/(b). Then dimR ≤ n − 1. Therefore applying Proposition 4.6, we have
I = (f1, · · · , fn, b) where fi = gi modulo I2. Applying Swan’s Bertini theorem
[B-RS 2, Theorem 2.11], and adding suitable multiples of b to f1, · · · , fn they obtain
an element (I ′, ωI′) ∈ E(A[T ]) such that :

(1) (I, ωI) + (I ′, ωI′) = 0 in E(A[T ]).
(2) I ′ + (b) = A[T ] and hence I ′ + I = A[T ].
(3) I ′ is a prime ideal of height n.

Let B = A1+bA. If I ′B[T ] = B[T ], IB[T ] is image of a free module and the
theorem is proved in this case using Proposition 4.7. Therefore assume that I ′B[T ]
is proper. Since it is prime and is comaximal with the Jacobson radical of B, it is a
maximal ideal of height n. To be consistent with their notation, let I ′B[T ] = M .

Using techniques from [Bh] it follows that there is an ideal L1 ⊂ B[T ] of height
n such that

(1) M ∩ L1 = (b1, · · · , bn−1, f(T )) where bi ∈ B and f(T ) ∈ B[T ].
(2) L1 +M = B[T ] and L1 + bB[T ] = B[T ]

Using a theorem of Murthy they show that there is a projective B[T ]-module P ′

with trivial determinant and a surjection α : P ′ � L1. Some additional arguments
imply that P ′

b is free.

We now use Euler class computations to show that this P ′ maps onto IB[T ].

We fix an isomorphism χ : B[T ] ' ∧n(P ′). Then (α, χ) induces a local orientation
ωL1 of L1 and we have e(P ′, χ) = (L1, ωL1) in E(B[T ]). We also have (I, ωI) +
(M,ωM ) = 0 in E(B[T ]). Since M and L1 are comaximal, ωM and ωL1 together
induce a local orientation of M ∩ L1, say ωM∩L1 . Note that by Lemma 4.5, the
ideal M ∩ L1 = (b1, · · · , bn−1, f(T )) has the property that any local orientation
of M ∩ L1 is a global one. Therefore, ωM∩L1 is a global orientation and hence,
(M,ωM ) + (L1, ωL1) = 0 in E(B[T ]). Consequently, e(P ′, χ) = (I, ωI) in E(B[T ]).
Now using [Da, Corollary 4.10] it follows that there is a surjection β : P ′ � IB[T ].
Applying Proposition 4.7, the theorem follows. 2
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Remark 4.9. As remarked earlier, we have replaced Step 1 and Step 2 of the proof
given in [B-RS 5] by Euler class computations. One interesting point of our proof
is that in this part we have not used the fact that A is an affine domain over an
algebraically closed field k of characteristic zero.

In terms of Euler classes the above theorem can be rephrased as:

Theorem 4.10. Let A, I be as above. Let ωI be a local orientation of I (so (I, ωI) ∈
E(A[T ])). Then there exists a projectiveA[T ]-module P of rank n with trivial determinant
and an isomorphism χ : A[T ] ' ∧n(P ) such that e(P, χ) = (I, ωI) in E(A[T ]).

Proof. It follows from Theorem 4.8 that there exists a projective A[T ]-module of
rank n with trivial determinant and a surjection α : P � I . Fix an isomorphism
χ : A[T ] ∼→ ∧n(P ). Now (α, χ) induces a local orientation, say ω̃I of I . Therefore,
e(P, χ) = (I, ω̃I) in E(A[T ]). Since k is an algebraically closed field of characteristic
zero, it follows from Corollary 4.4 that (I, ωI) = (I, ω̃I) in E(A[T ]). Therefore,
e(P, χ) = (I, ωI) 2

5. THE WEAK EULER CLASS OF A PROJECTIVE A[T ]-MODULE

In [Da] we defined the nth weak Euler class group,E0(A[T ]), ofA[T ] and proved
results analogous to those on E0(A) [B-RS 3]. We further investigated this group
in [D-RS]. In [B-RS 3], there is a notion of the weak Euler class of a projective A-
module of top rank. In [Da] we did not define the weak Euler class of a projective
A[T ]-module of rank = dimA. The aim of this small section is to give such a defi-
nition.

Let A be a Noetherian ring containing Q of dimension n ≥ 2. Let P be a projec-
tive A[T ]-module of rank n with trivial determinant. Let α : P � I be a generic
surjection. We define the weak Euler class of P , denoted e(P ), as e(P ) = (I) in
E0(A[T ]).

Proposition 5.1. The weak Euler class of P , as defined above, is well defined.

Proof. We prove this using the definition of the Euler class of P . Let us fix an iso-
morphism χ : A[T ] ∼→ ∧n(P ). Now (χ, α) induces a local orientation ωI of I and by
the definition of the Euler class of a projective module, e(P, χ) = (I, ωI) inE(A[T ]).

Next suppose β : P � J be another generic surjection. We want to prove that
(I) = (J) in E0(A[T ]). Now (χ, β) induces a local orientation ωJ of J . Since the
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Euler class of P is well defined, we have e(P, χ) = (I, ωI) = (J, ωJ) in E(A[T ]).
Recall that there is a canonical surjective group homomorphism from E(A[T ]) to
E0(A[T ]) which sends an element (K,ωK) of E(A[T ]) to (K) in E0(A[T ]). There-
fore, (I) = (J) in E0(A[T ]). 2

We can now rephrase [Da, Proposition 6.6], as :

Proposition 5.2. Let A be a Noetherian ring of even dimension n. Let P be a projective
A[T ]-module of rank n with trivial determinant. Then e(P ) = 0 in E0(A[T ]) if and only
if [P ] = [Q⊕A[T ]] in K0(A[T ]) for some projective A[T ]-module Q of rank n− 1.

We can also prove the following analogue of [B-RS 3, 6.4]. Method of proof of
this proposition is similar to [B-RS 3, 6.4] and hence omitted.

Proposition 5.3. Let A be a Noetherian ring of even dimension n. Let P be a projective
A[T ]-module of rank n with trivial determinant. Suppose that e(P ) = (I) in E0(A[T ]),
where I is an ideal of A[T ] of height n. Then, there exists a projective A[T ]-module Q of
rank n, such that [P ] = [Q] in K0(A[T ]) and I is a surjective image of Q.
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