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We study deformations of Leibniz algebra morphisms over a commutative local algebra
base with 1. We construct the associated deformation cohomology that controls
deformations using the cochain complex defining the Leibniz cohomology.
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1. INTRODUCTION

Leibniz algebras are one of the new algebras introduced by Loday [16–18] in
connection with the study of periodicity phenomenon in algebraic K-theory. Leibniz
algebras have been introduced as a non-antisymmetric analogue of Lie algebras.
The other types of algebras, namely, dialgebra, Zinbiel, dendriform, etc., are studied
in Loday [18]. Each of these is an algebra over a suitable operad. For instance,
Leibniz algebras are precisely the algebras over the binary quadratic operad Leib.
The aim of this article is to study an algebraic deformation theory of Leibniz algebra
morphisms over a commutative local algebra base. The original deformation theory
of algebraic structures dates back to the monumental work of Gerstenhaber [7–11].
Following Gerstenhaber’s idea algebraic deformation theory of other algebraic
structures have been studied. For instance the Lie algebra case is done in Nijenhuis
and Richardson [22], and more recently deformation of dialgebras have been studied
in Majumdar and Mukherjee [20]. As shown in Balavoine [4] formal one parameter
deformation theory of all the above mentioned algebras are best studied in a
unified way through formal deformation theory of algebras over quadratic operads.
The relative version, the deformation of associative algebra morphisms, is studied
in a series of articles by Gerstenhaber and Schack [12–14]. Deformations of Lie
algebra morphisms have been studied in Nijenhuis and Richardson [23]. Recently,
the relative version for Zinbiel algebras, dialgebras and Leibniz algebras have been
studied in Yau [24, 25], and Mandal [21], respectively. A major part in each of the
above articles [21, 24, 25] is a tedious computation to show that the obstructions to
extending an infinitesimal deformation to a higher order deformation are 3-cocycles
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2247

in the respective deformation complex. In the absolute case, this is usually done
by using a pre-Lie system structure on the deformation complex as shown by
Gerstenhaber. However, in the relative case, it is not yet clear how to define such
a structure on the deformation complex. So either one has to resort to a direct
computation, or else, use a version of Cohomology Comparison Theorem [12–14]
in the respective cases, which are yet to be studied.

The aim of this article is to show that when viewed from a general
perspective, namely, deformation over a commutative local algebra base (rather
than a one parameter formal deformation) the picture becomes more transparent.
This approach also gives a nice relationship between the Harrison cohomology of
the base of the deformation and the deformation cohomology. Obstructions in this
case, arise as a map from the Harrison cohomology of the base to the deformation
cohomology in question. Although we explain this by considering deformation of
Leibniz algebra morphisms, deformation theory of morphisms of other algebras
mentioned above can be treated similarly.

The notion of deformation over a commutative local algebra base was
considered in Fialowski and Fuchs [5] for constructing miniversal deformation
of Lie algebras. Recently a similar construction for Leibniz algebras is given in
Fialowski et al. [6].

The article is organized as follows. In Section 2, we recall the definitions
of a Leibniz algebra and its cohomology. In Section 3, we introduce the relevant
deformation cohomology which controls the deformation. In Section 4, we describe
the notion of deformation of Leibniz algebra morphisms over a commutative
local algebra base and discuss related concepts. In Section 5, we show that the
obstructions in lifting a given deformation to a deformation over an extended base
are realized as a map from the second Harrison cohomology of the base to the third
deformation cohomology. Finally, in Section 6, we introduce formal deformations
and obtain a sufficient criterion for existence of a formal deformation with a given
differential and infinitesimal part.

2. LEIBNIZ ALGEBRA AND ITS COHOMOLOGY

In this section, we recall the definition of a Leibniz algebra and describe its
cohomology. Let� be a fixed field. The tensor product over� will be denoted by ⊗.

Definition 2.1. A Leibniz algebra is a �-module L, equipped with a bracket
operation, which is �-bilinear and satisfies the Leibniz identity:

�x� �y� z�� = ��x� y�� z�− ��x� z�� y� for x� y� z ∈ L�

Any Lie algebra is automatically a Leibniz algebra, as in the presence of
antisymmetry, the Jacobi identity is equivalent to the Leibniz identity.

Example 2.2. Let �L� d� be a differential Lie algebra with the Lie bracket �� �.
Then L is a Leibniz algebra with the bracket operation �x� y�d �= �x� dy�. The new
bracket on L is called the derived bracket.

More examples are given in [1–3, 19].
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2248 MANDAL AND MUKHERJEE

Let L be a Leibniz algebra and M a representation of L. By definition [19],
M is a �-module equipped with two actions (left and right) of L,

�−�−� � L×M −→ M and �−�−� � M × L −→ M such that

�x� �y� z�� = ��x� y�� z�− ��x� z�� y�

holds, whenever one of the variable is from M , and the others from L. In particular,
L is a representation of itself with the obvious action given by the bracket in L.

Definition 2.3. Let L be a Leibniz algebra and M a representation of L. Let
CLn�L�M� �= Hom��L

⊗n�M�� n ≥ 0, and

	n � CLn�L�M� −→ CLn+1�L�M�

be the �-morphism given by

	nf�x1� � � � � xn+1� �= �x1� f�x2� � � � � xn+1��+
n+1∑
i=2

�−1�i
[
f�x1� � � � � x̂i� � � � � xn+1�� xi

]

+ ∑
1≤i<j≤n+1

�−1�j+1f
(
x1� � � � � xi−1� �xi� xj�� xi+1� � � � � x̂j� � � � � xn+1

)
�

Then �CL∗�L�M�� 	� is a cochain complex [19]. The corresponding cohomology
denoted by HL∗�L�M�, is called the cohomology of the Leibniz algebra L with
coefficients in the representation M . When M = L with the obvious action as
mentioned above, we denote the cohomology by HL∗�L� L��

3. DEFORMATION COMPLEX OF A LEIBNIZ ALGEBRA MORPHISM

In the present section, we recall from [21] the definition of the deformation
complex of a Leibniz algebra morphism. Let L and M be Leibniz algebras over a
field �. To make our exposition simpler, we use the same notation �−�−� for the
brackets of L and M .

Definition 3.1. A �-linear map f � L −→ M is said to be a Leibniz algebra
morphism if it preserves the brackets. In other words, f��x� y�� = �f�x�� f�y�� for
x� y ∈ L.

Let f � L −→ M be a Leibniz algebra morphism. We regard M as a
representation of L via f , where the actions of L on M , again denoted by �−�−�,
are �−�−� � L×M −→ M , �l�m� �= �f�l��m� and �−�−� � M × L −→ M , �m� l� �=
�m� f�l�� for l ∈ L and m ∈ M .

Define a cochain complex �CL∗�f� f�� d� as follows. Set CL0�f� f� �= 0. For
n ≥ 1, the module of n-cochains is

CLn�f� f� �= CLn�L� L�× CLn�M�M�× CLn−1�L�M��

The coboundary dn � CLn�f� f� −→ CLn+1�f� f� is defined by the formula
dn�u� v� w� �= �	nu� 	nv� fu− vf − 	n−1w� for �u� v� w� ∈ CLn�f� f�. Here 	n on the
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2249

right-hand side are the coboundaries of the complexes defining Leibniz cohomology
groups, the map vf � L⊗n −→ M is the linear map defined by vf�x1� � � � � xn� =
v�f�x1�� � � � � f�xn��, and fu is the composition of maps. Observe that for �u� v� w� ∈
CLn�f� f�, 	n+1	nu = 0 = 	n+1	nv, and

f	nu− �	nv�f − 	n�fu− vf − 	n−1w� = f	nu− �	nv�f − 	nfu+ 	nvf = 0�

Thus dn+1dn�u� v� w� = 0 for n ≥ 0. Hence we obtain the following proposition.

Proposition 3.2. �CL∗�f� f�� d� is a cochain complex.

The cochain complex �CL∗�f� f�� d� is called the deformation complex of f , and
the corresponding cohomology modules are denoted by

HLn�f� f� �= Hn
(
�CL∗�f� f�� d�

)
�

The proof of the following proposition, which relates HL∗�f� f� to HL∗�L� L�,
HL∗�M�M�, and HL∗�L�M�, is similar to that of Proposition 3.3 in [25].

Proposition 3.3. If HLn�L� L� = 0 = HLn�M�M�, and HLn−1�L�M� = 0, then so is
HLn�f� f�.

In this article, we shall need a more general version of the above deformation
complex, which is described as follows. Let M0 be a finite dimensional �-module.
For n ≥ 1, we have isomorphisms:

CLn�L�M0 ⊗ L� � M0 ⊗ CLn�L� L�� CLn�M�M0 ⊗M� � M0 ⊗ CLn�M�M� and

CLn�L�M0 ⊗M� � M0 ⊗ CLn�L�M��

Define a cochain complex �M0 ⊗ CL∗�f� f�� d� by setting M0 ⊗ CL0�f� f� = 0,
and for n ≥ 1,

M0 ⊗ CLn�f� f� �= CLn�L�M0 ⊗ L�× CLn�M�M0 ⊗M�× CLn−1�L�M0 ⊗M��

where the coboundary dn � M0 ⊗ CLn�f� f� −→ M0 ⊗ CLn+1�f� f� is given by

dn�m1 ⊗ u�m2 ⊗ v�m3 ⊗w� �= �m1 ⊗ 	nu�m2 ⊗ 	nv�m1 ⊗ fu−m2 ⊗ vf −m3 ⊗ 	n−1w��

for �m1 ⊗ u�m2 ⊗ v�m3 ⊗ w� ∈ M0 ⊗ CLn�f� f�.
We shall denote the corresponding nth cohomology module by M0 ⊗

HLn�f� f�. From now on we shall omit superscripts for coboundaries, it should be
clear from the context which coboundary is being used.

4. DEFORMATIONS

Let � be a fixed field of characteristic zero and A be any commutative
local algebra. Let A be any commutative local algebra with 1 over �. Let �
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2250 MANDAL AND MUKHERJEE

be the maximal ideal of A and 
 � A −→ A/� � �� 
�1� = 1 be the canonical
augmentation. In this section, we study the notion of deformation of Leibniz
algebras and that of a Leibniz algebra morphism with base A.

Let L and M be Leibniz algebras over � and f � L −→ M a Leibniz algebra
morphism.

Definition 4.1. A deformation � of L with base �A���, or simply with base A, is
an A-Leibniz algebra structure on the tensor product A⊗ L with the bracket �� ��,
such that


⊗ id � A⊗ L → �⊗ L�

is an A-Leibniz algebra morphism (where A-Leibniz algebra structure on �⊗ L is
given via 
).

To define �, it is enough to specify �1⊗ l1� 1⊗ l2�� for l1� l2 ∈ L, by A-linearity
of �� ��. Moreover, as 
⊗ id � A⊗ L → �⊗ L is an A-Leibniz algebra morphism,
we have

�1⊗ l1� 1⊗ l2�� = 1⊗ �l1� l2�+
∑
i

mi ⊗ l′i

where l′i ∈ L and mi ∈ � and
∑
i

is a finite sum.

Definition 4.2. A deformation � = ��� �� f��� of f with base �A��� (or simply
with base A) is an A-Leibniz algebra morphism

f�� � �A⊗ L� �� −→ �A⊗M����

such that the following diagram commutes:

We shall also use the simpler notation f�� to denote a deformation � =
��� �� f��� of f . By A-linearity, f�� is determined by its value f���1⊗ l� ∈ A⊗M ; for
l ∈ L. The commutativity of the above diagram implies

f���1⊗ l� = 1⊗ f�l�+∑
j

mj ⊗ xj� mj ∈ � and xj ∈ M�

Definition 4.3. Any deformation � of L or f�� of f with base A is called an
infinitesimal deformation if �2 = 0.
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2251

Remark 4.4. If A is finite dimensional and mi�1≤i≤r is a basis of �, then a
deformation � of L and a deformation f�� of f � L −→ M can be written as

�1⊗ l1� 1⊗ l2�� = 1⊗ �l1� l2�+
r∑

i=1

mi ⊗ l′i and

f���1⊗ l1� = 1⊗ f�l1�+
r∑

j=1

mj ⊗ xj for l1� l2� l
′
i ∈ L and xj ∈ M�

We define the notion of equivalence of deformations as follows.

Definition 4.5. Let � and �′ be two deformations of L with base A. They are said
to be equivalent, written as � � �′, if there exists a Leibniz algebra isomorphism

���′ � �A⊗ L� �� ��� → �A⊗ L� �� ��′�

such that �
⊗ id� 	���′ = 
⊗ id.

Definition 4.6. Any two deformations ��� �� f��� and ��′� �′� f�′�′� of f with
base A are said to be equivalent, written as ��� �� f��� � ��′� �′� f�′�′�, if there
exist equivalences ���′ � �A⊗ L� �� ��� −→ �A⊗ L� �� �′�� and ���′ � �A⊗ L� �� ��� −→
�A⊗ L� �� �′�� such that ���′ 	 f�� = f�′�′ 	���′ .

The Leibniz algebra structure �� ��0 on A⊗ L given by

�1⊗ l1� 1⊗ l2��0 = 1⊗ �l1� l2�� for l1� l2 ∈ L

is clearly a deformation of L and is denoted by �0.

Definition 4.7. Any deformation of the morphism f , which is equivalent to the
deformation ��0� �0� f�0�0� is said to be a trivial deformation. Here

f�0�0�1⊗ l� = 1⊗ f�l� ∈ A⊗M�

Let A′ be any other base with augmentation map 
′. Let � � A −→ A′ be
an algebra morphism with ��1� = 1 and 
′ 	 � = 
. Let � = ��� �� f��� be a given
deformation of f with base A. The notion of push out of � under � is defined as
follows. Observe that A′ ⊗ L = �A′⊗AA�⊗ L = A′⊗A�A⊗ L�, where A′ is viewed as
an A-module with the module structure a′ · a = a′��a�.

Definition 4.8. The push out �∗� = ��∗�� �∗���∗f��� is a deformation of f with
base A′ where for any deformation � of a Leibniz algebra L with base A, �∗� is
given by

[
a′
1 ⊗A �a1 ⊗ l1�� a

′
2 ⊗A �a2 ⊗ l2�

]
�∗�

= a′
1a

′
2 ⊗A �a1 ⊗ l1� a2 ⊗ l2��

and �∗f�� � �A′ ⊗ L��∗�� −→ �A′ ⊗M��∗�� is given by

�∗f���a
′
1 ⊗A �a1 ⊗ l1�� = a′

1 ⊗A f���a1 ⊗ l1�

for a′
1� a

′
2 ∈ A′� a1� a2 ∈ A and l1� l2 ∈ L�
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2252 MANDAL AND MUKHERJEE

Next we focus our attention to infinitesimal deformations with finite
dimensional base. Let � be the category of finite dimensional commutative local
algebras with 1. Let � be any deformation of L with base A ∈ �. Let mi�1≤i≤r be a
basis of � and �i�1≤i≤r be the corresponding dual basis. Any element � ∈ �′ can
be viewed as an element � ∈ A′ such that ��1� = 0.

Define a cochain ���� ∈ CL2�L� L� by �����l1� l2� = ��⊗ id���1⊗ l1� 1⊗ l2��� for
l1� l2 ∈ L. Similarly, in the case of a deformation f�� of f , we have a cochain f���� ∈
CL1�L�M� defined by f�����l� = ��⊗ id� 	 f���1⊗ l� for l ∈ L. In particular, for the
basis elements �j� 1 ≤ j ≤ r, if we set ��

j = ����j and fj = f����j , then by Remark 4.4,
the deformations � and f�� can be written as

�1⊗ l1� 1⊗ l2�� = 1⊗ �l1� l2�+
r∑

j=1

mj ⊗ ��
j �l1� l2� and

(1)
f���1⊗ l1� = 1⊗ f�l1�+

r∑
j=1

mj ⊗ fj�l1�� respectively�

Thus we have a linear map �� � �′ −→ CL2�f� f� given by

����� = ������ ����� f����� for � ∈ �′�

Theorem 4.9. For any infinitesimal deformation � = ��� �� f��� of f with base
A ∈ �, �� takes values in cocycles.

Proof. By the definition of the coboundary in CL∗�f� f�, we have to show that
	���� = 0 = 	���� and f���� − ����f = 	f���� for any � ∈ �′. By definition,

	�����l1� l2� l3� =
[
l1� �����l2� l3�

]+ [
�����l1� l3�� l2

]− [
�����l1� l2�� l3

]
− ����

(
�l1� l2�� l3

)+ ����
(
�l1� l3�� l2

)+ ����
(
l1� �l2� l3�

)

for l1� l2� l3 ∈ L. Now observe that

��⊗ id�
(
�1⊗ l1� �1⊗ l2� 1⊗ l3����

)

= ��⊗ id�

([
1⊗ l1� 1⊗ �l2� l3�

]
�
+

[
1⊗ l1�

r∑
j=1

mj ⊗ ��
j �l2� l3�

]
�

)
�using �1��

= ����
(
l1� �l2� l3�

)+ r∑
j=1

��⊗ id�
[
1⊗ l1�mj ⊗ ��

j �l2� l3�
]
�
�

Now

��⊗ id�
[
1⊗ l1�mj ⊗ ��

j �l2� l3�
]
�

= ��⊗ id�mj

[
1⊗ l1� 1⊗ ��

j �l2� l3�
]
�

= ��⊗ id�mj

(
1⊗ [

l1� �
�
j �l2� l3�

]+ r∑
k=1

mk ⊗ ��
k

(
l1� �

�
j �l2� l3�

))

= ��⊗ id�
(
mj ⊗ �l1� �

�
j �l2� l3��

)
�since �2 = 0�

= [
l1� ��⊗ id��mj ⊗ ��

j �l2� l3��
]
�
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2253

Therefore,

��⊗ id�
(
�1⊗ l1� �1⊗ l2� 1⊗ l3����

)

= ����
(
l1� �l2� l3�

)+
[
l1� ��⊗ id�

r∑
j=1

mj ⊗ ��
j �l2� l3�

]

= ����
(
l1� �l2� l3�

)+ [
l1� ��⊗ id�

(
�1⊗ l2� 1⊗ l3�� − 1⊗ �l2� l3�

)]
�by using �1��

= �����l1� �l2� l3��+ �l1� �����l2� l3�� �since ��1� = 0��

Similarly,

�⊗ id
(
��1⊗ l1� 1⊗ l2��� 1⊗ l3��

) = ����
(
�l1� l2�� l3

)+ ������l1� l2�� l3�

and

�⊗ id
(
��1⊗ l1� 1⊗ l3��� 1⊗ l2��

) = ������l1� l3�� l2�+ ������l1� l3�� l2��

Hence,

	�����l1� l2� l3� = �⊗ id
(
�1⊗ l1� �1⊗ l2� 1⊗ l3���� − ��1⊗ l1� 1⊗ l2��� 1⊗ l3��

+ ��1⊗ l1� 1⊗ l3��� 1⊗ l2��
)

= 0 �since �� �� satisfies the Leibniz relation on A⊗ L��

Similarly, 	���� = 0. To complete the proof it is enough to show that

f��
i − �

�
i f − 	fi = f����i − ����if − 	f����i = 0� 1 ≤ i ≤ r�

We know that f�� � A⊗ L −→ A⊗M is a Leibniz algebra morphism, that is,
f���1⊗ l1� 1⊗ l2�� − �f���1⊗ l1�� f���1⊗ l2��� = 0 for l1� l2 ∈ L. We have from (1)

f���1⊗ l1� 1⊗ l2��

= 1⊗ f
(
�l1� l2�

)+ r∑
i=1

mi ⊗ fi
(
�l1� l2�

)+ f��

( r∑
i=1

mi ⊗ ��
i �l1� l2�

)

= 1⊗ f
(
�l1� l2�

)+ r∑
i=1

mi ⊗ fi
(
�l1� l2�

)+ r∑
i=1

mi ⊗ f��
i �l1� l2� �since �2 = 0��

Also,

[
f���1⊗ l1�� f���1⊗ l2�

]
�

= [
1⊗ f�l1�� 1⊗ f�l2�

]
�
+

r∑
j=1

mj

[
1⊗ f�l1�� 1⊗ fj�l2�

]
�

+
r∑

j=1

mj

[
1⊗ fj�l1�� 1⊗ f�l2�

]
�
+

r∑
i�j=1

mjmi

[
1⊗ f

i
�l1�� 1⊗ fj�l2�

]
�
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2254 MANDAL AND MUKHERJEE

= 1⊗ [
f�l1�� f�l2�

]+ r∑
j=1

mj ⊗ �
�
j

(
f�l1�� f�l2�

)+ r∑
j=1

mi ⊗
[
f�l1�� fj�l2�

]

+
r∑

j=1

mj ⊗
[
fj�l1�� f�l2�

]
�by using the fact that �2 = 0��

Now observe that

�f����i − ����if − 	f����i ��l1� l2�

= ��i ⊗ id��f���1⊗ l1� 1⊗ l2�� − �f���1⊗ l1�� f���1⊗ l2����

= 0�
�

Theorem 4.10. Let � = ��� �� f��� and �′ = ��′� �′� f ′
�′�′� be two infinitesimal

deformations of f with base A ∈ �. Then ����� and ��′��� represent the same
cohomology class for � ∈ �′, if and only if � and �′ are equivalent deformations.

Proof. Suppose � = ��� �� f��� and �′ = ��′� �′� f ′
�′�′� are two equivalent

infinitesimal deformations of f with base A.
Let ������ ����� f����� and ���′��� ��′��� f

′
�′�′��� be the associated 2-cocycles in

CL2�f� f� determined by � and �′, respectively.
Let ���′ � �A⊗ L� �� −→ �A⊗ L� �′� and ���′ � �A⊗M��� −→ �A⊗M��′� be

as in Definition 4.6 so that

���′ 	 f�� = f ′
�′�′ 	���′ � (2)

Since � and � are equivalent to �′ and �′, respectively, it follows from
the claim �a� in the proof of Proposition 4.4 [6] that ���� and ���� determine
the same cohomology class as ��′�� and ��′��, respectively. In fact, as shown
in the Proposition 4.4 [6], the A-Leibniz algebra isomorphisms ���′ and ���′

are determined by some linear maps b� � �′ −→ Hom�L� L� and b� � �′ −→
Hom�M�M� so that for � ∈ and l ∈ L� x ∈ M , we have

���′�1⊗ l� = 1⊗ l+
r∑

i=1

mi ⊗ b���i��l�

���′�1⊗ x� = 1⊗ x +
r∑

i=1

mi ⊗ b���i��x�

where ���� − ��′�� = 	b���� and ���� − ��′�� = 	b����.
Now if we denote fj = f����j and f ′

j = f�′�′��j we get,

���′ 	 f���1⊗ l� = ���′

(
1⊗ f�l�+

r∑
j=1

mj ⊗ fj�l�

)
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2255

= 1⊗ f�l�+
r∑

i=1

mi ⊗ b���i��f�l��+
r∑

j=1

mj ⊗ fj�l�

+ ∑
1≤i�j≤r

mjmi ⊗ b���i��fj�l��

= 1⊗ f�l�+
r∑

i=1

mi ⊗ b���i��f�l��+
r∑

i=1

mi ⊗ fi�l�

and

f ′
�′�′ 	���′�1⊗ l� = f ′

�′�′

(
1⊗ l+

r∑
i=1

mi ⊗ b���i��l�

)

= 1⊗ f�l�+
r∑

j=1

mj ⊗ f ′
j �l�+

r∑
i=1

mi ⊗ fb���i��l�

+ ∑
1≤i�j≤r

mimj ⊗ f ′
j

(
b���i��l�

)

= 1⊗ f�l�+
r∑

i=1

mi ⊗ f ′
i �l�+

r∑
i=1

mi ⊗ fb���i��l� �since �2 = 0��

It follows from the above expressions

��i ⊗ id� 	���′ 	 f���1⊗ l� = b���i��f�l��+ fi�l�

and

��i ⊗ id� 	 f ′
�′�′ 	���′�1⊗ l� = fb���i��l�+ f ′

i �l��

Hence by (2) we get fb���i�− b���i�f = fi − f ′
i for 1 ≤ i ≤ r. Thus it follows that

������ ����� f��− ���′��� ��′��� f
′
�� = d�b����� b����� 0� for � ∈ �′.

Conversely, suppose � = ��� �� f��� and �′ = ��′� �′� f ′
�′�′� are two infinite-

simal deformations of f with base A such that for � ∈ �′, ����� and ��′���
represent the same cohomology class. Let

������ ����� f��− ���′��� ��′��� f
′
�� = d�u� v� w�

for some 1-cochain �u� v� w� ∈ CL1�f� f�.
In particular, we can take ������ ����� f��− ���′��� ��′��� f

′
�� = d�u� v� 0� as

d�u� v� w� = d�u� v+ 	w� 0�. For � = �i, let �ui� vi� 0� ∈ CL1�f� f� be such that
�����i − ��′��i � ����i − ��′��i � fi − f ′

i � = d�u� v� 0� = �	ui� 	vi� fui − vif� for 1 ≤ i ≤ r.
Define A-linear maps

���′ � �A⊗ L� �� −→ �A⊗ L� �′� by ���′�1⊗ l� = 1⊗ l+
r∑

i=1

mi ⊗ ui�l� and

���′ � �A⊗M��� −→ �A⊗M��′� by ���′�1⊗ x� = 1⊗ l+
r∑

i=1

mi ⊗ vi�x�

for l ∈ L and x ∈ M .
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2256 MANDAL AND MUKHERJEE

Then ���′ and ���′ define equivalences � � �′ and � � �′, respectively. Using
the above definitions of ���′ and ���′ and the fact that �2 = 0, we get

���′ 	 f���1⊗ l� = 1⊗ f�l�+
r∑

i=1

mi ⊗ vif�l�+
r∑

i=1

mi ⊗ fi�l� and

f ′
�′�′ 	���′�1⊗ l� = 1⊗ f�l�+

r∑
i=1

mi ⊗ fui�l�+
r∑

i=1

mi ⊗ f ′
i �l��

Thus

����′ 	 f����1⊗ l�− �f ′
�′�′ 	���′��1⊗ l� =

r∑
i=1

mi ⊗
(
fui�l�− vif�l�− fi�l�+ f ′

i �l�
) = 0�

This gives ���′ 	 f�� = f ′
�′�′ 	���′ . Consequently, � and �′ are equivalent

infinitesimal deformations of f with base A. �

Suppose A ∈ � and � is the unique maximal ideal of A. The algebra A/�2

is obviously local with maximal ideal �/�2 and having the additional property
��/�2�2 = 0. Let p2 � A −→ A/�2 be the obvious quotient map. If � = ��� �� f���

is any deformation of f with base A, then we get the induced deformation
p2∗� = �p2∗�� p2∗�� fp2∗� p2∗�� with base A/�2, which is obviously infinitesimal. As a
consequence, �p2∗� takes vales in cocycles, and hence we have a map

ap2∗� � ��/�2�′ → HL2�f� f� defined by ap2∗���� = ��p2∗���

where ��p2∗�� denotes the cohomology class represented by �p2∗�.

Definition 4.11. The linear maps �p2∗� and ap2∗� are, respectively, called the
infinitesimal and the differential of �. The deformation p2∗� may be called the
infinitesimal part of �.

Corollary 4.12. Two infinitesimal deformations � and �′ with base A ∈ � are
equivalent if and only if they have the same differential.

Corollary 4.13. Suppose � and �′ are two equivalent deformations of f with base A,
then they have the same differential.

5. OBSTRUCTIONS

Let � = ��� �� f��� be a deformation of f � L −→ M with base A ∈ �. Let

 � A −→ � be the augmentation. It is well known [15] that the isomorphism classes
of 1-dimensional extensions

0 −→ �
i−→ B

p−→ A −→ 0
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2257

of A are in one to one correspondence with elements of the second Harrison
cohomology H2

Harr�A���. Let ��� ∈ H2
Harr�A���. Suppose

0 −→ �
i−→ B

p−→ A −→ 0

is a representative of the class of 1-dimensional extensions of A, corresponding to
the cohomology class ���.

Let

I = �i⊗ id� � L � �⊗ L −→ B ⊗ L� I1 = �i⊗ id� � M � �⊗M −→ B ⊗M

P = �p⊗ id� � B ⊗ L −→ A⊗ L� P1 = �p⊗ id� � B ⊗M −→ A⊗M

E = �
̂⊗ id� � B ⊗ L −→ �⊗ L � L� E1 = �
̂⊗ id� � B ⊗M −→ �⊗M � M�

where 
̂ = 
 	 p is the augmentation for B corresponding to the augmentation 
 of
A. Fix a section q � A −→ B of p in the above extension, then

b 
−→ (
p�b�� i−1�b − q 	 p�b��)

is a �-module isomorphism B −→ �A⊕��. Let us denote by �a� k�q ∈ B, the
inverse of �a� k� ∈ �A⊕�� under the above isomorphism. The algebra structure of
B is determined by � and is given by

�a1� k1�q 	 �a2� k2�q =
(
a1a2� a1k2 + a2k1 + ��a1� a2�

)
q
�

Suppose dim�A� = r + 1 and mi�1≤i≤r is a basis of the maximal ideal �A

of A. Then ni�1≤i≤r+1 is a basis of the maximal ideal �B = p−1��A� of B, where
nj = �mj� 0�q for 1 ≤ j ≤ r and nr+1 = �0� 1�q. Take the dual basis �i�1≤i≤r of ��A�

′.
As in Section 4, let ��

i = ����i ∈ CL2�L� L�, ��
i = ����i ∈ CL2�M�M� and fi = f����i ∈

CL1�L�M� for 1 ≤ i ≤ r. Then by (1), the brackets �� �� and �� �� can be written as

�1⊗ l1� 1⊗ l2�� = 1⊗ �l1� l2�+
r∑

i=1

mi ⊗ ��
i �l1� l2� for l1� l2 ∈ L and

�1⊗ x1� 1⊗ x2�� = 1⊗ �x1� x2�+
r∑

i=1

mi ⊗ �
�
i �x1� x2� for x1� x2 ∈ M�

Also,

f���1⊗ l� = 1⊗ f�l�+
r∑

i=1

mi ⊗ fi�l��

We consider the problem of lifting the deformation � from the base A to the
base B.

Using an arbitrary element ��L� �M� ∈ CL2�L� L�× CL2�M�M� we may define
B-bilinear operations,

� �L � �B ⊗ L�⊗2 −→ B ⊗ L and � �M � �B ⊗M�⊗2 −→ B ⊗M
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2258 MANDAL AND MUKHERJEE

as follows:

b1 ⊗ l1� b2 ⊗ l2�L = b1b2 ⊗ �l1� l2�+
r∑

j=1

b1b2nj ⊗ ����j �l1� l2�

+ b1b2nr+1 ⊗ �L�l1� l2� and

b1 ⊗ x1� b2 ⊗ x2�M = b1b2 ⊗ �x1� x2�+
r∑

j=1

b1b2nj ⊗ ����j �x1� x2�

+ b1b2nr+1 ⊗ �M�x1� x2��

We may also define a B-linear map f̃ � B ⊗ L −→ B ⊗M by

f̃ �b ⊗ l� = b ⊗ f�l�+
r∑

j=1

bnj ⊗ fj�l��

It is straightforward to verify the following identities:

(i) Pl1� l2�L = �P�l1�� P�l2��� and P1x1� x2�M = �P1�x1�� P1�x2��� for l1� l2 ∈ B ⊗ L,
and x1� x2 ∈ B ⊗M ;

(ii) I�l�� l1�L = I�l� E�l1�� for l ∈ L� l1 ∈ B ⊗ L and

I1�x�� x1�M = I1�x� E1�x1�� for x ∈ M� x1 ∈ B ⊗M� (3)

(iii) �
̂⊗ id� 	 f̃ = f 	 �
̂⊗ id�;
(iv) f�� 	 P = P1 	 f̃ .
Thus the Leibniz algebra structures � on A⊗ L and � on A⊗M can be lifted to
B-bilinear operations � �L on B ⊗ L and � �M on B ⊗M , and the A-Leibniz algebra
morphism f�� can be lifted to a B-linear map f̃ � B ⊗ L −→ B ⊗M so that the triple
�� �L� � �M� f̃ � satisfies the conditions in (3). Consider the maps

�L � �B ⊗ L�⊗3 −→ B ⊗ L� �M � �B ⊗M�⊗3 −→ B ⊗M� and

�f��
� �B ⊗ L�⊗2 −→ B ⊗M given, respectively, by

�L�l1� l2� l3� = l1� l2� l3�L�L − l1� l2�L� l3�L + l1� l3�L� l2�L

�M�x1� x2� x3� = x1� x2� x3�M�M − x1� x2�M� x3�M + x1� x3�M� x2�M� and

�f��
�l1� l2� = f̃ l1� l2�L − f̃ �l1�� f̃ �l2��M�

where

l1� l2� l3 ∈ B ⊗ L and x1� x2� x3 ∈ B ⊗M� (4)

It is clear that �L = 0 if and only if � �L is a Leibniz bracket on B ⊗ L, �M = 0
if and only if � �M is a Leibniz bracket on B ⊗M , and �f��

= 0 if and only if f̃
preserves the B-bilinear operations � �L and � �M .
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2259

By the property (i) in (3) and the definitions of �L and �M it follows that

P 	 �L�l1� l2� l3� = 0 and P1 	 �M�x1� x2� x3� = 0

for l1� l2� l3 ∈ B ⊗ L and x1� x2� x3 ∈ B ⊗M�

Moreover, by the properties (i) and (iv) in (3) and the definition of �f��
, we get

P1 	 �f��
�l1� l2� = P1 	 f̃ l1� l2�L − P1 	 f̃ �l1�� f̃ �l2��M

= f�� 	 Pl1� l2�L −
[
P1 	 f̃ �l1�� P1 	 f̃ �l2�

]
�

= f���P�l1�� P�l2��� −
[
f�� 	 P�l1�� f�� 	 P�l2�

]
�

= 0 �as f�� is a Leibniz algebra morphism��

for l1� l2 ∈ B ⊗ L.
Therefore, �L and �M take values in ker�P� and ker�P1�, respectively, and �f��

takes values in ker�P1�. Note that

ker�P� = im�i�⊗ L = �nr+1 ⊗ L� ker�P1� = im�i�⊗M = �nr+1 ⊗M�

and njnr+1 = 0 for 1 ≤ j ≤ r + 1. From this, one can show that �L�l1� l2� l3� = 0
whenever one of the arguments is in ker�E� and �M�x1� x2� x3� = 0 whenever one
of the arguments is in ker�E1� (see Section 5, [6]). Moreover, �f��

= 0 whenever
one of the arguments is in ker�E�. For suppose l1 = b ⊗ l ∈ ker�E� ⊆ B ⊗ L. Since
ker�E� = ker�
̂�⊗ L = p−1�ker�
��⊗ L = �B ⊗ L, we can write l1 =

∑r+1
j=1 nj ⊗ l′j

with l′j ∈ L; 1 ≤ j ≤ r + 1. Then for l2 ∈ B ⊗ L, we get

�f��
�l1� l2� = �f��

( r+1∑
j=1

nj ⊗ l′j� l2

)
=

r+1∑
j=1

nj�f��
�l′j� l2� = 0�

This is because �f��
�l′j� l2� ∈ ker�P1� = im�I1� = im�i�⊗M = i���⊗M and for any

element k ∈ � and x ∈ M ,

nji�k�⊗ x = i�p�nj�k�⊗ x = i�mjk�⊗ x = i�
�mj�k�⊗ x = 0 for 1 ≤ j ≤ r

and nr+1i�k�⊗ x = kn2
r+1 ⊗ x = 0 �mj ∈ � ⊂ A and mjk = 
�mj�k�. A similar

argument shows that �f��
= 0 whenever l2 ∈ ker�E�.

Thus we have induced linear maps

�̃L �

(
B ⊗ L

ker�E�

)⊗3

−→ ker�P�� �̃M �

(
B ⊗M

ker�E1�

)⊗3

−→ ker�P1��
(5)

and �̃f��
�

(
B ⊗ L

ker�E�

)⊗2

−→ ker�P1�
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2260 MANDAL AND MUKHERJEE

determined by the values of �L��M and �f��
on the coset representatives,

respectively. Observe that we have isomorphisms

B ⊗ L

ker�E�
� L and

B ⊗M

ker�E1�
� M

induced by the linear maps E and E1, respectively. Moreover, ker�P� = im�I� =
�i�1�⊗ L � L and ker�P1� = im�I1� = �i�1�⊗M � M .

Explicitly, the isomorphisms � � ker�P� −→ L and �1 � ker�P1� −→ M are
given by ��knr+1 ⊗ l� = kl and �1�knr+1 ⊗ x� = kx for l ∈ L and x ∈ M .

We use these isomorphisms and the linear maps �̃L� �̃M� �̃f��
to get cochains

�̄L ∈ CL3�L� L�, �̄M ∈ CL3�M�M�, and �̄f��
∈ CL2�L�M� where for l1� l2� l3 ∈ L and

x1� x2� x3 ∈ M ,

nr+1 ⊗ �̄L�l1� l2� l3� = �L�1⊗ l1� 1⊗ l2� 1⊗ l3�

nr+1 ⊗ �̄M�x1� x2� x3� = �M�1⊗ x1� 1⊗ x2� 1⊗ x3�� and (6)

nr+1 ⊗ �̄f��
�l1� l2� = �f��

�1⊗ l1� 1⊗ l2��

The resulting 3-cochain ��̄L� �̄M� �̄f��
� ∈ CL3�f� f� is called the obstruction cochain

for extending the deformation � of f with base A to the base B. The next result
shows that the obstruction cochains are cocycles.

Proposition 5.1. The obstruction cochain ��̄L� �̄M� �̄f��
� is a 3-cocycle in CL3�f� f�.

Proof. By the definition of the coboundary d, we have

d��̄L� �̄M� �̄f��
� = �	�̄L� 	�̄M� f �̄L − �̄Mf − 	�̄f��

��

Thus it is enough to show that 	�̄L = 0 = 	�̄M and 	�̄f��
= f�̄L − �̄Mf� The result

will follow if we show that

�−1 	 	�̄L = 0 = �1
−1 	 	�̄M and �1

−1 	 	�̄f��
= �1

−1 	 �f �̄L − �̄Mf��

We give a proof of the last equality. For proofs of the other two equalities we refer
Section 5 of [6].

First observe that for li� lj ∈ L,

1⊗ li� 1⊗ lj�L = 1⊗ �li� lj�+ Yi�j where Yi�j ∈ ker�E�� (7)

For,

E
(
1⊗ li� 1⊗ lj�L

) = �
⊗ id� 	 P1⊗ li� 1⊗ lj�L

= �
⊗ id�
[
P�1⊗ l1�� P�1⊗ l2�

]
�

�by �i� of �3��

= 1⊗ �l1� l2�

= E
(
1⊗ �l1� l2�

)
�
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2261

Also using the equalities (iii) and (iv) of (3), one gets

f̃ �1⊗ li� = 1⊗ f�li�+ Xi for Xi ∈ ker�E1� and (8)

f̃ 1⊗ li� 1⊗ lj�L = f̃ �1⊗ li�� f̃ �1⊗ lj��M + Zi�j for Zi�j ∈ ker�P1�� (9)

Now

�−1
1 	 	�̄f��

�l1� l2� l3� = �−1
1

[
f�l1�� �̄f��

�l2� l3�
]
+ �−1

1

[
�̄f��

�l1� l3�� f�l2�
]

− �−1
1

[
�̄f��

�l1� l2�� f�l3�
]
− �−1

1

(
�̄f��

(
�l1� l2�� l3

))
(10)

+ �−1
1

(
�̄f��

(
�l1� l3�� l2

))+ �−1
1

(
�̄f��

(
l1� �l2� l3�

))
�

Let us compute the first term on the right-hand side of (10).

�−1
1

[
f�l1�� �̄f��

�l2� l3�
]

= nr+1 ⊗
[
f�l1�� �̄f��

�l2� l3�
]

= I1

[
f�l1�� �̄f��

�l2� l3�
]

�i�1� = nr+1�

=
{
I1f�l1�� 1⊗ �̄f��

�l2� l3�
}
M

�by �ii� of �3��

= {
1⊗ f�l1�� �f��

�1⊗ l2� 1⊗ l3�
}
M

�using B-bilinearity of � �M and by �6��

= {
1⊗ f�l1�� f̃ 1⊗ l2� 1⊗ l3

}
L
− {

f̃ �1⊗ l2�� f̃ �1⊗ l3��M
}
M

�by �4��

= {
f̃ �1⊗ l1�− X1� f̃ 1⊗ l2� 1⊗ l3�L

}
M
− {

1⊗ f�l1�� f̃ �1⊗ l2�� f̃ �1⊗ l3��M
}
M

�by �8��

= {
f̃ �1⊗ l1�� f̃ 1⊗ l2� 1⊗ l3�L

}
M
− {

X1� f̃ 1⊗ l2� 1⊗ l3�L
}
M

− {
1⊗ f�l1�� 1⊗ f�l2�+ X2� 1⊗ f�l3�+ X3�M

}
M

= {
f̃ �1⊗ l1�� f̃ 1⊗ l2� 1⊗ l3�L

}
M
− {

X1� f̃ �1⊗ l2�� f̃ �1⊗ l3�
}
M
+ Z2�3�M

− {
1⊗ f�l1�� 1⊗ f�l2�+ X2� 1⊗ f�l3�+ X3�M

}
M

�using (9)�

= {
f̃ �1⊗ l1�� f̃ 1⊗ l2� 1⊗ l3�L

}
M
− {

X1� 1⊗ f�l2�+ X2� 1⊗ f�l3�+ X3�M
}
M

− X1� Z2�3�M − {
1⊗ f�l1�� 1⊗ f�l2�+ X2� 1⊗ f�l3�+ X3�M

}
M

= {
f̃ �1⊗ l1�� f̃ 1⊗ l2� 1⊗ l3�L

}
M
− {

X1� 1⊗ f�l2�� 1⊗ f�l3��M
}
M

− {
X1� 1⊗ f�l2�� X3�M

}
M
− {

X1� X2� 1⊗ f�l3��M
}
M
− {

X1� X2� X3�M
}
M

− X1� Z2�3�M − {
1⊗ f�l1�� 1⊗ f�l2�� 1⊗ f�l3��M

}
M

− {
1⊗ f�l1�� X2� 1⊗ f�l3��M

}
M
− {

1⊗ f�l1�� 1⊗ f�l2�� X3�M
}
M

− {
1⊗ f�l1�� X2� X3�M

}
M
�
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2262 MANDAL AND MUKHERJEE

Similarly, computing the other terms on the right hand side of (10) using (7)–(9),
and substituting, we get

�−1
1 	�̄f��

�l1� l2� l3�

= −�M

(
X1� 1⊗ f�l2�� 1⊗ f�l3�

)− �M

(
X1� 1⊗ f�l2�� X3

)− �M

(
X1� X2� 1⊗ f�l3�

)
− �M�X1� X2� X3�− �M

(
1⊗ f�l1�� X2� 1⊗ f�l3�

)− �M

(
1⊗ f�l1�� 1⊗ f�l2�� X3

)
− �M

(
1⊗ f�l1�� X2� X3

)+ �f��
�Y1�2� 1⊗ l3�− �f��

�Y1�3� 1⊗ l2�

− �f��
�1⊗ l1� Y2�3�− X1� Z2�3�M − Z1�3� X2�M + Z1�2� X3�M

+ f̃�L�1⊗ l1� 1⊗ l2� 1⊗ l3�− �M

(
1⊗ f�l1�� 1⊗ f�l2�� 1⊗ f�l3�

)
�

Now recall that �M�l1� l2� l3� = 0, whenever one of the argument is in ker�E1�

and �f��
�l1� l2� = 0, whenever one of the argument is in ker�E�. Moreover, note

that X1� Z2�3�M = 0 as � �M is B-bilinear and nj · nr+1 = 0 for 1 ≤ j ≤ r. Similarly,
Z1�3� X2�M = 0 = Z1�2� X3�M . Therefore, �−1

1 	�̄f��
�l1� l2� l3� = f̃�L�1⊗ l1� 1⊗

l2� 1⊗ l3�− �M

(
1⊗ f�l1�� 1⊗ f�l2�� 1⊗ f�l3�

) = �−1
1 �f �̄L − �̄Mf��l1� l2� l3�. �

Remark 5.2. It is straightforward to show that the cohomology class of the
obstruction cocycle ��̄L� �̄M� �̄f��

� depends only on the cohomology class of ���.
In other words, suppose � � �′L�  � �

′
M� f̃

′� is another triple satisfying conditions (3)
determined by some other choice of ���, and let ��̄′

L� �̄
′
M� �̄

′
f��
� be the corresponding

cocycle. Then ��̄′
L� �̄

′
M� �̄

′
f��
� represents the same cohomology class as ��̄L� �̄M� �̄f��

�.

Thus we have a map

�� � H2
Harr�A��� −→ HL3�f� f� given by ������� = ���̄L� �̄M� �̄f��

���

where ���̄L� �̄M� �̄f��
�� denotes the cohomology class of ��̄L� �̄M� �̄f��

�. This map is
called the obstruction map.

Proposition 5.3. The deformation � of f with base A can be extended to a
deformation of f with base B if and only if ������� = 0, for any 1-dimensional
extension

0 −→ �
i−→ B

p−→ A −→ 0

representing ���.

Proof. Suppose ������� = 0. Let � � �L�  � �M� f̃ � be a triple satisfying conditions
in (3). Let �L��M and �f��

be maps as defined in (4). Let ��̄L� �̄M� �̄f��
� be the

associated cocycle.
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2263

Since ������� = ���̄L� �̄M� �̄f��
�� = 0, there is a 2-cochain �u� v� w� ∈ CL2�f� f�

such that ��̄L� �̄M� �̄f��
� = d�u� v� w�. Therefore, 	u = �̄L� 	v = �̄M , and fu− vf −

	w = �̄f��
. Take �′

L = −u� �′
M = −v, and �′

f = −w. Define the linear maps

� �′L � �B ⊗ L�⊗2 −→ B ⊗ L by l1� l2�
′
L = l1� l2�− Iu

(
E�l1�� E�l2�

)
�

� �′M � �B ⊗M�⊗2 −→ B ⊗M by x1� x2�
′
M = x1� x2�− I1v

(
E1�x1�� E1�x2�

)
�

and

f̃ ′ � B ⊗ L −→ B ⊗M by f̃ ′�l1� = f̃ �l1�− I1w�E�l1��

for l1� l2 ∈ B ⊗ L and x1� x2 ∈ B ⊗M .
We claim that �� �′L� � �

′
M� f̃

′� is a deformation of f with base B lifting the
deformation �. Let �′

L� �
′
M , and �′

f��
be the associated maps as defined in (4). Let

��̄′
L� �̄

′
M� �̄

′
f��
� be corresponding 3-cocycle. Then it is easy to see that �̄L − �̄′

L = 	u,
�̄M − �̄′

M = 	v, and �̄f��
− �̄′

f��
= fu− vf − 	w. Thus �̄′

L = 0, �̄′
M = 0, and �̄′

f��
= 0.

It follows from (6) that �′
L = 0 = �′

M and �′
f��

= 0. Consequently, �� �′L� � �
′
M� f̃

′� is
a deformation of f with base B extending �.

The converse is clear. �

So far we were concerned with the lifting problem for 1-dimensional extension
of the base A ∈ � of a deformation. An analogous consideration holds for any finite
dimensional extension of the algebra A by an A-module.

Recall that an extension B of an algebra A by an A-module M is a �-algebra
B together with an exact sequence of �-modules

0 −→ M
i−→ B

p−→ A −→ 0�

where p is a �-algebra homomorphism, and the B-module structure on i�M� is given
by the A-module structure of M by i�m� · b = i�mp�b��. In particular, if we identify
M with its image i�M�, then M is an ideal in B satisfying M2 = 0.

Let M0 be a finite dimensional A-module satisfying �M0 = 0. It is well known
[15] that H2

Harr�A�M0� is in one to one correspondence with the isomorphism classes
of extensions

0 −→ M0
i−→ B

p−→ A −→ 0� (11)

Let ��� ∈ H2
Harr�A�M0� correspond to the class of extensions represented by the

extension in (11). If we proceed with the above extension as in the case of
1-dimensional extension, we obtain a triple �� �L� � �M� f̃ � and the maps �L��M

and �f��
as determined in (4). We define �̃L� �̃M , and �̃f��

using �L��M , and
�f��

, respectively, as in (5). As before we have isomorphisms B ⊗ L/ker�E� � L
and B⊗M/ker�E1� � M . Moreover, in this general case, we have isomorphisms
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2264 MANDAL AND MUKHERJEE

ker�P� � M0 ⊗ L and ker�P1� � M0 ⊗M . We use these isomorphisms to obtain
cochains

�̄L ∈ CL3�L�M0 ⊗ L� � M0 ⊗ CL3�L� L��

�̄M ∈ CL3�M�M0 ⊗M� � M0 ⊗ CL3�M�M� and

�̄f��
∈ CL2�L�M0 ⊗M� � M0 ⊗ CL2�L�M��

An argument analogous to the proof of Proposition 5.1 shows that ��̄L� �̄M� �̄f��
� is

a cocycle in M0 ⊗ CL3�f� f�.
As a consequence, we have the obstruction map

�� � H2
Harr�A�M0� −→ M0 ⊗HL3�f� f��

As in Proposition 5.3, we have the following proposition.

Proposition 5.4. A deformation � = ��� �� f��� of f with base A ∈ � can be lifted
to a deformation of f with base B if and only if ������� = 0 for any extension (11) of
A by the A-module M0 representing ���.

6. FORMAL DEFORMATIONS

Let A be any local algebra with maximal ideal �. Throughout this section, we
assume that dim��k/�k+1� < � for each k ≥ 1. The local algebra A is said to be a
complete local algebra if A = limk→��A/�k�. Note that A/�k ∈ � for k ≥ 1.

A deformation � of L with base A is said to be a formal deformation if � is
obtained as the projective limit of deformations �k of L with base A/�k. In other
words, pk∗� = �k for each k, where pk � A −→ A/�k is the quotient map.

Definition 6.1. A formal deformation of a Leibniz algebra morphism f � L −→ M

with base A is a deformation � = ��� �� f��� which is obtained as a projective limit
of deformations �k = ��k� �k� f�k�k� with base A/�k.

Definition 6.2. For a formal deformation � of f with base A, p2∗� is called the
infinitesimal part of � and ap2∗� is the differential of �.

Example 6.3. A formal 1-parameter deformation of a Leibniz algebra morphism
as developed in [21] is a formal deformation in above sense where A = ���t��.

Example 6.4. Let A be a complete local algebra with maximal ideal �. Then
A/�2 is a finite dimensional local algebra with the maximal ideal �/�2. Note that
any deformation with base A/�2 is infinitesimal. Let m̄i�1≤i≤r be a basis of �/�2

with �̄i�1≤i≤r be the corresponding dual basis of ��/�2�′. Consider any linear map

� � ��/�2�′ −→ CL2�f� f�
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DEFORMATION OF LEIBNIZ ALGEBRA MORPHISMS 2265

such that ���̄i� = ���
i � �

�
i � fi� is a 2-cocycle for 1 ≤ i ≤ r. We define a deformation

� = ��� �� f��� of f with base A/�2 as follows:

�1⊗ l1� 1⊗ l2�� = 1⊗ �l1� l2�+
r∑

i=1

mi ⊗ ��
i �l1� l2��

�1⊗ x1� 1⊗ x2�� = 1⊗ �x1� x2�+
r∑

i=1

mi ⊗ �
�
i �x1� x2��

f���1⊗ l1� = 1⊗ f�l1�+
r∑

i=1

mi ⊗ fi�l1� for l1� l2 ∈ L and x1� x2 ∈ M�

Since � takes values in cocycles, it is straightforward to check that � is indeed
a deformation (cf. Theorem 4.9). Thus � is an infinitesimal deformation of f
with base A/�2 and �� = �. Moreover, it follows from Theorem 4.10 that the
equivalence class of � is determined by the map a � ��/�2�′ −→ HL2�f� f�,
where a��� = ������ for � ∈ ��/�2�′. Clearly, a = a� is the differential of �
(cf. Definition 4.11).

Given any linear map a � ��/�2�′ −→ HL2�f� f�, let � be an infinitesimal
deformation of f with base A/�2 determined by a. It is natural to ask whether
� can be lifted to a formal deformation with base A with a as its differential.
This is the integrability question in the present context. To answer this question
one has to start with the infinitesimal deformation � with base A/�2 and study
the obstruction maps of Section 5 in lifting � to higher order deformations. More
precisely, we proceed as follows.

Suppose A is a complete local algebra with the maximal ideal �.
Let a � ��/�2�′ −→ HL2�f� f� be any linear map and � be an infinitesimal
deformation with base A/�2 and a� = a. Suppose the deformation � can be lifted
to a deformation �k with base A/�k for k ≥ 2. Consider the extension

0 −→ �k/�k+1
ik+1
k−→ A/�k+1

pk+1
k−→ A/�k −→ 0

representing a cohomology class ��k� ∈ H2
Harr�A/�

k�Mk�, where Mk = �k/�k+1.
Let �k = ��k

���k�� ∈ Mk ⊗HL3�f� f�. Then by Proposition 5.4 we obtain the
following proposition.

Proposition 6.5. Let A be a complete local algebra with the maximal ideal �. Let a �
��/�2�′ −→ HL2�f� f� be a given linear map. Let � be any infinitesimal deformation
with base A/�2 and a� = a. Then there exists a formal deformation of f with base A
and with the given map a as its differential if and only if �k = 0 for all k ≥ 2.

Corollary 6.6. If HL3�f� f� = 0, then every linear map

a � ��/�2�′ −→ HL2�f� f�

is the differential of some formal deformation � of f with base A.

D
ow

nl
oa

de
d 

by
 [

In
di

an
 S

ta
tis

tic
al

 I
ns

tit
ut

e]
 a

t 0
3:

44
 2

9 
Ju

ly
 2

01
1 



2266 MANDAL AND MUKHERJEE

REFERENCES

[1] Albeverio, S., Ayupov, Sh. A., Omirov, B. A. (2005). On nilpotent and simple Leibniz
algebras. Comm. Algebra 33:159–172.

[2] Albeverio, S., Omirov, B. A., Rakhimov, I. S. (2005). Varieties of nilpotent complex
Leibniz algebras of dimension less than five. Comm. Algebra 33:1575–1585.

[3] Ayupov, Sh. A., Omirov, B. A. (2001). On some classes of nilpotent Leibniz algebras.
Siberian Math. Journal 42(1):18–29.

[4] Balavoine, D. (1997). Deformations of algebras over a quadratic operad. Contemp.
Math. 202:207–234.

[5] Fialowski, A., Fuchs, D. (1999). Construction of miniversal deformation of Lie
algebras. Journal of Functional Analysis 161:76–110.

[6] Fialowski, A., Mandal, A., Mukherjee, G. (2009). Versal deformations of Leibniz
algebras. J. K-Theory. 3(2):327–358.

[7] Gerstenhaber, M. (1963). The cohomology structure of an associative ring. Ann. Math.
78:267–288.

[8] Gerstenhaber, M. (1964). On the deformation of rings and algebras. Ann. Math.
79:59–103.

[9] Gerstenhaber, M. (1966). On the deformation of rings and algebras. Ann. Math.
84:1–19.

[10] Gerstenhaber, M. (1968). On the deformation of rings and algebras. Ann. Math.
88:1–34.

[11] Gerstenhaber, M. (1974). On the deformation of rings and algebras. Ann. Math.
99:257–276.

[12] Gerstenhaber, M., Schack, S. D. (1983). On the deformation of algebra morphisms
and diagrams. Trans. Amer. Math. Soc. 279(1):1–50.

[13] Gerstenhaber, M., Schack, S. D. (1985). On the cohomology of an algebra morphism.
J. Algebra 95:245–262.

[14] Gerstenhaber, M., Schack, S. D. (1987). Sometimes H1 is H2 and Discrete Groups
Deform. Contemp. Math. 74: Amer. Math. Soc., Providence, RI. pp. 149–168.

[15] Harrison, D. K. (1962). Commutative algebras and cohomology. Trans. Amer. Math.
Soc. 104:191–204.

[16] Loday, J.-L. (1993). Une version non commutative des algèbres de Lie: les algèbres de
Leibniz. Ens. Math. 39(3–4):269–293.

[17] Loday, J.-L. (1997). Overview on Leibniz algebras, dialgebras and their homology.
Fields Inst. Commun. 17:91–102.

[18] Loday, J.-L. (2001). Dialgebras and Related Operads. 7–66. Lecture Notes in Math.
Berlin: Springer, 1763, pp. 7–66.

[19] Loday, J.-L., Pirashvili, T. (1993). Universal enveloping algebras of Leibniz algebras
and (co)homology. Math. Ann. 296:139–158.

[20] Majumdar, A., Mukherjee, G. (2002). Deformation theory of dialgebras. K-Theory
27:33–60.

[21] Mandal, A. (2007). Deformation of Leibniz algebra morphisms. Homology Homotopy
and Applications 9(1):439–450.

[22] Nijenhuis, A., Richardson, R. W. (1966). Cohomology and deformations in graded Lie
algebras. Bull. Amer. Math. Soc. 72:1–29.

[23] Nijenhuis, A., Richardson, R. W. (1967). Deformations of homomorphisms of Lie
algebras. Bull. Amer. Math. Soc. 73:175–179.

[24] Yau, D. (2007). Deformation of dual Leibniz algebra morphisms. Comm. Algebra
35(4):1369–1378.

[25] Yau, D. (2008). Deformation theory of dialgebra morphisms. Algebra Colloq.
15(2):279–292.

D
ow

nl
oa

de
d 

by
 [

In
di

an
 S

ta
tis

tic
al

 I
ns

tit
ut

e]
 a

t 0
3:

44
 2

9 
Ju

ly
 2

01
1 


