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Abstract

We consider weighted graphs, where the edge weights are positive definite matrices. The
Laplacian of the graph is defined in the usual way. We obtain an upper bound on the largest
eigenvalue of the Laplacian and charscterize graphs for which the bound is attained. The
classical bound of Anderson and Morley, for the largest eigenvalue of the Laplacian of an
unweighted graph follows as a special case.
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L. Introduction

Let G = (V, E) be a simple connected graph with vertex set V = {1, 2, ... . n}
and edge set E. A simple graph has no loops or multuple edges and therefore s
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edge set consists of distnet pairs. A weighted graph s a graph in which cach edge
s assigned a weight, which is usually a positive number. An unweighted graph, or
simply a graph, is thus a weighted grmph with cach of the edges bearing weight 1.

In this paper we consider weighted graphs, where the edge weights are positive
definite matnees. All weight matncees will be assumed 0 have the same size.

We now introduce some notation. Let ¢ be aweighted graph onn vertices. Denote
by w;; the positive definite weight matrix of order p of the edge i j. We write i ~ j if
vertices o and § are adjacent. Let uwy = Zj:jﬁ-i w;j, and we think of wy as the weight
muatrix of the vertex 7.

The Laplacian matnx of a graph 7 15 denoted by L{G) and 15 defined as L{G) =
{f; ;). where

w; ifi = j,
lp={—wy ifi~j,
0 otherwise.

Thus, wsing the notation introduced earlier, L{G) s a square matrix of order np.
For any symmetric matrix A, ket A (A) denote the largest eigenvalue of 4. We sel
A = A (L{GY).

Upper and lower bounds for the largest Laplacian eigenvalue for unweighted
graphs have been investigated to a great extent in the literature [ 1-10,12]. For most of
these bounds, Pan [11] has characterized the graphs which achieve the upper bound of
the largest Laplacian eigenvalue. The main result of this paper, contained in Section
2, mves an upper bound on the largest Laplacian eigenvalue for weighted graphs,
where the edze weights are positive definite matrices. We also characteriee graphs
for which eguality holds in the upper bound. The results clearly generalize the known
results for unweighted graphs. Some related results are proved in Section 3.

Let & = (V, E) I Vs the disjont union of two nonempty sets V) and Vs such
that every vertex @ in V) has the same largest eigenvalue A (w;y ) and every verlex §
in V3 has the same largest eigenvalue & (w;), then G will be called a semiregular
graph. ( Occasionally we might say explicitly that & isa (i (wy), Ay (w; ))-semiregular
graph.)

2. Main result

In this section we find an upper bound on the largest Laplacian eigenvalue and
characterize the graphs for which the largest Laplacian eigenvalue s equal to the
upper bound. For this we need the following Lemmas.

Lemma 2.1 (Rayleigh-Rit [13]). If A is a symmerric n x n matrix with eigenvalues
M Ehrz - zhpthenforanyy € R" (x £ 0),

TTAT = A, X0x. (1)
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Eguality holds if and only if X v an eigenvector of A corvesponding to the least
eigenvalue hy.

The following is a consequence of the Cauchy=Schwarz ineguality.

Lemma 2.2. If A is a symmetric positive defmite n x n matrixwith eigenvalues 4, =
X s 2 dy, thenforany i e R (x£0), v e R" (¥ £ 0)

W

f et
1ETAF| < MV £ 5 5T @)
Equality holds if and only if X is an eigenvector of A corresponding to the largest
eigenvalue b and v = oX for somew € R.

Theorem 2.3. Let G be a simple connected weighted graph. Then

< max | Ay me + ) hlwg) ¢ @)

i k=i il

where wy; is the positive deﬁmm' weight matrix of order p of the edge i j. Moreover
equality holds in (3) if and only if

(1) & is a bipartite semirvegular graph;
(1) wy; have a common eigenve cior corresponding tothe large st eigenvalue &) (w; ;)

foralli, j.
Proof. Let M(G) be the block diagonal matix diag (y17p 0. y20p p. ..o ¥ulp p)
where ys =3 Ml i =12, ..., 0
Let X = {.rl .?:I ..... }IT be an eigenvector comesponding to the largest eigen-

value Ay of M{f:}l_ L{G}M{ﬂ}l We assume that &7 1% the vector component of X
such that .rT.r, MEX j eV {.rT.rJ.} Since X is NONZAETD, S0 18 3.
The (i, fith block of M’{G}“'L{G}M{G}I 1%
w; ifi = j,
——;-:—1::,}- if i ~ j,

1] otherwise.
We have
IM(G) ' L{G)M(G)}X = 1, X. 4)
From the ith equation of (4), we have
w;i
hiE = wiF — ” Uz (5)
d~i
Le.,
) yiwii _
U‘-pr.p —wyhE = — Z ik £,

Pl
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Le.,
=T s Vit . <
Xl p—widyy =— Z X wijk;
L
< YijeT o, =
< Y ZE wykl )
Jrii f]
¥i sl -y
= Z _J)L|Uﬂj_l|'::| .r‘-T.r;vu'.rJ,T-.rj, by (2) (1)
il
Jrji
<i5H Yy Yy ), as % > x1xj, forall j.
_.'Ii_.l""'l' il
(8)
From (8), we get
_T aa
X (hfp p —wilx; i
il £E. 0% o 3 By ), asil >0
XA gt
Le.,
_T -
I dp p— wid;
— h(wy) € — £y —Alimu} by (1) )
I X
Juj~i
e,
1
Mg h(w)+ — Y pihi(wg)
=
1
< Alwn) + =i max {y;} 3 hwy) (10)
14

i

=Juu[w;}+ﬂ;ﬂ_ E Af{wied g, asy = E Al

ke Ji~d

= max 4 A Zuqk leiwﬁ}'

i~] ke ke~

This completes the proof of (3). Now suppose that equality in (3) holds. Then all
megqualities in the above argument must be equalities.
From equality in (8), we gel
ok =i %, forallk, k~i.
From this we get T = 0 forall k, k ~ i as & # 0.
From equality in (7) and using Lemma 2.2, we get thal T; s an eigenvector of wy;
for the largest eigenvalue &) (wy ;) and for any §, j ~ i, X; = b3 for some by;.
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For vertex § such that § ~ i,
o T
XX = XX,
LE.,

(b — D5 =0, as¥; =byk,

bij =41, asiz =0.

Since wy; is apositive definite matrix and 5 is an eigenvector of w;; for the largest
eigenvalue &) (w;; ), we have

% = 0. (11)

From equality in (6), we have

¥i = = ¥i - - - -
Z 4'| bij| & w5 | = — Z 4' bij(EFw %), by & = by,
opert ¢ fomi
Le.,
> b+ DX (& w; 5) =0, by (11) and |b;;| = 1 (12)
i Ap Wipkp == DY il =1 &
e ¥i
Juii
Since byj; = £1, therefore from (12), we get bij = —1, for all j, j ~i. Hence
% =—&, forall j, j~i.

From equality in (9) and using Lemma 2.1, we get that &7 15 an eigenvector of w;
corresponding to the largest eigenvalue A (w; ).
From equality in (10), we get

Z hGwje) = Z Aplwgg),

Kk kik~x
e,y = ¥, forall j, ssuchthat j ~ 1, s ~ i

From the jthequation of (4) and the just established relation x; = —x; for j ~ 1,
= i Wik _
_)"l'rl' — _u;-ll._r‘. A8 Z H'il_rk
ki~ Vi
ie.,

- - wig _
AE = wik + Z n-"li.rk
kb~ Yi
Applying the same technigue on the above equation as in Eq. (5), we get that
p=x,forall k, k~jF, j~0i; wye=w. torallk, k~j, j~i;
and I; 1% 4 common eigenveclor of w; and w ; corresponding to the largest cigen-
values Ay (w;dand &) (w ), forall k &k~ j. j ~ 1.



158 K.Ch. Das, BB Bapar 7 Linear Al gebra and its Applications 409 (205 ) 153165
For every vertex k., where b~ fand § ~ i, we have, using 1, = 3,

s = Wy _
A X = wpx — Z .
I~k Y

and we proceed as before wo obtain

n=-—-x;, ftorl~k, wherek ~ j, j~I.

Denote by Ny the neighborhood of the vertex £,
By employing similar procedures, we obtain the following:

7 =—x;, forall j e N;,

¢ =1;, forallk e N;, where j € N;,
I =—x;., forall! € Ny, wherek € Nj, j e N;.

amd so0 on.

Letl ={k: 7 =Xtand W = {k: &y = —x;}. So, N; € U and N; € W. Fur-
ther, for any verlex r € Ny, (where Ny 15 the neighbor of neighbor set of vertex
i), there exists a vertex p € Nj such that i ~ p & r ~ p. Therefore ¥, = —x; and
I =X .Henee Ny, © U Byasimilar argument, wecanshow that ¥y © W, Conlin-
uing the procedure, itiseasy o see, since G is connected, that V = U/ U W and that the
subgraphs induced by L7 and W respectively are emply graphs. Hence 7 is bipartite.
Moreover, 3y is constant over each partite set and ¥ is a common eigenvector of wy;
and wy; corresponding to the largest cigenvalues A (uwy ) and Ay (w;;) foralli, j.

Therefore

) . Yiwij _
X =wx+ Z i Xi
e B

- i o S . .
= wjXxj+ —"Iu:,-.r;, as py 15 constant over each partite set
Vi

= (1 4 ﬂ) w; Xj.
Vi

Fori ke lf,
(1 + H) wixi = (1 + ﬂ) Wik,
¥i ¥i

wix; = wngXj,

ERET

(hp(wy —Ap(we)x; =0, as 3 18 an cigenvector of

w; comresponding o the largest eigenvalue Ay (wy ) for all £
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Smee 3 £ {_]', therefore A {w;) is constant for all § € 7. Similarly we can show
that Ay{w;) is constant forall j € W.

Hence 7 15 a bipartite semiregular graph.

Conversely, suppose that conditions (i1)—(11) of the Theorem hold for the graph .
We must prove that

Al =max § &y Zm,; -+ ZM{:L_‘.;}

kel ] kb~ ]
Let ¥ be a common eigenvector of w;; corresponding o the largest eigenvalue
Ap{wg;) foralli, j. Then

uyx = E T
fai
E Aplwghx.
Ju~i
Thus ZMH Aplwg;) is an eigenvalue of w;. So,

D Aalwy) < k). (13)
i
Sinee wy;'s are positive definile matnees, we have

Aw) € Y ). (14)
i
From (13) and ( 14), we get
hlw) = Y ki) (15)
e
Thus each w; also has eigenvector ¥ comesponding to the largest eigenvalue & (g ).
Let LF, W be the partite sets of G, Also, lketd (w;) = afori e Uand b {wi) =
fori e W.
The following equation can be casily venfied:

|'" ury . 0 _E””R-' . —’gwm \‘|
l( I \,l 0 . 1] _E‘”li—l . —’%m;,, l.-’ x \l
% 0 . Wy —E Wikl - —-E Wiy i
X X
—-I - E Weel| - —E;u;; 1k 1::,:}_ Lo E —_.?
’ —SWEerl - —EWran .
\—% Baoe o B I
l\ —J‘%w,” . —J%w"g 0 . Wy }J

Thus e + # 15 an eigenvalue of M{G}l“' LIGIM{G)L So,a 4+ £ 4
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We have
P ( 5 w;'x) + 3 hwge) = Aw) + Awy), by (15)
ki Ed~j
=a+fg fori~j. (16)

Since

= max § A Z mm + Z Ayl e)

e dei Kk j

—a+f, by(l6).

Thus b =+ f = max;.; |)-.| (3 g e win) + Ek:k«_,u')'-l (wih.

Hence the theorem is proved. O

3. Some related results

In this section we obtain some consequences of Theorem 2.3 and prove certain
related results.

Corollary 3.1. Let G bea simple connected weighted graph and let wij be the positive
definite weight matrix of the edge i . Then

hi = max D hwi) + ) Alwi)

Klei bk~

i and only if
(1) 7 is a bipartite semivegular graph;
(i1) wy; have @ common eigenve cior corresponding tothe largest eigenvalue b (w; ;)

Joralli, j.

Prool. We have

)Llc:m.nl (Z wig | + 3 hwi) b by (3)

d ki Kk j

<max{ Y Mwi)+ Y Mi(wp) . by (14).

Ll P Kk f
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First we suppose that the equality holds. Then we can see that the two inegualities
in the above argument must be equalities. In particular, we have

Ay e A Z lm) + Z Ay (wg)

ke d kb~ §
Using Theorem 2.3, we see that (i-(i) of the Corollary hold.
Conversely, suppose that (1)—(u) all hold for the graph . Using Theorem 2.3, we
gel
A =max § A Z m,; + Z Ap{we)
i~ i kekj

Since wy; have a common eigenvector corresponding 1o the largest eigenvalue
Api{wy;) forall i, j.then

A (Z wu) = Z Ay
ke Kk
Hence we get the required result, [
Corollary 3.2, Let G be a simple connected weighted graph and let each weight w;
be a positive number. Then
A = max{m, +w;}l,
with eguality if and only if G isa bipartite regular graph or G isa bipartite semiregular
graph.
Proof. When w;;'s are positive numbers in place of matrices,
A{wij) =wy;  and  Alwg) = wy.
Hence we get the required result. [

The classical ineguality of [ 1] 15 an immediate consequence of the preceding result
and 15 stated next.

Corollary 3.3 [1]. Let G be a simple connected unweighted graph and let d; be the
degree of vertex i. Then

A= m.ix{d‘ +d;},

with eguality if and only if G isa bipartite regular graph or G isa bipartite semiregular
graph.

Proof. For undirected graph, w;; = 1 for i ~ j. Therefore w; = d;. Using Corollary
3.2 we get the required result. O
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Lemma 34, Let G bea (b (w;), A {w V-semiregular bipartite graph of ordern with
Jirst | vertices of the same largest eigenvalue A (w;) and the remaining m vertices af
the same largest eigenvalue X (w;). Also let X be a common eigenvecior af w;; cor-
responding to the largest eigenvalue hy (wij) foralli, j; where wi = 3 ,...; wig, for
all i. Then & (w;) + L (w;) is the largest eigenvalue of L((7) and the corresponding
cigenvector is

T
{;_qu.-j]ﬂ. Alw)ET, A (R, =Ry ()R, =R (w)E L _1.¢u.-j]IcT} :

] .';
Proof. Since ¥ is a common cigenvector of wj; comesponding to the largest eigen-
value & (w;;) for all i, j: from eadier calculations (15) we have
Aplwi )= E Ap(wgj),  forall i
e~

Also we have wy hascigenvector ¥ comesponding to the largest eigenvalae A (w; ),
foralli.

From (3), we get

Ay = Tfr{ll{u:y} + Aplwg )b = A (wy) + A (). {17
We can see easily that & = Ay (wy ) + A (w; ) satisfies
LiG)X = AX,
where
X= {}_.Lu.-j]fT. A xT, A (w R, A G ET, =R (w ET, L =Rt }T.
i m
Thus
Ay = hplwy) 4+ Alwrg). (18)

From (17} and (18), we get the required result. [

In the remainder of the paper we assume that the vertices are ordered such that
VI 2 ¥ 2 2 ¥y, where p; is defined, as before, by

¥i = Z )LI{U?J'_,I'}-

Ji i

Theorem 3.5. Let G be a simple connected weighted graph and let 3 =
2 toi 21 (wig). Then &y = y1 + 2 (31 2 2) if and only if

(1) & is a star graph whose edge weights all have the same largest eigenvalue or
(7 is a bipartite regular graph;

(i1} wy; have a common eigenve clor corresponding tothe largest eigenvalue b (w;;)
Joralli, j.
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Proof. We have

Als;muxl (; wig | + D Mlwp) p, by ()

e Kk j

= Mmax E l|{1r:m}+§ Aplwidp o by (14)
I=j : 3
k=i kg

€Y MW+ ) Mww=n+rn snzpz-zn
k1 k2

First we suppose that Ly =y 4+ 32 holds. Then we can see that all inequalities in
the above argument must be equalities. In particular, we have

p=maxy D di(wi)+ Y hiw)

kke~i kil

Using Corollary 3.1, we get

(i) 7 is 4 bipartite semiregular graph;
(1) wyj have acommon eigenvee or comesponding to the largest eigenvaloe &) (w;;)
foralli, j.

From earlier calculations (15), we get
¥i = (uy), floralli.

We can assume that V=UUW. where U ={i - ys=pland W=1{i: » =
yrb Two cases arise (1) 1~ 2, (i) 1=2,

Case (i) 1 ~ 2.

Two subeases anse (a) [UF] = 2, (0 [U] = 1.
Subcase {a) |U] = 2.

In this subcase theme exists vertex & (= 1) € U such that y = p1. Since . £ 2.
therefore 3y = p2. Thus 7 15 a bipartite regalar graph.
Subease (b)) |U] = 1.

In this subcase & 1% a star graph whose edge weights all have the same largest
eigenvialue.
Case (i) 1-22,

In this case both vertices 1 and 2 are in the same partite set. S0, 3y = 2. Henee
{7 15 a bipartite regular graph.

Conversely, suppose that the two conditions hold for the graph . We have to show
that &) = ¥1 + 2.
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Simce wy; have a common eigenvector corresponding 1o the largest eigenvalue
A i) forall i, j,then we have

Vi = A Z u:;_,-) = hplwih. (193

ki
Using Lemma 3.4 we get that
Ay =hlwg) 4+ X ()
=yi+y;, i~ by(l9). (20)

Also, we have py = A (wy) is constant for each partite set. For star graph whose
edge weights all have the same largest eigenvalue, we get from (20),

AMi=p+r
For bipartite regular graph, y. i = 1,2,..., n are equal. From (200, we get
Ai=n+r

Hence the theorem is proved. [

Corollary 3.6. Let G bea simple connected weighted graph where each vertex weight
wy iy @ positive number and suppose wy = --- 2wy Then k) = w 4 w2 if and only
if G ix a star graph with equal edge weights or G is a bipartite regular graph.
Proof. When w;;"s are positive numbers in place of matrices,
Ay(wy) = wy;.
Since wy = EJ-:J-M‘- wy; and using the above result in Theorem 3.5, we get the

required result. [

Corollary 3.7 [3]. Let G be a simple connected unweighted graph and ler d; be the
degree of vertex | and supposed) 2 - -- 2 dy. Then by = dy + d2 if and only if G is
a star graph or G is a bipartite regular graph.

Proofl. The proof follows directly from Corollary 3.6, [
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