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Abstract

Given a random sample from a continuous vanable, it is observed that the copula linking
any pair of order statistics is independent of the parent distribution. To compare the degree of
association between two such pairs of ordered random wvariables. a notion of relative
monotone regression dependence (or stochastic increasingness) is considered. Using this
concept, it is proved that for i<, the dependence of the jth order statistic on the ith order
statistic decreases as i and j draw apart. This extends earlier results of Tukey (Ann. Math.
Statist. 29 (1958) 388) and Kim and David (J. Statist. Plann. Inference 24 (1940) 363). The
effect of the sample size on this type of dependence is also investipated. and an explicit
expression is given for the population value of Kendall’s coefficient of concordance between
two arbitrary order statistics of s random sample.

Kevwards: Concordance ordering: Dispersive ordering; Exponential distribution; Kendall's tau; Mono-
tone regression dependence; Spearman's rho: Stochastic increasingness

1. Introduction

Let Xy,=-—-<X,, be the order statistics associated with the first n=2
observations in a sequence X, X5, ..., of continuous random variables. Motivated
in part by applications in reliability theory, various authors have investigated the
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nature of the dependence that may exist between X;, and X, for 1 <i<j<n under
different distributional scenarios. When the X; are mumally independent and
identically distributed, it has been known since the work of Bickel [2] that

mvl:XJ':Jh *’Yj:arj = {}1

but much stronger statements can be made to qualify the association between X,
and X, even when the X, are from different distributions. For details, refer to the
paper by Boland et al. [4] and references therein.

In contrast, very little seems to be known about the relative degree of dependence
that may exist between two arbitrary pairs of order statistics, say (X, &;,) and
(Xiw. Xpa). The only contributions appear to be those of Tukey [21] and Kim and
David [12], both of which pertain to the case where the X, are mutually independent
and identically distributed. When the parent distribution has an increasing hazard
rate and a decreasing reverse hazard rate, Tukey [21] showed that

CD""{XJ":Jh XJ":Jr:lﬂm‘l'{Xjur-_ Xj-..lr:l |:].I|
must hold when
either i =i and j<f, orj=/ and i'<i (2

As for Kim and David [12], they proved that if both the hazard and the reverse
hazard rates of the X, are increasing, then inequality (1) remains valid when i = ¢
and j=j', but goes the other way when f =7 and i'<i.

While these resulis are certainly not contradictory, it may be puzzling at first that
different conditions on the common distribution of the X, could cause the
covariance between Xj, and X, to increase or to decrease as i and § pull apart. The
key to the resolution, of course, is in the fact that the traditional notion of covariance
is not an appropriate measure of dependence when the pairs being compared do not
have the same marginal distributions, as is clearly the case here.

The purpose of this paper is to shed additonal light into the dependence structure
of pairs of order statistics by showing that for any integers l=i<j<n and
l=i'<j =n" such that

=i, j—isf-i, n—isn =i, n-j<sn-j, (3

the pair (X}, X}, ) is more dependent than the pair (X, X}, ) according to the
bivariate monotone regression dependence (or stochastically increasing) ordering.
This result, which is independent of the choice of the parent distribution for the X,
implies in particular that under condition (3), and hence under condition (2) when
n =n', one has

KI:XJ"':JH Xj’ur:l = h—{ XJ':an Xj-..lr:I-.

where & 8, T') stands for any measure of concordance between § and T in the sense
of Scarsini [16], e.g., Spearman’s rho, Kendall’s tau, or Gini’s coefficient of
association. This conclusion is in accordance with the intuition that as order
statistics Xy, and X, draw apart, they tend to be less dependent.
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The definition of the monotone regression dependence ordering is recalled in
Section 2, where a precise statement of the main result appears as Proposition 2.
Auxiliary technical material needed to carry out its proof is collected in Section 3,
including a result of possibly independent interest concerning the dispersive
properiies of generalized spacings from an exponential sample. The argument
leading to Proposition 2 appears in Section 4, where some special cases are also
discussed. Section 5 contains a closed-form formula for t(X.,. X)) which extends
that just reported by Schmitz [17] in the special case i = 1 and j = n. Some directions
for future work are outlined in Section 6.

2. Preliminaries

For i= 1.2, let (8.7 be a pair of continuous random variables with joint
cumulative distribution function H; and marginals #; and &;. As summarized in the
books by Joe [10], Nelsen [15] or Drouet-Mari and Kotz [8], 30 years of research into
concepts and measures of association have shown that the proper way of comparing
the relative degree of dependence between (5, 7)) and (S5, T3 ) is in terms of their
associated copulas, implicitly defined in a unique fashion by the relation

Hi(s, 1) = G{F(s), Gi(1)},

valid for all s, re B, Thus (85, T5) is said to be more concordant (or more positive
quadrant dependent) than (8, T1), denoted by (8. 1) <pop(S:, T3 ), if and only if,
for all w,ve (0, 1),

Ciu, )= Calu, ). (4]

As shown, e.g., by Tchen [20], condition (4) implies that
k(S1, T )<K(8, Ta), (5)
where k(8. T") represents Spearman’s rho, Kendall's tau, Gini's coefficient, or indeed
any other copula-based measure of concordance satisfying the axioms of Scarsini

[16]. In the special case where F| = F> and &) = G, it also follows from (4) that the
pairs (51, 7)) and (85>, T2) are ordered by Pearson’s correlation coefficient, namely

corr( 8y, 7)< corr{ 852, Th).

In his survey, Joe [10] mentions a number of bivariate stochastic ordering relations
= that strengthen <pop and hence imply (5) as well. One such notion that will be
pursued here is that of greater monotone regression dependence, originally
considered by Yanagimoto and Okamoto [22] and later extended and further
investigated by Schriever [18], Capérad and Genest [5], Block et al. [3], as well as
Fang and Joe [9]. Although this ordering, as all other dependence orderings, involves
a comparison of the underlying copulas, an equivalent formulation of it will be given
in Definition | below in terms of the original distributions of (&), 7)) and (53, T5).
The latter will prove more convenient when time comes to compare pairs of order
statistics, in Section 4.
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First, recall that according to Lehmann [13], a variable T is said to be
stochastically increasing in another variable 8 if and only if, for all 5,4, te R,

s=d = P(T=t8S=s"<P(T<t|S =4). (6]

If H denotes the joint distribution of the pair (S, T'), write H, for the distribution
function of the conditional distribution of T given 8§ = 5. The above implication may
then be expressed in the alternate form

.‘l'ﬂ.‘lj = Hl"'ll ¢ HI:JI{HII =,

where we(0,1). For convenience, it will be assumed henceforth that Hy, is
continuous and strictly increasing for every se[. but obvious adaptations are
possible when H,) has plateaus or jumps, and when the domain of S is restricted to
an interval.

Note that property (6) is not symmetricin 8 and T, but that in case these variables
are independent, H - lei'{u]l = u for all ue(0,1) and for all 5,4 e [R. Observe also

thatif ¢, = F~ '(p) denotes the pth quantile of the marginal distribution of S, then
{6) is equivalent to the condition

O<psg<l=H;, ng'l{ujléf-,_u

holding true for all ue (0, 1).

This leads to the following definition of what it means for a bivariate distribution
to be more stochastically increasing (or monotone regression dependent) than
another one.

Definition 1. 75 is said to be more stochastically increasing in 8> than T is in &),
denoted by (T | 8))<s(T2| S2) or Hy <gH., il and only if

O<psq<l= Hyg) o Hyy (o)< Hip o Hig () (7)
for all we(0,1), where for i = 1,2, Hyy denotes the conditional distribution of T}
given S;=3, and ¢, = F7'(p) stands for the pth quantile of the marginal
distribution of §;.

Obviously, (7) tmplies that T3 is stochastically increasing in 5 if §) and T are
independent. It also implies that if T is stochastically increasing in 8, then so is T
in & ; and conversely, if 74 is stochastically decreasing in 55, then so is T in §).

The bivariate normal family provides a simple illusiration of a system of
distributions  that  is  ordered by =<g: in this case, one has
N, D)= g N (p', 2 == ', where ko is either one of Pearson’s, Spearman’s or
Kendall’s coefficient. Mumerous additional examples of bivariate distributions that
are ordered in this fashion are given by Yanagimoto and Okamoto [22], Schriever
[18]. Capérad and Genest [5,6], Fang and Joe [9], as well as Joe [10, Chapters 2 and
5]. The above definition coincides with theirs when the pairs (5], 7)) and (52, T)
have the same margns, i.e, when /) =F and &) = (2. When the margins are
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different, Definition 1 is then equivalent to that given by these authors, as applied to
the underlying copulas € and Cs.
The main result to be proved in this paper may now be stated as follows.

Proposition 2. Lev X\, = =X, and X, =-- =X, be the order statistics
associated with two independent random samples of sizes n and 0" from the same

continuowy distrition Under conditions (3), one has
{‘Xf:ar’ | Xf:.lr' :I =8l {Xjur | XJ':Jr:I .

3. Auxiliary material

The proof of Proposition 2 to be given in Section 4 relies heavily on the notion of
dispersive ordering between two random variables X and Y, and properties thereof.
For completeness, the definition of this concept is recalled below.

Definition 3. A random variable X with distribution function £ s said to be less
dispersed than another variable ¥ with distribution ¢, written as X <psp Y or
F<pgp G, if and only if

F'(B) - Fl(9<6 (A -G ()

for all 0 <a < fi< 1. Equivalently, one must have F{F~'(u) — ¢} < G{G~'(u) — ¢} for
every c=0 and we(0,1).

For general information about the dispersive ordering and its properties, refer to
Section 2.B of Shaked and Shanthikumar [19]. Of immediate relevance here is the
following observation, which derives from a connection originally made by Lewis
and Thompson [14] between dispersive random variables and strongly unimodal
distributions (see, e.g., [11]).

Lemma 4. Let X\, Xo, ¥y, Yo be mutually independent random varviables that ave
strongly unimodal, i.e., whose densities are log-concave. Then

Xi<psp X and Y <pisp Ya= X+ Vi<pisp X2+ Voo

The proof of Proposition 2 will also make use of the following result concerning
the dispersive ordering between generalized spacings associated with two random
samples of possibly different sample sizes from an exponential distribution. This
result may be of independent interest.

Lemma 5. Let X = - = X, be the order statistics associated with a random sample
of size n from an exponentiol disiribution, and for 0= i<j=n let

D,E,"'I = Xj:.ll T XJ"J‘I
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stand for the (i fith genevalized spacing, with Xy, =00 Then for j—i=j — 1 and
n'—j=n—j, one has D}.:.r] = misp Dj[;r::'

Proof. Let X, ..., X, and X, ..., X, be two independent random samples from an

exponential distribution with hazard rate i, Then DJ[-;-'] may bhe expressed as a
convoelution of f— i consecutive spacings, namely

-t
DE,:"'I — '::Xjur =5 Xj— |:Jr:| + -+ ':XJ'+|Jr s XJ':Jr:l = Z -E-.Ir—j-l-\.‘n
k=1

where the E; are mutually independent exponential random variables, the hazard
rate of E, being /4. Similarly,

J-\.I_J-\.l
[y o
D’ =%" Eii
k=l

for some mutually independent exponential random variables £, with hazard rate
A
Now it iseasy tosee that for k=1, ..., j—iand #' — j'<n —§, one has
E jre=<pise Ej_piye
Since the class of distributions with log-concave densities is closed under

convolutions of independent random variables (see [7, p. 17]), it thus follows from
repeated applications of Lemma 4 that

J—=i g

“ <f
E -E'.Ir—j+.=: = DISP Z E-,f_Jv+,¢c .
k=l k=1

A further application of Lemma 4 implies that

j—i j—i i
- - -

E 'E'.u"—j"-l-\.fc = DISP E 'E'.u"—j"-l-ufc gx E 'E'.lr'—j"+.':: 1

k=| k=1 &

=f—i+1

since the two summands on the right-hand side are sums of mutually independent
exponential random variables, and hence are independent and have log-concave
densities. This concdudes the proof. O

MNote in passing that if i = § =0 in Lemma 35, then one has
j=j and o —j'sn—j= Xpp<pisp Xpor, (&)

a fact that was already established by Khaledi and Kochar [11].
Finally, the following lemma formalizes the observation that the copula associated
with a pair of order statistics does not depend on the parent distribution.

Lemma 6. Let Xy < - <X be the order statistics assoctated with a random sample
af size n from a continuows distribution ¥, The pairs (X, Xpn) and (Upy, Upy) =
(F(Xew ), F X)) then share the same copula, whatever the choices of 1si<j<n.
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Proof. Let F; and &) denote the marginal distributions of X, and Uy, respectively.
Then F; = G; o F, since the probability integral transformation U = F(X) is order
preserving, and thus converis the ith order statistic of F into the ith order statistic of
a uniform random variable on (0, 1), Thus

P{Xo <F7 (u), X < F7 ' (0)} = P{UL <G (), U < G (0)}

for all w,ve (0, 1), which establishes the coincidence of the copulas. O

4. Proof of Proposition 2

In view of Lemma 6, it may be assumed without loss of generality that the parent
distribution of the X; is exponential. Now under this assumption, the consecutive
spacings are mutually independent. Therefore,

Hll.'.'l{.v:l = P{Xj'—" =y | X = -x:l = P{ X_.l"-" —Xp=y—x | Xin = -r:l
=P(Xjy — Xin <y — x) = Linly — x) (say),
namely the distribution function of DJ[.:.'] aty—x.

Let &,, and ¢, denote the pth and gth quantiles of Xy, respectively. Then for
D=p=g=1l,

Hys, ) Hz_|;ll,|':?e‘:' = Ly{L}} () — (&3 — E2p)}s (9)
for arbitrary ve (0, 1). Similarly, for the order statistics X,y and X, one has
Hye 1o Hﬁg,ﬂ_ﬂfe‘:‘ = Lrﬁw{LL«Lf'{U:‘ — k1= G lhs

for all ve(0,1), where ¢, and ¢, respectively, denote the pth and gth quantiles of
the distribution of X...

In order to prove Proposition 2, therefore, one needs only show that under
conditions (3), one has

{}{Fﬂ (j'{]. = H3|~;_1.1| i HE—I{;I{U:I& H||~:|.-|| L Hﬁ-_‘!mj{uj‘

Ly L (0) — (&2 — E2) Y€ Lupur{ Ligon (£) — (E14 — E1p)} (10)
for all ve (0, 1).
Now under the assumed condition that <7 and n —i<n’ — ¥ it follows from (8)
that Xj <pisp Xiw, s0 that 0=, — &, =85, — &5, for O<p=g<]. Thus for fixed
ve (0, 17, it follows that

LJ;.'n{L,-}.,I (v) — (&g — Ep) } €Ly an,-}.rl (v} — (€14 —E1p) }- (11)
At the same time, however, Lemma 5 implies that DE’J{DlsE- DJ[:;]._ 50 that

Ly{ L5l (v) — e} < Lpwe {L7} ¢ () — ¢} (12)
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for every ¢20 and hence in particular when ¢ = £, — £, The conjunction of (11)
and (12) yields (10}, so the proof is complete. [

The following set of immediate consequences of Proposition 2 is of special
interest.

Corollary 7. Let X\, = =X, be the order statistics associated with a random
sample Xy, .., X, from some continuous distribion. Then

{H} {Xﬁc:u | XJ'Jr:I_{El{X_f'Jl | XJ':Jr:IJﬁ”. all 1"‘{"- E.{j {kﬂﬂ:
{b] I:Xjarl XJ':Jr:I_{Sl{Xj+|:lr+| | XJ'+|:J|+| :I.-ﬁ']r all 1= E{j%ﬂ:
©) (Xaproer | Xiwer) <st{Xigw | Xia) for every integer nz=2.

It is clear from the above result that for fixed n, the association between the
components of a pair (X, X)) of order statistics, as measured by the =g
ordering, decreases as ¢ and j pet further apart. This finding generalizes those of
Tukey [21] and Kim and David [12] It may also be seen from the above that the
dependence of the largest order statistic on the smallest one decreases as sample size
increases.

It is worth emphasizing here that contrary to Tukey [21] and Kim and David [12],
Proposition 2 and Corollary 7 do not rely on any specific assumption about the
parent distribution of the order statistics. This is in contrast with the resulis of
Avérous and Dortet-Bernadet [1] concerning the ordering of the largest order
statistic on the smallest one in the non-copula-based formulation of the more
stochastically increasing ordering that they use.

The following corollary makes it clear that under the conditions given in
Proposition 2, any measure of concordance satisfying the axioms of Scarsini [16] will
agree with the ordering <{g;. whereas covariance (which is not a margin-free measure
of association) may not.

Corollary 8. fetr X, ==X, md X=Xy be the order statistics
associated with two independent randont samples of sizes n and 0" from the same
continwows disiribtion. Under conditions (3), one hay

K':XJ":Jh X_,l":.lf:l = h—{ -Xf:m Xjur:'.

where & may stand for Spearman’s rho, Kendalls tau, Gind's coefficient, or any other
mreasure of concordance in the sense of Scarsini [16].

5. Kendall's tau for a pair of order statistics

In the course of checking the validity of Corollary 7 in specific cases, it came to the
authors” attention that a simple closed-form formula could be found for the
population value of Kendall's t coefficient of concordance between any two order
statistics associated with a random sample from a continuous distribution. This
result, which is given next, may be viewed as an extension of a contemporaneous
finding of Schmitz [17], who only considered the case i = 1, j =n.
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Proposition 9. Let X\, ==X, be the order statistics associated with a
random sample of size n from some continuous distribwtion. Then for 1 <i<j<n, the
population value of Kendalls coefficient of concordance between Xy, and Xy, s
given by

. 2n—1)fn—2Nn—i-1
Wom X =1 =3 )i

EEOC )

Proof. Let ¥y, ..., ¥, be an independent random sample from the same distribution
as the .-n and let ¥y, = --- = ¥, be the corresponding order statistics. By definition,
T X, Xpu) = 1 —dp, where

p=PX, <Y, X,=Y,).

[ g

To compute this probability, it suffices to determine the proportion of the (2n)!
equally likely arrangements of the X; and the ¥, for which the event

XJ':Jr = }(J'ﬂr = }ij:Jr = -""(j:ar 113:'

occurs. To this end, suppose that X, = X, and X =X, for some fixed
n,nfe{l, ..., n} with m#nd. In order that {13) holds, the remaining n— 2 of the
Xy and all the ¥, must then be positioned in such a way that, for some re {0, ...,i —
1} and se{0, ....n —j},

{i) exactly i — 1 of the Xy and exactly r of the ¥, are less than X
(i) exactly n —j of the X; and exactly s of the ¥, are greater than X,
{iii) the remaining j —§ — 1 values of the X and »n —r — 5 values of the ¥, are
located in the interval (X, X

Upon summing over the different possible values of r and s, one finds

p=nn-0("7)(02020)

N e

= =

where the factor n{n — 1) at the beginning of the formula comes because there are
that many ways of choosing X, and X, and the fraction inside the sum is obtained
through an enumeration of the possible arrangements of the other X; and Y.,
conditionally on (i-iii) and the positions of X, and X,,. A simple algebraic
manipulation then yields the final formula for tau. O
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The above formula for Kendall’s tau simplifies as follows in a few special cases:

{a) for 1<i<j=n,
An—1)(n=2\ g (n\ [ 21—2
‘{‘“*"'X""I'__Hﬁ(a—l);(r)/(rﬂ—1)'

(b) for l<i<j=i+ 1=n,

i e P (’:)/(;’:)

{c) for i =1 and j = n, ©{ X1y, Xuu) = 1/(2n — 1), as reported by Schmitz [17].

For illustration purposes, Tables 1 and 2 give the values of t(X),. X.,) for all
choices of 1<i<j=<n and for n= 6 and 7, respectively. The varions monotonicity
properties stated in Proposition 2 and its corollaries can be readily verified from
these tables. In addition, the tables show an obvious diagonal symmetry property
that is not immediately clear from Proposition 9. This is a simple consequence of the
following result.

Proposition 10. Let Xy, < - < X, be the ovder statistics associated with a random
sample of size n from some continuows diviribution. Then for arbitrary i je{1, ... n},
the pairs (—Xew, —Xp) and (Xoy_ip 100, Yoo i) have the same copula. Consequently,
one has

KI:XJ"JT-. X‘J".Jrjl o KI:*’Y:Ir—J'+|J'r~XJr—‘I+|:Jr:|1 ':,14:|

where 1 iy any measure of concordance in the sense of Scarsini [16].

Proof. Since by Lemma 6 the copula of a pair of order statistics has the distribution-
free property, it can be assumed without loss of generality that the parent
distribution is uniform on the interval (0, 1). Under this assumption, it can be easily
verified that the pairs (X e Xaopr1o) and (1 — X 1 — X)) have the same joint

Table 1
The values of 303 = 1 X, X

i i

2 3 4 5 i
L 1365 a1l il 455 73
2 1638 L1118 767 455
3 1703 I8 il
4 638 a1n
5 1305
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Table 2
The values of 3003 = r(X, X7)
i i

2 3 4 5 f 7
1 1386 945 R 525 178 231
2 LHRD 11940 RT3 H23 78
3 1778 1253 875 525
4 1778 1190 0
5 1680 95
f 1386

distribution. Therefore, (—X,,. — X, ) and (X,_; 1., X,j41.,) have the same copula,

and (14) holds by Axiom 5 of Scarsini (see [15, p. 136]). O

It may also be seen from Tables 1 and 2 that ©{ X, X;.) increases with sample size
n for fixed | =i<j=n, a fact that can be verified readily in the special cases discussed
above, as well as when j =i+ 1. This is possibly true in general. Furthermore, it is
easy to check from the special case (b) mentioned above that t( X, Xy, ) increases
in i for 1<i<[(n—1)/2], where [x] denotes the smallest integer y=x. More
generally, it would appear (but remains to be shown) that

T{ "YJ':JH XJ'-I-Jc:Jr:I = T{XJ"F' s XJ'+J¢ +1 :.lr:I

forall l<i<|[(n—k)/2].

In his paper, Schmitz [17] gives an explicit formula for the value of Spearman’s rho
between the smallest and largest order statistics in a random sample of arbitrary size.
Unfortunately, it does not seem possible to generalize this expression to any two
order statistics, although the coefficient can be computed easily in specific cases using
a symbolic calculator such as mapLE. Still, it may be observed (as Schmitz does in his
special case) that

P{XJ"Jr-. Xj'..lr:l ;T{Xﬂr- Xj'..lr:l-.

since Capérad and Genest [6] showed that these two measures of dependence are so
ordered whenever the pair of variables under consideration is in positive likelihood
ratio dependence. That such is the case for a pair ( Xg,. X ) of order statistics from a
random sample is a well known fact (see, e.g., [4, p. 78]).

6. Conclusion

This paper has continued the work of Tukey [21] and Kim and David [12] by
comparing the degree of association present in two pairs of order statistics from the
same continuous distribution. Conditions were found under which the copulas of
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two such pairs are ordered in the stochastically increasing, or monotone regression
dependence, ordering of Yanagimoto and Okamoto [22].

There are several ways in which this investigation might be continued. One
possibility would be to seek more restrictive conditions under which stochastc
increasingness could be replaced by sironger dependence orderings. Other options
would be to consider the case of discrete or non-identically distributed observations.
For example, partial results are already available from the authors for an ordering of
Capérad and Genest [5] that strengthens <(g;, and for heterogenous exponential
parent distributions. Because of the possibility of ties, however, extensions to the
case of discrete parent distributions will probably prove most challenging.

Acknowledgments

This research benefited from the financial support of the Natural Sciences and
Engineering Research Council of Canada and from the Fonds québécois de la
recherche sur la nature et les technologies. The work was carried out in part while the
third author made extended visits to Université Laval in 2002-2003.

References

[1] 1. Averous, J-L. Dortet-Bernadet, LTD and BT dependence orderings, Canad. J. Statist. 28 (20007
151-157.

[2] P.J. Bickel, Some contributions Lo the theory of order statistics, in: LM, LeCam, J. Meyman | Eds.),
Filth Berkeley Syvmposium on Mathematics and Statistics, Vol |, University of California Press,
Berkeley, CA, 1967, pp. 575-591.

[3] HW. Block, D Chhetry, £. Fang, A R, Sampsen, Partal orders on permutations and dependence
orderings on bivariate empirical distributions, Ann, Statst 18 (19907 [E40- 1850,

[4] P.J. Boland, M. Hellander, K. Joag-Dev, 5.C. Kochar, Bivariate dependence properties of order
statistics, 1. Multivariate Anal. 56 (199 75-89.

[5] P. Capérai, € Genest, Concepts de dépendance e ordres stochastiques pour  des  lois
bidimensionnelles, Canad. J. Staust, 18 (1990 315326,

[6] P. Capérad, C. Genest, Spearman's rhe is larger than Kendall's tau For posiuvely dependent random
variables, J. Monparametric Statist. 2 { 1993) [ 83194,

[7] S.W. Dharmad hikarn, K. Joag-Deyv, Unmodahity, Convexity and A pplications, Academic Press, San
Dheeo, CA, 1988,

18] v Drouet-Mari, 5. Kotz, Correlaton and Dependence, Imperial College Press, London, 2001.

[9] Z. Fang, H. Joe, Further developments on some dependence orderings for continueus bivariale
distributions, Ann. Inst. Stadst. Math, 44 (19927 301-517.

[10] H. Joe, Multvariate Models and Dependence Concepts, Chapman & Hall, London, 1997,

[11] B-E. Khaledi, 5.C. Kochar, On dispersive ordering between order statstics in one-sample and
two-sample problems, Stabst. Probab, Lett, 46 (20007 257-261.

[12] S H. Kim, HA. David. On the dependence structure of order statistics and concomitants of order
statistics, J. Statist. Plann. Inference 24 ( 1990) 363168,

[13] E.L. Lehmann, Some concepls of dependence, Ann. Math. Staist 37 (19%66) [137-1153.

[14] T. Lewis, 1.W. Thompson, Dispersive distributions, and the connection between dispersivity and
strong unimodality, 1 Appl. Probab, [8 (1981 7690,



I Averows et al | Jowrnal of Multivariate Analvsis 04 (2005 ) 15017} 171

[15] R.B. Melsen, An Introduction to Copulas. in: Lecture Motes in Swbstcs, Vol 139, Springer,
Mew York, 1999,

[b6] M. Scarsini, On measures of concordance, Stochastca 8 (19847 201-21 &

[17] V. Schmitz, Revealing the dependence structure between X, and X, 1 Stadst. Plann. Inference,
Lo ppeear.

[18] B.F. Schriever, An ordering for posibve dependence, Ann. Statist. 15 (1987 12081214,

[19] M. Shaked, J.G. Shanthikumar, Stochastic Orders and Their Applicatons, Academic Press, San
Diepgo, CA. 1994,

[20] A H. Tchen, Inequalities for distributions with given marginals, Ann. Probab. 8 (1980) 814827,

[21] LW, Tukey, A problem of Berkson, and minimum variance orderly estimators, Ann. Math. Statist
29 (1958) SRE-592.

[22] T. Yanagimoete, M. Okamoto, Partial orderings of permutations and monotenicity of a rank
correlation statistic, Ann. Inst. Statist. Math, 21 { 1969) 489506,



	ON THE DEPENDENCE-1.jpg
	ON THE DEPENDENCE-2.jpg
	ON THE DEPENDENCE-3.jpg
	ON THE DEPENDENCE-4.jpg
	ON THE DEPENDENCE-5.jpg
	ON THE DEPENDENCE-6.jpg
	ON THE DEPENDENCE-7.jpg
	ON THE DEPENDENCE-8.jpg
	ON THE DEPENDENCE-9.jpg
	ON THE DEPENDENCE-10.jpg
	ON THE DEPENDENCE-11.jpg
	ON THE DEPENDENCE-12.jpg
	ON THE DEPENDENCE-13.jpg

