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Abstract

Generalized order statistics (205s) unify the study of order statistics, record values, k-records, Pleifer’s
records and several other cases of ordered random variables. In this paper we consider the problem of
comparing the degree of dependence between a pair of gO8s thus extending the recent work of Avérous et
al. [2005. J. Multivariate Anal. 94, 159-171]. 1t is noticed that as in the case of ordinary order statistics,
copula of g0OSs is independent of the parent distribution. For this comparison we consider the notion of
maore regression dependence or more stochastic increasing. 1t follows that under some conditions, for i<j, the
dependence of the jth generalized order statistic on the ith generalized order statistic decreases as i and j
draw apart. We also obtain a closed-form expression for Kendall’s coefficient of concordance between a
pair of record values.

Keywords: Dispersive ordering; Pure birth process; Exponential distribution; Kendall's tau; Monotone regression
dependence; Stochastic increasingness; Record values

1. Introduction

Order statistics and record values play an important role in statistics, in general, and in
Reliability Theory and Life Testing, in particular. Their distributional and stochastic properties
have been studied extensively but separately in the hiterature. However, they can be considered as
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special cases of generalized order statistics (g08s) (cf. Kamps, 1995) which in addition cover
particular sequential order statistics, kth record values, Pfeifer’s record model, k&, record from
nonidentical distributions, and ordered random variables which arise from truncated distribu-
tions. It is well known that a sequence of record values can be viewed as a sequence of the
occurrence times of a certain nonhomogeneous Poisson process. It is also connected to the Failure
times of a minimal repair process. There i1s a close connection between Pleifer’'s records and the
occurrence times of a pure birth process (cf. Pleifer, 1982a.b).

As mentioned above, many interesting stochastic ordering results for order statistics and
spacings on the one hand, and for record values and record increments on the other hand, have
been obtained separately by many investigators without realizing that perhaps they can be unified
under the umbrella of gOSs. Kamps (1995} in the last chapter of his book studied some reliability
properties of g0O8s. Franco et al. (2002) obtained some stochastic ordering results For spacings
of g08s.

Recently Avérous et al. (2005) have studied the dependence properties of order statistics of a
random sample from a continuous distribution. To compare the degree of association between
two such pairs of ordered random wvariables, they considered a notion of relative monotone
regression dependence (or stochastic increasingness). Using this concept, they proved that for i<,
the dependence of the jth order statistic on the fth order statistic decreases as { and j draw apart. In
this paper we study dependence properties of a pair of gO8s and as a consequence these results
will be applicable to order statistics, record values, occurrence times of a pure birth process, and
all those models which are covered under gOSs.

The organization of the paper is as follows. In Section 2, we introduce gO8s and state the main
theorem which descnbes the conditions under which a pair of g0S8s is more dependent than
another pair in the sense of more 81 ordering. It is seen that the work of Avérous et al. (2005) can
be extended to the g0Ss. In Section 3 we point out a close connection that exists between the
concepts of dispersive ordering and that of more Sf ordering. The proofs of the various results
are given in this section. In the last section, we obtain a closed-form expression for the value of the
Kendall's t between a pair of record values.

2. Main results

First we give the definition of the joint distnbution of # gO8s (cf. Kamps, 1995, p. 49).

Definition 2.1. Let n e N, k=1, my,....my_ = B, M, = Z;:l mj, 1<r<n—1 be parameters
such that
w=k+n—r+ M=l forall rell,...,n—1},

and let /i1 = (my, ...,m,_;), if n=2 (M € B arbitrary, if 1 = 1).
If the random variables Ulr,n, i, k), r = 1,...,n, possess a joint density function of the form

n—1 n—
fuq L di k), .. L i ) [ul s u”} =k (H ) (H (11— }m ) i.i'”}'k_l
=l

on the cone 0<wu < --- <u, <1 of B", then they are called uniform gOSs.
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Generalized order statistics based on an arbitrary continous distnbution with distribution
function F are now defined by means of the quantile transformation

X(rnm k)= F Y (U@, nmk), r=1...,n,

and they are denoted by g08s. As discussed by Kamps (1995), for suitable choices of the
parameters these reduce to the joint distributions of order statistics from a continuous
distribution, record values, Pfeifer’s record values, and so on.
Let (S, T') be a continuous bivariate random vector with joint distribution function H. Recall
that 7 is said to be stochastically increasing in S if and only if, for all 5, 5,1 € [,
s<s = P(T<t|S=s)<PT<!S =3). (2.1)

Let Hyy denote the distribution function of the conditional distribution of T given § = 5. The
above implication may then be expressed in the alternate form

s<§ = Hiy)o Hy' () <u,

where u 2 (0,1). Note that property (2.1) is not symmetric in § and 7, but that in case these
variables are independent, H;) o H;ll[u} =u for all we (0,1) and for all 5,5 = B. Observe also
that if £, = F~'(p) denotes the pth quantile of the marginal distribution of S, then (2.1) is
equivalent to the condition

O<psg<l = Hp,)oH; (w<u

holding true for all u (0, 1).

To compare the relative degree of dependence between arbitrary pairs of g08s we use the
notion of more stochastically increasing dependence ordering as discussed by Aveérous et al. (2005).
For i= 1,2, let (5,7;) be a pair of continuous random vanables with joint cumulative
distribution function H; and marginals F; and (.

Definition 2.2. 7 is said to be more stochastically increasing in 8> than T is in 8§, denoted by
(T8 )=s1{T2]52) or Hy=gH2, if and only if

0<psg<l = Hy, o H-_Tié___l___|{u} <H )0 H;,E.ml{u}, (2.2)
for all u< (0,1), where for i = 1,2, Hy, denotes the conditional distribution of T'; given §; = s,
and ¢, = F'(p) stands for the pth quantile of the marginal distribution of §;.

Obviously, (2.2) implies that T'5 is stochastically increasing in 55 if 8§, and 7’| are independent.
It also implies that if 7', 1s stochastically increasing in &, then sois 75 in §5; and conversely, if 7',
is stochastically decreasing in 55, then sois T') in S;. As observed by Avérous et al. (2005), the
above definition of more 81 ordering depends on the joint distnbutions of the underlving random
variables only through their copulas. Also,

(T 8)=i(T52]82) = Cilu, )= Cylu,v), (2.3)
where C; is the copula of (S, T;), i = 1, 2, which in turn implies that
k(S1, T1)< (852, T2),

where x(5, T') represents Spearman’s p, Kendall's t, Gini's coefficient, or indeed any other copula-
based measure of concordance satisfying the axioms of Scarsini (1984). In the special case where
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F| = F:and (), = G4, it also follows from (2.3) that the pairs (S;, T,) and (82, T'5) are ordered by
Pearson’s correlation coefficient, namely,

corr( 8§, T' )= corr( 82, T5).
Mote that the copula of a pair of gOSs is independent of the parent distribution F. For comparing
two different g08s we use the following pre-ordering on R™.
Definition 2.3. A vector x in ™" is said to be p-larger than another vector y also in R™ (written

p y ; ; ;
xxy) if l_H=1 X = l_[':=1 M I = l,...,n, where x;)<---<x,, and Y= =),y are the
increasing arrangements of the components of x and vy, respectively.

MNow we state the main theorem of this paper whose proof is given in Section 3.

Theorem 2.1. Let (X(r,n, i k), r=1,...,.n)and (X'(r', 0, m' K'Y r=1,...,n) be the g08s based
on distributions F and G, respectively. Let y, = k+n—r+ Z}:;l_m;, andy. =k +n' —r+ z}:;lmh
Then for i<jand i <f,

(X' 0, i Ky | X i i K Y =si( X (om0, k) | X n, i, ),

provided the following conditions are satisfied:

(al) i=i and j—i=j — 7.
Py ' .
(a2) (74,1 -- - % TH o LY y¥7) for some set {€y,..., 6} C{L,...,i).

7 g s
(@3) (ks =170, ) 2 Qs - -0 ) Jor some set (k... ki) C {7 +1,..., /).

It 15 well known that for specific sets of parameters, n, k, and m;, i=1,...,n— 1, the
g08Ss reduce to the well-known ordered random variables. Now we find sufficient conditions on
the parameters of the various sub-models of g0Ss for which Theorem 2.1 holds.

(A) Ovder statistics from i.iLd random variables: For n=1, let X';, denote the ith order statistic
based on a random sample X, ..., X, from a continuous distribution with cdf F. This 1s a special
case of gOSs with my = ---=m,_ =0 and k=1. Inthiscase ), =n—r+1, r=1,...,n—1.
Letmi=m;=0,i=1,...,n—1and k =k" = 1. With these settings we see that the conditions
(a2) and (a3) are satisfied when n— i<n' —i and n —j=n" —j. That is, for i=i, j—i<j -1,
n—isw —i,andn—j=n"—j, we have

[X;';”' | X};,f}":ﬁlrxj:n | Xin)
as proved recently by Avérous et al. (2005). In the special case of one-sample problem when
n = n', we have the following results:

(a) (X gl X:':n}'{SIEXj:n | Xin) for all 1< {.f{k =1,
{h} {Xj:nl X:':n}":filfx,f+l:n+l |Xr'+l:n+l} for all 1 5 i {fé n,
[C} an+l:n+l |X l:n+l}":ﬁlf*‘¥n:n| X l:n} for eVEry |r1teger nz e

(B) &-Records: Let |X;, i=1) be a sequence of iLi.d random wvariables from a continuous
distribution F and let k be a positive integer. The random variables L'*)(n) given by L'*)(1) = 1,

L®(n + 1) = minj € N; Xppierr > X pogaoneei_nl 121,



B-E Khaledi, 8 Kochar | Statistics & Probability Letiers 73 (2005) 357-367 inl

are called the nth k-record times and the quantities X ;o 0.4y Which we denote by R(n : k)
are termed the nth k-records (cf. Kamps, 1995, p. 34 and Arnold et al., 1998). The joint density of
the first # A-records corresponding to a sequence of independent random wvariables from a
continuous distribution F is a special case of the joint density of first n g08Ss with
m=---=m,_=—1. In this case 3=k r=1...,n—1. Now let m=m=—1I,
i=1,...,n—1, and k = k'. Using the above setting it follows that conditions (a2) and (a3) of
Theorem 2.1 are satisfied. Therefore, for iz, j — i=j — i, we have

(R : k) | R k) <si(RG : k) | RGP k),

where R(j: k), j=1 and R(j' : k), /=1 stand for the jth and fth &-records. This means that for
i=j, the dependence of the jth &-record on the ith k-record decreases as § and j draw apart.

(C) Two-stage progressive tvpe I censoring: Let X,,..., X, be a random sample from a
continuous distribution F. Let these be the lifetimes of ¢ items put on test at time r = (. At the
time of the r th failure, n; functioning items are randomly selected and removed from the test. The
test terminates when further » items have failed. The #n = r| + r» observations X..< --- = X,
are called order statistics ansing in progressive type 11 censoring with two stages. This i1s a special
case of gOSswithmy = - =m, i =myp =---=my 1 =0m, =mand k=v—n —n+ 1.
In this case yw=v—r+1, r=1,...,rp and y,=v—m—r+1, r=r +1,....,n—1. Let
mi=m;=0, i=1,....n=-Ln+l...,n—-1, m, =mj._l =m, k=v—m-n+1 and
K =v" —n —n+ 1. With these settings we see that conditions (a2) and (a3) are satisfied when
v—igv' —i and v—jzo' —j. That is, for izi, j—i<j —i'v—i<t' =i and v—j=v -7,
we have

EX}’”-J | X;*;,-J}"‘:ﬂlij:r | Xic)

As discussed by Kamps (1995), there are many other models like Pfeifer’s records, sequential
order statistics, order statistics with nonintegral sample size, etc. which can also be expressed as
special cases of g08Ss.

3. Auxiliary results and proofs
In this section we prove some auxiliary results to prove our Theorem 2.1. As we will see, there is

a close connection between the concepts of dispersive ordering and more SI ordering.

Definition 3.1. A random variable X with distribution function F is said to be less dispersed than
another variable ¥ with distribution &, written as X <4, Y or F <40, if and only if

FU P - F <6 (-G (=
forall D=a<f<1.
It is easy to see that the F < 4.,G is equivalent to
FIF Y u) — e} GG u) = ¢} for every ¢=0 and u = (0,1).

For general information about dispersive ordering and its properties, refer to Shaked and
Shanthikumar (1994, Section 2.B). The next proposition establishes a close connection between
dispersive ordering and more 81 ordering.
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Proposition 3.1. Let X; and Y; be independent random variables with distribution functions F; and
;. respectively, for i = 1,2, Then

Yok and Vi=gipl 2 = (X2 4+ Vo) Xo=alX + V)X

Proof. Let ;; denote the pth quantile of £, i = 1, 2. Since X; and Y; are independent fori = 1,2,
Hig,(2) = PIXi + Yi<z|Xi = §) = Gi(z = &) and HE, ((u) = G;'(w) + &y This gives

Hye, 0 Hy: ) = G[GT () — (& — &)
Since X:<gipX1,

Cag — Cop=liy— Gip for O=p=g<l. (3.1)
In order to prove Proposition 3.1 one needs only show that one has for D=p=g=<1,

H g, 0 Hyg:, (0< Hoyg,p o Hag, (),

‘fJ-"l[G[_l (u) — f‘flq - élp}] 5{;2[{:; lfu} - [‘f?{f - ‘fﬁp}]- (32}

Since Y =<gixY2 by taking ¢= §;, — £, =0 it follows from the definition of dispersive
ordering that

Gl[Gl_l{u} - fflq - 'flp}] 562[6; l[u} - {'fl.rj Bl I‘=:l,r.':|']-
Now (3.2) follows from it and (3.1) since X>=<4i;.X| and G is nondecreasing. [
We shall be using the following known results to prove Theorem 2.1 in this section.

Theorem 3.1 (Khaledi and Kochar, 2004). Let X ;,, ..., X ;, be independent random variables such
that X ;, has gamma distribution with shape parameter az 1 and seale parameter A, fori =1,...,n.
Then, A= 4" implies

n n
Z X ;dis.pz Xzi
k=1 k=]

Lemma 3.1 (Lewis and Thompson, 1981). The randem variable X satisfies X <4, X + Y for any
random variahle Y independent of X if and only i X has a logeoncave density.

Theorem 3.2 (¢f. Kamps, 1995, p. 81). Let X(ronm k), r=1,....n, be the gOSs based on the
distribution function Fwith Fix)=1—e ", x=0. Let

Y=y X(L,nmkyand Y; = y(X(j,mm, k)— X(j— Ln,m k), j=2,...,n,
where y;=k+n-—j+ ’,-:I-l mp  Then the random variables Y,..., Y, are stochastically

independent and identically distributed according to distribution F.
Mareover, for r = 2,...,n we have the representation

:
X(ron k)= X,

i=1

where X has exponential distribution with hazard rate y;, j=1,...,r.
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To prove the main result in this section we use the following lemma which may be of
independent interest.

Lemma 3.2. Let X, ... X, be independent random variables such that X, has gamma distribution
with shape parameter a =1 and scale parameter y, fork =1, ... nandlet Xp,.. . X 7, he another

set of independent random variables such that X % has gamma distribution with shape parameter
az=1 and scale parameter v, for k =1,...,n'. Then if conditions (al)—(a3) of Theorem 2.1 are
satisfied, then for i=j, i'<j,

5

k=1

i i

Z Xi =5l Z X-"J.
& k=1

—1

i
> Xy
k=1

Proof. Using Proposition 3.1, it is enough to show that under the assumed conditions

(A) i X',.', 2 disp i: X}",

=1 v=|
and
i ot
(B) Z X',.'r = disp Z X',"r-
v=i+1 v=F+1

For i=i, we have

Zf; X,, = i X, + Y. X,

=1 v=I1 v, L)

2
Zas ) Xy,

v=I1

i
3djs;|1 Z X',"r-.

v=I1

since the density function of a gamma random vanable with shape parameter a =1 is logconcave
and a convolution of independent random variables with logconcave densities is logconcave; the
first inequality follows from Lemma 3.1. The second inequality follows from Theorem 3.1 under
condition (a2). This completes the proof of (A).

The proof of (B) follows on the same lines under condition (a3). O

Proof of Theorem 2.1. It is clear from the definition of the joint distribution of gOSs that
their copula i1s independent of the parent distribution. Hence without loss of generality we
can assume that both the distributions F and  are standard exponential. It follows from
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Theorem 3.2 that
i
X{L.ﬂm?},k}& Z X, and
h=1

i i
X(j,m i, k) | X(in,iin k)= X, 1N X,
=1 h=1
where X, has exponential distribution with hazard rate y,, h = 1, ... j, and X s are independent.
Mow the required result follows from Lemma 3.2. 0O
It is known that more 51 ordering implies more PQD ordering (copulas are ordered) and it is

also known that Spearman’s p, Kendall's 7, or Gini's coefficient of association can be expressed as
a functional of copula which preserves the ordering of copula in the same direction (cf. Joe, 1997).
This leads us to the following corollary.
Corollary 3.1. Under the conditions of Theorem 2.1,

k(X' 0 i KD X'G o o KNS k(X n,m, k), X, ni, kD),

where w(S, T) stands for any measwre of concordance between 8 and T in the sense of Scarsini
(1984), e g., Speanman’s p, Kendall's ©, or Gini's coefficient of association.

4. Kendall’s t for record values

In order to further understand the implications of Corollary 3.1 we find a closed-form formula
for Kendall's coefficient of measure of concordance t between any two records corresponding to a
sequence of 1.1.d. random variables from an arbitrary distribution F.

Theorem 4.1. Let [ X, iz=0) be a sequence of independent and identically distributed random
variahles from a continwous distribution F. Then Kendall's coefficient of concordance © between the
records R, and R, is

n n—j 5 ;
1 m4jyfm—m4i-1
(R, Rp) =1—4 Z Zm( j )( ; )

j=m+l =) =
Proof. Since the copula and hence t for a pair of records is independent of the parent distribution,
without loss of generality we assume that Fis standard exponential. To derive this formula we
shall use the following identities:

1 ! —1 n—i —(n i n—ji
ﬁ—fmn—aH}A (1 — 1) df—;(j)ﬂﬂ—ﬂ} : (4.1)
for0sp=l,a=1,....,n,n=1,2,... and
+ n—1 i
Rt e A 28 2
/T f"[n}f e'dir=e 2 (4.2)

where flla,b) and I'(a) stand, respectively, for the beta and the gamma functions.



B-E Khaledi, 8 Kochar | Statistics & Probability Letiers 73 (2005) 357-367 65

Let R, and R, be the records corresponding to a sequence {X},i =0} of i.i.d random variables
with common distribution function as the standard exponential. We assume that this sequence is
independent of the sequence | X, i=0}.

The joint density function of (R, R,) for m=n is

1
S g, (6, 3) = T XMy —x)"" e for 0< xSy <o,

By definition, Kendall's t is given as
TRy, Ry)=1— 4F-.
where

F=P{RJH":R:“-.R }K}

+oo 400 1
= W N | | SR | o [ l -y
= -L‘ -[ PRy < x, RF}}}!H!{H—}H— ]}! X |:_} X d} dx. {43}

MNow first we compute fi(x,v) = P(R,<x, R, =y).

I} X)) = i — n—m—1 —* dudp
1lx, V) _[1 £ miin—m— 1) =) e ocud

oo pi—la—v x 1 e, i, ==
= - 1 —- du du
_[ Fin+ 0 fy Pm+ 1n—m) (u) ( u) ik

bR wie [ ! (m+1)—1 =1
L 'I - R—M)— (jzd )
/1 Fin+ 1) Jy  Pim+ 1, r.l—m}{'r ?) { :

oo Pt L H xS oy n—f
/ I(n+ 1}-_%;[(_;') (?) (1 _;) dv (4.4)
= ) /‘+x — Xy fe="dp

,r_m+l f{” 5= ]}

%G
(

,r_m+l

oo
=i —lx+s) dz
)f{ﬂ+]} 1_-5{} C
) Fn—j+ e L (y — x)fe 0

fin+1) e it

j

.II . i ¥
— Z &_ @5
il

j=m+l =0
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Table 1
The values of 2048 = (R, &)

J

i 2 3 4 5 [ 7

1 1280 1024 880 Th4 714 11
2 1408 1168 1024 924 B40
3 1488 1264 1124 1024
4 1544 i34 1199
5 1586 1388
[ 1619

(4.4) and (4.5) follows, respectively, from (4.1) and (4.2). Using the above expression in (4.3),
we get

.. Xk po 450 R e
p= f (f = xP b=l -2y d_}') - dx.
:';H ; [ N flmln —m — 1)

Simplifying it, we get the required result. [

Table 1 gives the values of (R, R,) for 1=m=n=7. It 15 seen from this table that for
fixed i, 7(R;, R;) decreases with j (=), and for fixed j, it increases with i (<j). Also, for a
fixed integer ¢, T{R;, R;,) increases with i. It is easy to see that the conclusions of Theorem 2.1
hold in this case.
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