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l. Introduction

In the standard competing risks model, a unit or subject 1s exposed o several nisks at the
same time, but the actual failure 1s attobuted to one cause. In studies with mark variables
interest lies in exploring the association between a subject’s failure time and the level of 4
mark variable that is measured only when the subject fails. We only observe (T, 4), where
T is the time until failure and § is the cause of failure or the level of the mark vadable at the
time of failure. Typically, in both situations, statistical inference is based on the sub-survival
Junctions,

SO=P(Tz28=i), i=1..., r
or the cumulative incidence functions (CIF),
Ri)=P(Tstd=i), i=1,..., r.

Note that ¥7_, Si(t) = Sr(t) and Yi_, Fi(t) = Fr(t) where Sy and Fy are the survival
function and the distnbution function of T, respectively.

An allernative approach 1s o compare the canse (mark) specific fazard rates, which for
continuous failure times are defined by

1
Biity= lim — Pi<T <r+ M, d=ilT=r), i=1,....r,
Ar—i At
and for discrete T are given by

The overall haeard rate for time to failure is given by hit) = E}‘:' A1), In the continuous
case the sub-survival funcuons and the cumulatve incidence functions can be expressed in
terms of the cause specific hazand rates by the relations,

] I
5= [ hi(u)Srin)du, Fiin)= [ Fp(ne ) S (n) do, (1.1}
Jr ]
forfi=1,2,..:4 r. Similar relations can be established for the discrete case.

In many applications within both the competing nsks seting and the studies involving
mark variables it s of interest o distinguish between the following alternatives: (1) the
cumulative incidence functions are equal, (i) at least one CIF is greater than the others,
{111} the CIFs are ordered according to a prespecified order. For example, one may wish to
investigate whether there 15 any evidence in the data that the CIFs are ordered according 1o
the level of the mark variable. Possible apphcations where one may be interested in lesting
this type of association include (a) studies that investigate the relatonship between survival
time and a quality of life score, (b) studies that relate survival tme to accumulated medical
costs, (¢) AIDS clinical trial studies investgating the association between failure time and
the extent of drug-selected genetic evolution between baseline and failure, an example of
which is presented in this paper.

In this paper, we consider the problem of testing the null hypothesis,

Hp: Fiit)= FRity=---= F.it) forr =0, (12)
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against the alternative Hy — Hy, where
H :Fiih=skR<---<E), fortz (1.3}
We also consider the hypothesis test:

H; versus H» — Hy., (1.4)

We note bere that Hy canbe expressed in terms of the sub-survival functions, Hy 5, (1) =
Salt)=---=5,(1), or in terms of the cause (mark) specific hazard mates, Hph (1) =ha(t)=
- - - = f,(t). However, Hy in (1.3) 15 not equivalent to

H, : 51(N2 85002 - 25().

It 15 plavsible that the cumulative meidence functions are ordered but the comresponding
sub-survival functions cross cach other and vice versa.

Note that the hypothesis of ordered comulative incidence functions, Hy, can be expressed
as

H :Pé=iT<nN<Pé=i+1|T<r) i=12..., r—1 fort=0.

In this form H; — Hp has the interpretation that given that 4 unit has failed by time ¢, the
conditional probability of its failing from cause i + 1 (or having a mark variable level equal
to f + 1) 18 uniformiy greater than that from cawse § (or having a mark varible equal to £).

Several tests are available in the hterature for the special case of testing the equality of
two competing risks (r = 2). These have been referenced in Aly et al. (1994), El Barmi and
Kochar (2003) and in the review paper by Kochar (1995),

We note here that Aly et al. (1994) and Sun and Tiwan (1998) consider the problem of
testing the null hypothesis, Hy @ Frir) = Fadr) against the allernatives

Hi: Fln € /A, 120,
and
H| : Si(t)= §2(1), 120,

with strict inequality for some ¢ Kochar et al. (2002) give a elass of tests for testing the
equality of two canse specilic hazard rates and this class contains the test of Aly et al. (1994)
as a special case. Carnere and Kochar (20000 assume continuous failure tirmes and obtain a
distribution-free test for the problem of testing Hy against H) — Hp. Lam ( 1998) proposed
a class of distribution-free tests for esting the equality of & cause specific hazard rates.
Kulathinal and Gasbarra (2002) considered the problem of testing the equality of cause
specific hazard rates corre sponding 1o m competing risks in & groups. El Barmi and Kochar
(2002) consider the same problem with discrete failure times and use the likelihood ratio
to test Hy versus H) — Hy.

In this paper we investigate inference based on the cumulative incidence function as-
suming discrete failure imes and mark variables, Discrete failure times arise in competing
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risk and mark vanable studies when the recorded tmes to failure are grouped in inter-
vals. A discrete mark variable can result by grouping a continuous mark varable in in-
tervals or by observing an ordinal categorical vanable at time of failure. We note here
that for this framework, and within the competing nsks context, Dykstra et al. (1995) ob-
tained the nonparametric maximum likelibood estimates (NPMLES) of the cause specific
hazard rates under the ordered allemative and denved the likelihood mtio test statistic
for testing the equality hypothesis of the capse specific hazard rates against the ordered
alternative.

Besides many applications in the health sciences, our procedure has potential applica-
tions in industnial accelerated life tests. While companng different brands of a component,
the components may be tested in series. The components are functioning in the same en-
vironmment and their times to failure are genemlly dependent. The system fails as soon as
one of the components fails. Our methods allow testing whether components supplied by
different suppliers are of the same guality against the ordered allernative, thus leading to
carly identification of weak components.

In Section 2 we obtain maximum likelihood estimators of the cumulative incidence
functions Fi.i=1,2,.... r, under Hp as well as under Hy. In Section 3 we derive the
likelthood ratio test for testing Hy versus Hyp — Hy, and the likelihood ratio test for testing
Hj versus Hx —Hy and obtain their as ymptotce null distribution. In Section 4 we present two
examples, one from a competing risks study and one from aclinical trial study mvestigating
the association between survival and a mark vanable. The more wechnical details related o
the proofs of the theorems behind our resalts as well as details on the algonthms needed
for the computation of our test statistics and their asymptotic p-valoes are given in the
Appendix. Finally, we note that this work 15 closely related to that of El Barmi and Dykstra
(1995) on testing for and against a set of lincar inequality constraints in a multinomial
seting.

2. Maximum likelihood estimation

Suppose that we have n individoals exposed o rnisks and assume the tmes and causes
of failure represent a random sample from (T, §). Denote the observations by (T, d;). .. .,
(Tos B

In this section we oblan nonparametne maximum likelihood estimates of the cumulatve
incidence functions, F;, i = 1,2, ..., r, under Hp, H;, and H3.

For the special case, r=2, Peterson (1977) denved the unrestricted generalized nonpara-
metric MLEs of the two sub-survival functions. The generalized NPMLESs put their weights
on the set of observations. Similarly it can be shown that for more than two competing
risks (r = 2), the unrestneted generalized NPMLE of the ith cumulative incidence function,
Fi(1),1s

" NTi <8 =i)
= =1 J Ry
Filf)= ! .

n

In this paper we assume that failures occur on the discrete tme poinls ) <t <--- <1
(lp=0and 4 =c0).Fori=1,2,..., rand j=1,2,..., k. let pyj denote the probability
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of failure from cause f at me ¢; and di; denote the number of falores from canse § al tme
tj. Then

7
Fi(tj)=priT<t;,6=1i) = Z it (2.1)

I=1
i=1,2,..., r; j=1,2,... k Wewnte the likelihood functionas L, =]];_, l_[fl.=| F:‘i;'l ¥

and the corresponding log-lhikelibood function as

r k
¥.=n Z Z Pij In pij. (2.2)

i=l j=lI
where

s T =18 =il _dy
Fl - el L 2 L S T

(2.3)
n n

is the usual unrestncted MLE of pj;.

It is casy to show that under Hp : By = F7 =--- = F., the restricted maximum likelihood
estimate of p;; 15 given by

1

o L AT =451 -

L L (2.4)
Pij rn $
To facilitate the discussion on finding the maximum likelihood estimates of the p; s under
the hypothesis Hy, we first introduce some notation. Note that the restnetion Fy, £ F4

implies k constraints. Henee, foreachw £ 1,2, ..., r — 1} define the £ constrinl matrices
1 fi=wandj=1,2,...,5,
LU spe ; S5 : P 3
i =y-1 fi=utlandj=12,....5, se{l.2,....k},

] otherwise.

It is casily seen that Fy, £ Fy 15 equivalent 1o

¥ k
i=L :j=I
Therefore the maximum likelihood estimates of the p;js under Hy are the maximizers of
the log-likelihood, 27, in (2.2), subject to the k& = (r — 1) constraints
¥ k
3NN s me, w=1,2,,.,51 ¥=13, ...,k (2.5)
i=I" j=lI

The solution to this optimization problem does notexist in a closed form but can be oblained
by using an iterative algorithm based on the Fenchel duality (E1 Banni and Dykstra, 1994).
This algorithm is presented in Appendix A, We will denote the restricted MLEs under H
by it i =Yuiry = Yo k.
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3. Hypotheses testing

Following the discussion and notation introduced in the previous section, write Hy and
H; as

¥ k
Hy: ¥ ¥ afpp=0, w=12..0r-1, s=12....k (3.1)
i=l j=I
and
¥ k
Hi: Y Y x0Mpy<0, w=12...r—1, s=13,...,k (32)
=l j=I
Letr C {(n.5), u=1,2,..., r—1,s=1,2,..., k} be the indices that comespond Lo an

arbitrary subset of the (r — 1) = k equality constraints in (3. 1) and let  denote its cardinal;
i.e. d =card(m).
First, consider testing Hy against Hy ; — Hp where

k k

H;,: Z Z .r‘-[_:-r"”p,-_,- =0, (u,s)e=mn (33

i=l j=I

It is clear from Eg. (2.2) that the log-likelihood ratio test statistic for testing Hy versus
H; » — Hyp is given by

r k
Toe==2n3_ 3 pylln(p") —In(py (=), (34)
i=l j=lI
where _:";I}j]] and pij(m), i=1,..., o=l k., are the MLEs of p;; under Hp and under

Hj . mespectvely.

It is a farly standard exercise o show that the asymptotic distribution of Ty 715 a
chi-square distribution. Nevertheless, we give a detailed proof of this, especially since the
arguments contamed inour proof are crucial inoblaining the asymptotic distnbutions of the
likelihood ratio test statistics for testing (a) Hy versus Hyp — Hy, and (b) Hy versus Hx —H;.

Toderive the asymptotic distnbutions of the log-likeihood mtio statistic in (3.4, we work
with the (rk — 1) column vector p={py1..... Pri—1 yV oof cell probabilities. Corresponding
to this parameterzation, let p denote the unrestricted MLE of p. Also let p' and pin)
denote the MLEs of p under Hp and Hy 5, mespectvely. Let B be the (rk — 1) x (rk — 1)
Mmalrix:

B = diag(p) — pp". (3.5)
When in the above matrix we let p=py. the true value of p, we obtain B” = diag(p,) —Poby-

the asymptotic covariance matrix of /n(p — po).
Let Hbean (rk — 1) % (r — 1)k matnx given by

i, 51 [4,5)
H=[x;"" —x" hgugr—11gsgr) igrl €S, DAmE-
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We note here that the columns of H define the (r — 1)k order constraints implied by Hy.
That is, we can write Hp and Hy in Egs. (3.1)and (3.2) as

Hy:H'p=e (3.6}
and

H, :H'p<e, 3.7
where e is an {r — 1)k x 1 column vector with zeroes everywhere except for the last element

which is equal w 1. For an illustration of the matrix H see Examples 1 and 2.

Let Him) be the (rk — 1) = d submatrix made of columns of H whose (i, 5) index s in
the set m (recall that & =card(m)). Clearly the hypothesis Hy pin Eq. (3.3) can be expressed
%

H .: Hzmp=e, (3.8)

where e* is the appropriate subvector of e in (3.7). The quantity pim), the MLE of p under
H, .. 15 the maximizer of the log-likelihood in (2.2) subject to the equality constramts in
(3.3) or equivalently in (3.8). It can be obtained vsing the El Barmmi and Dykstra (1994)
algonthm, shown in Appendix A,

Let the d = 1 column vector & (m) = [a]. ..., ay]l” contain the Lagrange multipliers
corresponding to the maximization of (2.2) subject to (3.8). Define the (r — 1)k = (r — 1)k
matrix R, the irk — 1) = (rk — 1) matrices P and P(n) and the d = o matrix R{m) by

R=(HBH) !,

R(7) = (H'(mBH(z)) "',

P=B— BH(HBH) 'H'B.

Pim)=B —BH{I{HHr{R}BH{R}I}I_IHr{?{}lﬂ. (3.9)
Let II':], R':], R“{I{}, P, I’:]{I{} denote the values of the matrices in (3.5) and (3.9) when

evaluated al p = pg. where pg is the true value of p. ILis shown in Appendix B that, under
Hp.

" " )
V"™ — po. p(m) — po.a* (7)) — N (0, VO(x)), (3.10)

where the vanance-covariance mamix is given by

IJ':] IJ':] “
v“{n;=[|=“ Plim) 0 }
0 0 RY%m

The following theorem gives the asymptotc null distnbution of Ty g the log-likelihood
rabo est statistic in (3.4,

Theorem 3.1. 1. Under Hy,

Al — pim] -5 N0, P — (),
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2. Let Ty ¢ be the log-likelihood ratio test statistic for testing Hy versus Hy ; —Hp. Let
d = card(n) denote the cardinal of 7. Under Hy, we have

d 2
Tor.2 —* Yrpr—1)—a-

Prool. The proof is given in Appendix B. O
We now consider lesting the two hypotheses tests of Hy versus Hy — Hyp and Hy versus
H: — H;.

Let p! ' denote the restricted MLE of p under Hy; e, under the constraints in (3.7), and
let

r k
Too=-2n ) 3 pilln(p") —In(p}l,

i=lI" j=I
rk

To=-2n%_ Y pylin(p") — In(pi)]
i=1 j=I

denote the log-likelihood ratio test statistics for testing Hy versus Hy — Hy and Hy versus
Hz — Hy. mspectively.

For any positive definite matrix W, define (W) as the upper quadrant Gaussian proba-
bility,

W)= PIN{D, W) =), (311
and ket

ap(p) = Q(H'BH) = Q(R™"),

afp)= Y QRmICGR(z) — H(z)BH(m)R™ (m)H'(m)BH(n)),

woandim)=d
d=sle i kir—1)—1,
kir—11-1
ap-n(P=QRI=1—- Y  ay (3.12)
a=l)

where z° denotes the complement of = Hiz) (H(z" )) isthe submatrix of H with the columns
determined by the indices in m (7).
The following theorem gives the joint asymptotic distribution of (T, T2). under Hy.

Theorem 3.2. Under Hy and for any 1) = 0 and t2 = 0, we have

kir—1)
. = - o, o ~ < =
lim P(To 20, Tz 1) E ai(po) P fp_y—a 2 Plrgzn)  (13)

with 35 = 0.

Proof. The proof is given in Appendix C. [
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In particular, the null asymptotic distnbution of the log-likelihood ratio test statistic for
testing Hy versus Hy — Hp 15 obtained by

Elr—1)
lim P (Ty 21) = E aa(Po) P (£jy_1y—g 1) (3.14)

with ;.5:'] = (. Similarly the asymptotic distnbuton of the log-likelihood ratio test statistic
for testing Hy versus Hx — Hy, under the hypothesis of equality of the cumulative meidence
functions, is obtained by

Efr—1)
Jim P(Tiaz1) = 2 aa(po) P(zg >1) (3.15)

with x,;'] = (). In practice, since pyg. the true value of p. s unknown, the weights ag(po), as
defined in (3.12), are estimated by ﬂ,,,u{ﬁlm}, therr consistent estimators under Hyp. That s,
let B be the estimated covariance matrix of p, under Hy, obtained by setting p = p' in
Eqg. (3.5). As indicated by (3.12), computation of the estimated asymptotic p-values rests in
obtaming the weights, ag {[".'l”:]] ). each of which involves estimation of multiple multivanate
quadrant probabilities, defined in (3.11). These can be efficiently obtained after successive
applications of the Sweep operator 1o the matrix H'B'H combined with a routine for
approximating Gaussian quadrant probabilities. The mairix H'B"H invalves the sample
cumulative frequency of failures and 15 given in the examples. Details on the efficient
estimation of the weights are given in Appendix D.

If r=2 whichis the case discussed in E1Barmi and Kochar (2002), aqg(pi=pld. k, pe), d=

0.1, k, where p(0 k. p,) s the probability that Ep [UL#] 1s wdentcally zero and
pld. k.p). d=12,..., k.15 the probability that Epr[l_]l.fl has & distinet values, Here
pr=(p21,.-., ) U={U, U, ..., Ly where L sare independent and L7 has a normal

distnbution with mean O and variance 1/ pyy and Ep [U[#] is the least squares projection
ofUonto ¥ ={x e gk 0zx) 2x = - =) Sothat for testing Hy against Hy — Hy, if
there 15 evidence that pay, pr2. .. .. P do not vary too much, a test based on equal weights
critical value will have a significance level reasonably close to the reported value. These
equal weights level probabilities can be found in Robertson et al. (1988). Since we have
0 as an upper bound in the cone .#, the value k should be increased by 1 o account for
it. As pointed out in El Barmi and Kochar (2002, this is ke having &£ 4 1 normal means
indexed by 0, 1, 2, . ..,k with the weight associated with the vanable indexed by ) being
oo, Finally, they also showed that

sup lim P(Tor21) = 3Pz, 200 + Py 21)] (3.16)
F‘F[-i.l H— 00 -
and
sup lim P(Ti221) = sup lim P(Tiz=1)
pcH; peH, "
k4

B Bonerg o
=Z(-ﬂ'—])2 Plyy_ =1 G.17)

=1
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We have not being able to extend these results to r > 2 but from the well known properties
of the weights of a chi-bar square distribution (3.16) always hold with £ mstead of =

4. Examples

Example 1. For our first illustration we consider the mortality data on RFM strain male
rice reported in Hoel (1972). Two risks are considered. The second risk 15 cancer and the
first combines all other risks. The failure times are grouped into £ = 6 categonies. Thus, we
have two competing risks, r =2, and £ = 6 time penods. In this case the constraints are

ZPL;%ZFL;, g I 6,
i=l

i=l

and the matrix His an 11 x 6 matnx and 15 given by

rl 1 1 1 1 27
] 1 1 1 1 2
] ] 1 1 1 2
] ] ] 1 1 2
] 0 0 ] 1 2
H=| 0 0 ] ] 0o 2
-1 -1 -1 =1 =1 10
g0 -1 -1 -1 —=1 0
] 0 -1 =1 =10
0 0 0 -1 =1 0
L O 0 0 0 =1 0.l
Under Hp : Ej-=| Pij= Z:,-=| P, s=1,2,..., 6, we can write the vector py as

Po=1p1. P2 Pr.Pas Ps. Pe. PLe P2 P Pas psl

Itis easy W show that

B -
i) m Pl i ri ri
Py P T el 1P g =+ Pl g+ Pl LiPg + Pl lpg g + Pt
R ol T T T Il i Y ipg+ P2+ pal i P+ P2+ Pyl ipg + pr -+ Pyl
bl IR T Tl I e T o o 0 o T T o o R o T Py + pr+ Pyt eyl Lpg+ patpy+ Pyl
Pg P tead Apghprtml lpgt e pat gl Apg ot prct prb g b gk pg ot pack Pt Py ok Pl
|.ru Py +p2k Apatpzdesd dpnd prebp3chpad dpnt pre+ pat py ok ps) i J

The data and estimates are shown in Table 1. In this table the column labeled d ; 1s the
total number of failures at ime j. combined over both causes, and the column labeled D ;
contains the comresponding cumulative counts.



15498 H.El Barmi et al. # Journal af Statistical Planning and nference 136 { 20006) 1588 - la07

Tahle 1

N Interval i b ; i; D i s i A !
0. Vil dyj da d i M T Pl Paj

1 (0, 350) 15 I8 1 11 01515 0818 01515 01818

2 350, 450) 6 7 13 46 00606 0007 00606 00707

3 450, 550) 6 4 10 56 00606 00404 00606 00404

4 (550, 6.50) 8 I8 2% &2 00808 0818 00808 01818

5 (650, 750) 2 12 14 96 0022 01212 00202 01212

6 (750, 850) 2 I 199 00202 00101 00152 00182

The matnx, H'ﬁ[mH, needed for esumation of the weights in (3.13)—(3.15), 15 given by

33 33 33 33 33 33
"33 46 46 46 46 41‘}-‘
-. 1 [ 33 46 56 56 56 56
ey
TRaby 09 | 33 46 56 H2 H2 B2

33 46 56 B2 9% 96
33 46 56 B2 9% 99

The estimated weights needed for the null asymptotic distnbuton of the test statiste Ty,
are given below

ap(p™) =0.2775879,  a(p'™") = 0.4532581, @ (p™) = 02177982,
ax(p') = 0.403585,  ay(p™) = 0.0107544,  as(p™) =0.0002417,
as(p™) = 0.0000012.

For this example the value of Ty = 12,6247 and the value of T2 = 03397,
The estimated approximate p-value for testing Hy vs Hy — Hp 8 pyg = 0.02915. The
estimated approximate p-value for testing Hy vs Ha — Hy 15 g = 0.7961356.

Example 2. Inour second illustration we consider data from arandomized study conducted
by the Adult AIDS Clinical Trals Group (AACTG) to evaluate two combination antiretro-
viral treatments in terms of their ability o suppress HIV viral load. The faillure time, T, was
defined as the tme from randomization untl plasma HI'V levels rose above 1000 copies/ml.
Al failure a measure of acquired mutational distance during the trial was oblained. This dis-
tance s a measure of the accumulated HI'YV genetie resistance due o treatment exposure and
15 only obtained when a subject fails. Gilbert et al. (2004 normalize this distance so that it lies
in the mterval [0, 1]. For our purposes we discretize the normalized distance measure, call it
V, and consider r =3 groups. A subject is classified as belonging to group 1 if V £ (0, 1 /3],
togroup 21V € (1/3, 2/3]and to group 3 if V £ (2/3, 1]. Also we consider k = 3 failure
time intervals. Wetake j =11 T € (0,5], j=2ifT € (5, 0] and j =3 if T £ (20, 50].
The data is given in Table 2. Hence we have r =3, and k =3. The matrix His an 8 x 6 matrix
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Table 2
Interval dfy j da; dy; d [ II"-I|_|; .r}_lz_li.:l
(i, 5] 5 7 T 149 149 LI 01667
(5, 20] fi 5 4 15 34 (0.1333 00952
(20, 50] 4 4 3 1 45 (L0889 0714
and s given by
r1 1 1 0 0 17
] 1 1 0 0 1
0 0 1 ] 0 1
-1 -1 =1 1 1 2
H=
0 -1 -1 10 1 2
L] 0 -1 0 0o 2
L] ] g -1 =1 0
L O ] ] 0 -1 0l

In the setting of this example, Hy states no association between the comulative sk function
and the level of V) the acquired mutational distance. The hypothesis Hy states that for every
time period the cumulative incidence increases as the level of Vincreases. Under Hp, we

can wrile the vector pg as

Po = [p1. p2. p3. p1. p2.p3. pi. pal

The matrix, H’ﬁlmH, necded for estimation of the weights in (3.14), 15 given by

w2

149 19
’V 149 34

149 34
45 | —9.5 -85

—95 =17

—95 =17

19
34
45
—9.5
=17
—225

The estimated weights needed for the null asymptotic distribution of the test statistic Ty,

are given below

ag(p'™) =0.0516802,
ai(p"™) =0.2532694,

ag(p"™) = 0.0008899.

ar(p™) = 02325504,
ay(p™) = 00872682,

az(p'™) = 0.3604903,
as(p"") = 0.0143132,

For this example the value of Ty = 08958848 and the value of T2 = 01334323, The
estimated approximate p-value for westing Hg vsHyp —Hg 18 pog =0L.8803156. The estimated
approximate p-value for testing Hy vs Hx — Hy s pyg) = 0.9647699. Thus we do not have
enough evidence o conclude association between the failure time and the level of the mark
varible, a result consistent with the conclusion in Gilbert et al. (2004). Evidently, our test

does dependent on how the data are grouped.
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Appendix A. Deseription of algorithm

El Barmi and Dykstra ( 1994) showed that, il ¥* solves

Zmln{1+h}, (A.1)
}Eﬁ. i
where KE'* ={¥. EJ_| ¥ =0, ¥x € C}, for C aclosed, convex subsetof #={(x. x2... .,
Koy Xe 20, E:"_ ( Xi = 1}, then
% Pi
= 1 e m,
P 1+ y7
solves
1] .
2 2
m{.?ix l_[ 2 {A.2)
Here p=i{p, p2..-., Fm)” € 5 and is in general the veetor of the relative frequencies. In
the event that © = {p £ 2, Z:—I piaij =10, j=1,2, .. s}, asetof linear constraints, it

15 easy to show that (A1) reduces Lo

il

MY Z piln |1+ Z ajagj | - (A.3)

i d=l,.... i

Note that our maximization problem defined by maximizing the log-likelihood in (2.2)
subject to the constramts in Eq. (2.5) is of the type (A.2). Let {a], 23, ..., a2y} denote the
maximizing values of the above expression. Then the solution to the maximization in (A.2)
is given by

£ Pi

Pims——m——— {i=1l,..., i (A.4)
i g E_,l':l lef'ﬂ".."
The following algorithm can be wsed to find (27, 95, .. ., ) and henee pi, p3, ..., pr
Algorithm.
o Step limiballya; =0, j=1.2,... .5, v=

e Step 2: Find the optimal value of 2, over & with all the other 25 held fix. This value of
oy replaces it previous value.
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e fvessetv=v+lL.ifr=s.5ctv=1.

e Go o step 2. Find the optimal value of o, over 2 with all the other o5 held fix. This

value of 2, replace its previous value.

These steps are l'l_‘pLdll.‘Al.l forv = 1,2, ... untl sufficient accuracy 15 attained. We note
here that (a7, 23, ..., a¥) are the Lagrange multipliers comesponding o maximizing the

Il}}_.-llkl.,llh{l}d IunLtum subject to the constramts p € C, Le.

Y agp=0, j=12,...s.

=l

If it is the case that C = {p £ 2, ZL, piaij =0, j = 1,2, ..., 5}, then Step 2 of the

algorithm should be replaced by

e Step 2% Find the optimal valoe of 2, over #7 with all the other x5 held fix. This value

of oy replaces its previous valoe.

We note that at a given step of the algorithm, the desired = can be found very quickly
by a Newton-Raphson (in general 2-3 steps to find the optimum value in cach step). This
procedure been successfully vsed by Dykstra et al. (1996) for 60 lincar constraints in a

61-dimensional space.

Appendix B. Proof of Theorem 3.1

Using a Taylor expansion, under Hy, we have

Tor e = —2n Z Z Biflin(p}") —In(f; ()]

i=1j=]
—n EZ - { o iy () — By +op(l).
i=Ij= i

Write the hikelibood function as

dirk
LT
L n = l_[ P‘.J: 1 — Z Pij
(1, Ji# k) (NN
Let
o
Y p)= (-& In Lni[—"]‘)
Cpij (T E ]
be the gradient of the log-likelihood and py = lp?,, p':|]1, e P'j

true value of p. Then we have

1
SEREE

(B.1)

Y1) € Hg be the
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1
Valp'® — pol= ? PY'%.% ,(po) + op(1),
VA — pl = — P“h}crf,r{pnuupu}

Vot () = ﬁ(}”{n}iﬁmwm + op(1), (B.2)

where p@ = (57, 519, ..., P, p1Y and pim) = (pri(n), piaim), ..., Pra—1(m))" are

the maximum likelihood estimators of p under Hyp and H) ;. respectively and 2*(m) is the
Lagrange multiplier associated with the maximization of the hkelihood function underH 1.
If the f;,-_,- = 0 for all {i, j) then [".‘lﬂ and pir) will be unique. The matrices P and P(r) are
as defined in (3.9) and Q(n) = —BH(H'BH)~'. P, P"(x) and Q"(x) are the values of the
matrices when B = B(pg), as defined before with p = py.

Therefore under Hy, we have

Jpdy — puim), P — pratm), . ..ae. ., Pyt — Pra—i(m)
1
o [P" — P"(m)]% In £, (po) + 0p(1)

and therefore converges in distribution as n goes to infinity o a multivariate nommal distri-
bution with mean vector zero and covariance matrix given by

(P — P(m))B~' (PY — PP(x)) = PY — P(m).

Assume without loss of genemlity assume that Hiz) is made of the first & columns of H,
then

P — P{z) = BH(H'BH) " 'H'B — BH{=){(H(mBH(=))"'H (=B

= (P’ — PY%(m)B~' (P" — P°(m))
= (BH{=") — BH{R}I[:}I" (H'(mB — X:H(z)'B), (B.3)

where

X =H'(n")[B — BH(n) (H (m)BH(m) ' H{m)BH(x" ).
2 =25 = (H'(m)BH(m) " 'H(m) BH(z")

t\‘l

and H{z®) is made of the remaining columns of H.
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Since n(pl, — pri(m, ..., f;f,llk_| — pri—1(m) converges in distribution o N (0, P (m)—
PY), it follows from (3.9) that the asymptotic covarance of /n| _;“;f] — piim)] and ﬁ[ﬁ? _
piim] is

vimE v (m) — v (mE T Enuj(m —uj(mZ2Z " vin)
+uj(m) Z X~ B j(m),

where BH(x) = (u (m), wa(m), ..., w1 (m)), BH{=") = (vi(m) . valm), ..., Yo —1(m)’,
u i) = —Z’:,-k:_ll u; (m) and vy (m) = —Z’:,-:l ¥ (). Consequently, under Hy

o o
v Pl vV Pri

i ; e S !
Lo N0, M) — M E1 57 [ My — Z5 M),

i Al — puim) P — Pralm)

where
M = (m(rﬂ!}/\fptﬁ . uz(m) /fﬁ _____ ujlk{n}/‘lﬁ"fpgk ) ’
'T .fT i i
Mz= (vu[rz} /\,r.f?n w:{rz}/‘.,f Piywnwns ¥erim) ‘;prk)

It then follows that

e A — putm Ao — Prrlm)

0
VP x-“f!’;-x

Firs¥izis o Y1, ¥or) = [My — My Z2)' 27132, 2, . .., A MO 1

where Z; are i.a.d N(O, 1), It follows that

F k

E Z {Pu Pu {H}'}

=l j=1 pi..'
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converges in distnibution 1o

rok
3 N ¥ =22 My — En MM} — M{Zp)' 27 L

j]‘ =
=1 =1
(r—10k —o

-y z
I=1

which has a chi-square distribution with (r — 13k — d degrees of freedom. Here £° =

(L1, &2, 000, iy k=g ) and the second equality holds because

[ M2 — 2.'11M'|E[M'£ - M';Z.'u =X

Appendix C. Prool of Theorem 3.2

Let e be the set of all subsets of constraints. If follows from El Barmi and Dykstra (1994)
(see Appendix A) that [?l“]{rz]l, the maximzer of

ro ok
LT :
[T11 7 (.1
i=1 j=I
subject 1o
r k
R T i
E Z PijX;; =0, (1.5) €=,
i=l j=I
and the solution, &*{x), of the maximization
r k
s E E pijIn | 1+ E D:Jr.'u'-r‘!j!llh] ; C.2)

By (it F1ER A :
bl i=l j=I (1, 5)ET

satisly

=i 1) ﬁu‘
P 1'_.1' =

(4,507 i, -”

L Zur.n]err Il*r.-.{ﬂ}'-r‘-J
Moreover p'!! = p'U(x) for precisely one m. Also, we have

sy =0, (1, 5) € m,
o k (3,5) ~01)
Yo T w B m<0, sy e 7

p“] :‘,;Ll]m} —
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Combining the above stalements gives
P(Torzn, Tiaz1a)
=) P(Tou2n. Tia2n, 3" =V n)

mef

= Z Pl Toyzn T2zt d(n)=>0I(uys) en,

=T

E Aﬂr""]ﬁﬂ]{r{}lﬂﬂ, (u,5) e
i
A i] ~( 1} 2
(pj; = P (m)
- P p—t—
D P

mER i i

Ve (e[ R (m) ]~ et () + 0p(1) =10,

+opll)zr,

Tpe () = 0, (u, 5) €1, Z .rj-l_:r"”ﬁ}_: Nm)<0, (. s) ent |,
I
where R“{I.!}l 15 45 defined before. The third equality s true by (B1) for Ty and a result in
Silvey (1959) for T2, Lemma B and Lemma D, in Robertson etal. (1988, p. 71) and (3.10)
imply that

kir—1n
lim P(Tor 20, Tz = ) a;j(0”)P(,_y_; 2P 20),
' j=0

which 15 the desired result.

Appendix D, Efficient computation of the weighis associated with the asymptotic dis-
tribution of the test statistic

Inthis section of the Appendix we show how the estimated weights needed for oblaining
the estimated asymptotic null distributions in (3.12) and (3.13) can be efficiently computed
through the successive use of matrix sweeps and inversions.

Without loss of generality assume that m=1{1,..., d}, 1.e. the set of constraint indices
corresponding o the first d order constraints, i.e. the first d columns of H. Partition the H
matrix according to m as follows

H=[Hin): Hiz"|.
The comresponding partition of R~! = H'BH is

R-! — [ H(m)BH(m) H (m)BH(r) ]

H'iz)BH(z) H'(z")BH{x") (1)
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A sweep of the matrix R " on its first  rows yields two matrices needed forthe computation
of the weights as its diagonal blocks. That 1s

: o [RUR
SRR = [ R~ (n*) — H'(z")BH(m)R ' (m)H' () BH(7* }]'

Denote the two matnees shown above by
SWEEP (R m) =R~ (n),
SWEEP,(R™!: n) = R~ (z) — H'(z" ) BH(m) R~ {(m)H' (m) BH(=* ). (D.2)

Using the fact that the Sweep operator is reversible, that s SWEEP| SWEEP{R" CE) R =
R, weget
SWEEP (R m)
= (SWEEPR '; m)) ™!

_ [R7Ym) — B (m)BH(z*) R~ (z*)H'(z*)BH(m)
= R (%) |"
Denote the two mattices shown above by
SWEEP3,(R™'; 1) = R (=),
SWEEP,(R™": 7) = R~ '(z) — H'(z")BH(m)R "' (m)H' (m)BH(z*). (D.3)

Similardy define the matrices in (D.2) and (D.3) for an arbitrary & with cardi{n) =d.
The number of x5 that have cardinal d 15 equal to

[{r — 1)E]!

g ='['_'l::l_|]Jt =—
‘ dllir — 1)k — d]!

Denote these by @y g, ... Ty, - Clearly the whole set of ms with cardinal (r — 1)k — 4 is
casily obtained as o} .. ... Ry d*
From the discussion above it follows that we can compute the weights by successive
sweeps and inversions using the following algorithmic scheme:
g
ag(p) =)  Q(SWEEP;(R™"; ;) Q(SWEEP 3, (R™"; m; 4)),
i=l
g
avr—1)—a(P) = Y OUSWEEPq (R~ 7)1 7")
i=l

x QISWEEP (R~ m o)1) (D.4)

For a given cardinal d, we used the SAS procedure PROC PLAN o generate all possible
s with cardinal &, i.e. all possible combinations of d rows of the R~! matrix on which we
sweep inomder to evaluate the weightsin (D.4). The Sweep operations and matnx nversions
were done using SAS IML. Finally, we used a SAS/AIML program for the calculation of the
multivariate normal quadrant probabilities in (D.4). The program was written by Genz and
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Brete (contact: bretz@ifghuni-hannover.de) and evaluates the multivanate nomal integral
by applying a randomized lattice rule on a transformed integral as descrbed by Genz (1992,
19930, It utilizes variable priorization and antithete sampling and can compute multivariate
normal probabilities for positive semi-definite covariance matrices until dimension 100.
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