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Abstract: We consider d insurance companies whose surplus processes are perturbed Levy

processes. Suppose they have a treaty to diversify risk; accordingly, if one company needs

a certain amount to prevent ruin, the other companies pitch in previously - agreed - upon

fractions of the amount, and any shortfall is got from external sources. With each company

trying to minimise its repayment liability, the situation is viewed upon as a d-person dynamic

game with state space constraints and a Nash equilibrium is sought. Under certain natural

conditions, it is shown that the Skorokhod problem of probability theory provides a (unique)

Nash equilibrium.
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1 Introduction

We consider d insurance companies operating under a treaty to diversify risk. Accordingly,

if one company estimates at some instant of time that it needs a certain amount to prevent

ruin, the other companies in the network pitch in previously - agreed - upon fractions of the

amount. Any shortfall is to be obtained by the concerned company from “external” sources.

The amount got from “internal” sources (viz. other members of the network) carry easier

repayment terms, due to mutual obligations. The amount needed to prevent ruin is viewed

upon as a control. Needless to say, each company will try to minimise its expected cost. The

companies can possibly be in competition; and the objective of control is to keep the surplus of

each company non-negative. Thus we are lead naturally to a d-person non-cooperative dynamic

game with state space constraints, and we seek a Nash equilibrium. It turns out that under

certain conditions a Nash equilibrium is provided by the solution to the appropriate Skorokhod

problem in an orthant.

Skorokhod problem of probability theory has played a major role in the stochastic differential

equation formulation of reflected (or regulated) Brownian motion / diffusions / Levy processes.
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Thanks to the impetus from queueing networks, the problem in nonsmooth domains, like a

quadrant or an orthant, has attracted a lot of attention. As sample path analysis is helpful

in understanding the stochastic problem, the deterministic Skorokhod problem has also been

extensively studied; see [HR], [Re], [MP], [Ra 1] and the references therein. In the present work

also, the problem reduces to considering a deterministic game for similar reasons.

The surplus / risk processes in the absence of controls are independent one-dimensional per-

turbed Levy processes (see [RSST]) with time and space dependent drift. The optimally con-

trolled process for the game is then the reflected / regulated Levy process in an orthant; (see

[Ra 1], [DR] and the references therein for reflected Levy processes); the Nash equilibrium is

given by the “pushing” part of the solution to Skorokhod problem.

In insurance mathematics, beginning perhaps with the works of Borch, game theoretic ideas

have been used in the context of reinsurance by many authors; see the recent survey paper [Aa]

and the references therein. However the flavour is quite different in our work. Besides being a

continuous time model, our model has state space constraints, as the controlled process has to

live in an orthant.

Optimality property of Skorokhod problem in one-dimension (in half line [0,∞)) is well known;

see [H]. This has also been used in [T] in the context of dividend payment.

Game theoretic aspects of Skorokhod problem in an orthant have recently been studied in

[Ra 2], where the absolutely continuous case has been considered. Consequently the game

becomes a differential game with state space constraints and the framework of HJB equations

and viscosity solutions becomes available. Nevertheless it has some parallels with the present

work. Incidentally optimal control problems with state space constraints were first studied by

Soner, and one may see [FS], [BC] for accounts of this.

The paper is organized as follows. In Section 2 we present the basic network model, and the

passage to the determinstic d-person game. As explained in Examples 2.1 - 2.4 our model with

appropriate parameters can be considered as a sort of reinsurance model; the difference with

conventional models being that the reinsurer helps out only when a demand is made by the

cedent. Brief description of the Skorokhod problem in an orthant / a half space is given in

Section 3.

In Section 4, the main body of the paper, the determinstic d-person game alluded to above and

its connection to the Skorokhod problem are discussed. For this it is convenient to introduce

a control problem in a half space, and show that the optimal solution is given by the solution

to a Skorokhod problem in the half space. A priori bounds given in the context of Skorokhod

problem help in fixing suitable compact sets where the controls lie; the topology is the topology

of vague convergence of uniformly bounded measures (or sub-probability measures) on a finite

interval [0, T ]. We adopt a twin approximation procedure, one by solving a Skorokhod problem
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for ‘known’ function of time variable alone, and the other by solving the integral equations

(4.1), (4.2). The hypotheses, which are natural in the context of Section 2, are rigged so that

the cost does not increase at any stage of the approximation. Under additional assumptions,

Skorokhod problem gives a unique Nash equilibrium for all 0 ≤ t ≤ T .

It is well known that many parallels exists between insurance models and (one-dimensional)

queueing theory; see [As] and the references therein. That the Skorokhod problem plays a

central role in queueing networks has already been mentioned; see for example [CY] and the

references therein. However, to our knowledge, no connection between insurance and queueing

networks has been pointed out in the literature.

The question of non ruin of the network in the continuous case is taken up in a companion

paper under preparation.

Although we have used problem from insurance to elucidate the model, other situations are

also meaningful; some examples are potential demand/output lost in queueing networks due

to buffer being empty, feasible production plans in input-output models, and allocation of

funds/subsidies to various sectors (including welfare sectors) of an interdependent economy;

see various comments in [Re], [CM], [Ra 1].

Finally some comments about notation. D([0,∞) : E),D([0, T ] : E) denote respectively E-

valued r.c.l.l. functions on [0,∞), [0, T ].

D↑([0, T ] : IRd
+) = {y(·) = (y1(·), . . . , yd(·)) ∈ D([0, T ] : IRd) :

yi(·) ≥ 0, yi(·) nondecreasing, 1 ≤ i ≤ d}.

For 1 ≤ i ≤ d, y ∈ IRd we denote y−i = (y1, . . . , yi−1yi+1, . . . , yd); for

1 ≤ i ≤ d, an IRd-valued function y(·), similarly y−i(·) = (y1(·), . . . , yi−1(·), yi+1(·), . . . , yd(·));

for real y1, . . . , yi−1, yi+1, . . . , yd, ξ, we denote (ξ, y−i) = (y1, . . . , yi−1, ξ, yi+1, . . . , yd).

2 A network model

Consider d insurance companies such that the surplus (or reserve) of Company i is given by,

for t ≥ 0,

Si(t) = Si(0) + Bi(t) +

t∫

0

bi(r, Si(r)) dr, ( 2.1 )

where B1(·), . . . , Bd(·) are d independent one dimensional Levy processes, bi : [0,∞)× IR → IR

is the “drift” component for the i-th company, Si(0) is the initial reserve. The term bi(·, ·)

incorporates premium rate (> 0) of company i, interest rate (> 0) of bonds in which the

company has invested part of its surplus, expected value/first order terms of claim payments

3



(< 0), drift term (≤ or > 0) in behaviour of stocks in which the company has invested another

part of its surplus. The Levy process Bi(·) incorporates volatility of stocks as well as variations

in claim sizes. It can be seen that the classical Cramer-Lundberg model, or perturbation of

such a model by a Brownian motion / a general Levy process, or diffusion approximation of

such a model, etc. lead to equations of the form (2.1). Equation (2.1) describes the exogeneous

evolution of Company i in the absence of any control. See [RSST] for detailed discussion.

Note that ruin of Company i is possible if Prob. (Si(t) ≤ 0 for some t ≥ 0) > 0.

Assume that the d companies agree on a treaty along the following lines: Suppose Company

i estimates (at some instant of time) that it needs an amount ∆yi to prevent ruin. Then for

j 6= i, Company j gives |Rji|∆yi, where Rji ≤ 0 and
∑
j 6=i

|Rji| ≤ 1. Of course, the shortfall

(1 −
∑
j 6=i

|Rji|)∆yi has to be procured by Company i from “external” sources.

The rationale is: The amount |Rji|∆yi that Company i gets from Company j may be considered

a loan on soft interest terms, whereas the amount (1−
∑
j 6=i

|Rji|)∆yi may carry interest at market

rates. This is reasonable as there is mutual obligation among the companies, to diversify the

risk.

With the treaty in force, instead of (2.1), the system of equations giving the surplus of the

companies becomes

Zi(t) = Zi(0) + Bi(t) +

t∫

0

bi(r, Y (r), Zi(r)) dr

+Yi(t) +
∑

j 6=i

t∫

0

Rij(r, Y (r−), Zi(r−)) dYj(r), ( 2.2 )

with the stipulation that

Zi(t) ≥ 0, t ≥ 0, 1 ≤ i ≤ d ( 2.3 )

where Rii(· · ·) ≡ 1 for all i, Rij(· · ·) ≤ 0, i 6= j. Here

Zi(t) = current surplus/reserve with Company i at time t;

Yi(t) = cumulative amount obtained by Company i over the period [0, t], from both “internal”

and “external” sources, specifically for the purpose of preventing ruin.

Note that Yj(·) is nondecreasing and hence integration w.r.t. dYj(·) makes sense as Stieltjes

integral. Here and elsewhere
t∫

0
· · · denotes integration over the closed interval [0, t]. We take

Z(0−) = 0 = Y (0−). Observe that for i = 1, 2, . . . , d, the coefficients bi, Rij , though may

depend on Y (·), are independent of Zl(·), l 6= i; this is to indicate that except for the “push”

Y (·), the dynamics of one company does not depend on other companies.
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Example 2.1 Let d = 2;R11 ≡ R22 ≡ 1, R12 ≡ 0, R21 ≡ −1. That is, if Company 1 needs an

amount ∆y1 the entire amount is given by Company 2. In such a case it is natural that the

drift component b2(· · ·) dr in the equation for Company 2 should be of the form

b2(r, (y1, y2), z2) = b
(1)
2 (r, y1) + b̂2(· · ·) ( 2.4 )

where b
(1)
2 (r, y1) could be part of the premium income of Company 1. This corresponds to a

“reinsurance” scheme. One can also have R12 = 0, R21 = −α, 0 < α < 1; this will be a sort of

“proportional reinsurance”. A difference from traditional reinsurance models is that Company

2 helps out Company 1 only when a “demand” is made.

Example 2.2 Let d ≥ 2;Rii ≡ 1 for all i, Ri+1,i ≡ −1, 1 ≤ i ≤ d − 1, Rij ≡ 0 otherwise.

Similar to (2.4) let

bi+1(r, y, zi+1) = b
(i)
i+1(r, yi) + b̂i+1(· · ·)

where b
(i)
i+1(r, yi) could be part of the premium income of Company i. This is easily seen to

be a “reinsurance hierarchy” model; once again, Company (i + 1) pitches in the entire amount

∆yi, but only when a demand is made by Company i. (For another reinsurance hierarchy, see

[RSST].)

Example 2.3 Let d ≥ 2;Rii ≡ 1 ∀ i, Rid = 0, Rdi = −αi, 0 < αi ≤ 1, 1 ≤ i ≤ d − 1. Here

Company d is a reinsurance company vis-a-vis the other companies; the other (d−1) companies

may or may not have a treaty among themselves. As before it is natural that

bd(r, y, zd) =
d−1∑

i=1

b
(i)
d (r, yi) + b̂d(· · ·)

where b
(i)
d (r, yi) is part of the premium income of Company i. 2

Example 2.4 Let d ≥ 2;Rii ≡ 1 ∀ i, R1j = 0, j 6= 1, Ri1 = −αi, 0 ≤ αi ≤ 1, i ≥ 2,
∑
i≥2

αi = 1.

In this model Company 1, the primary insurer, could represent a high risk portfolio; the other

companies are reinsurers. This may be considered a “reinsurance syndicate”; see [Aa] for

another version of a reinsurance syndicate. As in the earlier examples, for k ≥ 2

bk(r, y, zk) = b
(1)
k (r, y1) + b̂k(· · ·)

with b
(1)
k (r, y1) denoting a part of the premium income of Company 1. 2

Thus our model can be considered a model for diversifying risk, or in other words a reinsurance

model.
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Once the functions bi, Rij are known/agreed upon, how to determine Yi(·)? Both the times

and the quanta of demands of each company are to be determined.

Assume that Rij are constants; let T > 0 be fixed. Suppose the amounts taken by Company i

to prevent ruin have to be repaid at time T with interest at respective rates a1, a2 for ‘internal’

and ‘external’ loans, where 0 ≤ a1 < a2. So the expected total liability of Company i on

account of borrowings to avoid ruin may be taken as

Ji(Yi) = E




T∫

0

ea1(T−r)



∑

j 6=i

|Rji|


 dYi(r)

+

T∫

0

ea2(T−r)


1 −

∑

j 6=i

|Rji|


 dYi(r)


 . ( 2.5 )

Clearly Company i will try to minimise Ji(Yi) over all feasible Yi(·). Since the companies can

possibly be in competition, it is appropriate to consider the system as a noncooperative game

and hence seek a Nash equilibrium.

If Yi(·), Ŷi(·) are feasible such that Yi(0−, ω) = Ŷ (0−, ω) and Yi(t, ω) ≤ Ŷi(t, ω) for all t, for

a.a.ω then it is easily seen that Ji(Yi) ≤ Ji(Ŷi).

Therefore, as a first step, for any fixed ω, one can consider Yi(T, ω) as the cost function for

Company i, 1 ≤ i ≤ d, and seek a Nash equilibrium. Because Zi(·, ω) ≥ 0, 1 ≤ i ≤ d, this

is basically a deterministic d-person dynamic game with state space constraints. It turns out

that, under certain natural conditions, the solution to the Skorokhod problem in an orthant

provides (unique) Nash equilibrium to the d-person game for every 0 ≤ t ≤ T . This would

mean that, in addition to (2.2), (2.3), we need to stipulate that

t∫

0

Zi(s) dYi(s) = 0, 0 ≤ t ≤ T, 1 ≤ i ≤ d; ( 2.6 )

that is, Yi(·) can increase only when Zi(·) = 0. In other words, Company i can borrow only

when its reserve is zero / it is in the red, and the amount borrowed should be just enough to

keep it afloat.

3 Skorokhod problem

We now briefly describe the Skorokhod problem; the coefficients may be somewhat more general

than needed for our purposes of Section 2.

Let G = {x ∈ IRd : xi > 0, 1 ≤ i ≤ d} denote the d-dimensional positive orthant. Let

b : [0,∞) × IRd × IRd → IRd, R : [0,∞) × IRd × IRd → IMd(IR) respectively be the drift and
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reflection functions; here IMd(IR) denotes the space of all d× d matrices with real entries. Let

w ∈ D([0,∞) : IRd) with w(0) ∈ Ḡ; note that w(·) is an IRd-valued r.c.l.l. function on [0,∞).

The deterministic Skorokhod problem SP (w, b,R) consists in finding two r.c.l.l. functions

Y w(·) = ((Y w)1(·), · · · , (Y w)d(·)), Zw(·) = ((Zw)1(·), · · · , (Zw)d(·)) such that the following

are satisfied

(i) For any t ≥ 0, the Skorokhod equation holds,

(Zw)(t) = w(t) +

t∫

0

b(r, Y w(r), Zw(r)) dr

+

t∫

0

R(r, Y w(r−), Zw(r−)) d(Y w)(r), ( 3.1 )

(ii) Zw(t) ∈ Ḡ for all t ≥ 0;

(iii) (Y w)i(0) ≥ 0, (Y w)i(·) is nondecreasing;

(iv) (Y w)i(·) can increase only when (Zw)i(·) = 0, that is,

(Y w)i(t) =

∫

[0,t]

1{0}((Zw)i(r)) d(Y w)i(r). ( 3.2 )

The following hypotheses are assumed:

(A1): For 1 ≤ i ≤ d, bi is bounded measurable; (y, z) 7→ bi(t, y, z) is Lipschitz continuous,

uniformly over t; |bi(t, y, z)| ≤ βi. Denote β = (β1, . . . , βd).

(A2): For 1 ≤ i, j ≤ d,Rij is bounded measurable; (y, z) 7→ Rij(t, y, z) is Lipschitz continuous,

uniformly over t. Also Rii ≡ 1 ∀ i.

(A3): For i 6= j, there exists constant Wij such that |Rij(t, y, z)| ≤ Wij. Set W = ((Wij))

with Wii = 0 for all i. We assume σ(W ) < 1, where σ(W ) denotes the spectral radius of W .

When R(· · ·) is a constant matrix, jth column vector of R gives the direction of reflection on

the j-th face of ∂G. The assumption Rii ≡ 1 is a suitable normalization, indicating that the

direction of reflection is bounded away from the tangential direction.

As Rii ≡ 1 note that the Skorokhod equation (3.1) may be written as, for 1 ≤ i ≤ d, t ≥ 0

(Zw)i(t) = wi(t) +

t∫

0

bi(r, Y w(r), Zw(r)) dr + (Y w)i(t) − (Y w)i(0−)

+
∑

j 6=i

t∫

0

Rij(r, Y w(r−), Zw(r−)) d(Y w)j(r). ( 3.3 )

As (Y w)j(·) are required to be nondecreasing d(Y w)j(·) integrals make sense.
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The condition (A3) is a popular hypothesis in queueing theory due to the pioneering paper

of Harrison and Reiman [HR]. In economics also such a condition is known in the context of

Leontief input-output models; in fact, Skorokhod problem can be considered a continuous time

feedback analogue of open Leontief model [Ra 1]. It may also be noted that if w(·) ≡ constant

(not necessarily in Ḡ), b,R are constants then SP is just the linear complementarity problem

of operations research; so SP is also called dynamic complementarity problem.

Note: Though for our purpose it suffices to assume w(0) ∈ Ḡ, SP is well posed even wihtout

such an assumption; see [Ra 1].

Remark 3.1 Suppose Rij(· · ·) ≤ 0, i 6= j,Rii ≡ 1, and
∑
j 6=i

Wij < 1 for all i, where Wij =

sup{|Rij(t, y, z)| : t ≥ 0, y, z ∈ IRd}, j 6= i. Set W = ((Wij)) with Wii = 0. Let λ0 be

the largest eigenvalue (in absolute value) of W and x(0) the corresponding eigenvector. By

Perron-Frobenius theorem we may take λ0 ≥ 0, x
(0)
i ≥ 0 ∀ i. Let x

(0)
i0

≥ x
(0)
j for all j. Then

λ0 x
(0)
i0

=
∑

j

Wi0j x
(0)
j =

∑

j 6=i0

Wi0j x
(0)
j < x

(0)
i0

whence it follows that σ(W ) < 1. In particular the situation described in Section 2 satisfies

(A3) if
∑
j 6=i

|Rij | < 1. The reinsurance schemes of Examples 2.1 and 2.2 satisfy (A3). In Example

2.3, (A3) is satisfied if the (d − 1) × (d − 1) matrix formed by the first (d − 1) indices satisfies

(A3); a similar comment applies to Example 2.4.

Example 3.2 Take d = 2;R11 = R22 = 1, R12 = R21 = −1. In this case (A3) is not satisfied;

nor is the deterministic SP well posed; see [Sh 2]. Moreover, in this case with b ≡ 0, w(·) coming

from sample paths of Brownian motion, the reflected/regulated process cannot be realised as

a semimartingale; see [W]. 2

Because of the spectral radius condition (A3) observe that

(I − W )−1 = (I + W + W 2 + W 3 + · · ·) ( 3.4 )

is a well defined matrix of nonnegative entries. The following result is proved in [Ra 1]; see

[HR], [Re], [CM], [MP], etc. for earlier results.

Theorem 3.3 Assume (A1) - (A3). Then the determinstic Skorokhod problem SP (w, b,R) is

well posed; that is, for each w(·) there exists a unique pair Y w(·), Zw(·) satisfying (i) - (iv)

given above. Moreover for 1 ≤ i ≤ d, t ≥ 0

0 ≤ (Y w)i(t) ≤ ((I − W )−1h)i(t) ( 3.5 )
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where

hi(t) = βit + sup
0≤s≤t

max{0,−wi(s)}, ( 3.6 )

h(·) = (h1(·), · · · , hd(·)). Also if w(·) is continuous, then so are Y w(·), Zw(·).

2

For our purposes later, we need also to consider a Skorokhod problem in a half space. Though

deterministic Skorokhod problem in a half space has been studied earlier, even with state

dependent drift and reflection, see for example [Sh 1] and references therein, the version we

present below does not seem to appear in the literature. As the arguments are similar to those

in [Ra 1], [Ra 2] we give just the barest details.

Let H ≡ H1 = {x ∈ IRd : x1 > 0} denote the half space. Let ` : [0,∞) × IR × IRd → IRd,Γ :

[0,∞)×IR×IRd → IMd(IR) be measurable functions; we denote `(t, ξ, z) = (`1(t, ξ, z), · · · , `d(t, ξ, z)),Γ(t, ξ, z) =

((Γij(t, ξ, z)))1≤i,j≤d. We assume

(B1): For 1 ≤ i, j ≤ d, `i,Γij are bounded measurable, (ξ, z) 7→ `i(t, ξ, z),

(ξ, z) 7→ Γij(t, ξ, z) are Lipschitz continuous, uniformly in t. Also Γii ≡ 1 ∀ i; |`i(·, ·, ·)| ≤

βi, β = (β1, · · · , βd).

(B2): For i 6= j there exists constant Wij such that |Γij(t, ξ, z)| ≤ Wij . Set W = ((Wij)) with

Wii ≡ 0. We assume that σ(W ) < 1.

Note: If b,R are as earlier, and y−1(·) = (y2(·), · · · , yd(·)) is such that yj(·) ≥ 0, yj(·)

nondecreasing function on [0,∞) for each j 6= 1, then we need later to take `(t, ξ, z) =

b(t, (ξ, y−1(t−)), z), Γ(t, ξ, z) = R(t, (ξ, y−1(t−)), z), t ≥ 0, ξ ∈ IR, z ∈ IRd. 2

Suppose w ∈ D([0,∞) : IRd). Let yj(·), j 6= 1 be given such that,

0 ≤ yj(t) ≤ ((I − W )−1h)j(t), ( 3.7 )

yj(·) is r.c.l.l. and nondecreasing, where h is given by (3.6). The Skorokhod problem SP (w, `,Γ;H1, y−1(·))

in the half space H̄1 consists in finding a real valued r.c.l.l. function Y (1)w and an IRd-valued

r.c.l.l. function Z(1)w such that the following hold:

(i)′ Skorokhod equation holds, viz.

(Z(1)w)1(t) = w1(t) +

t∫

0

`1(r, Y
(1)w(r−), Z(1)w(r−)) dr

+
∑

j 6=1

t∫

0

Γ1j(r, Y
(1)w(r−), Z(1)w(r−)) dyj(r) + Y (1)w(t)

( 3.8 )
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and for i = 2, . . . , d

(Z(1)w)i(t) = wi(t) +

t∫

0

`i(r, Y
(1)w(r−), Z(1)w(r−)) dr

+
∑

j 6=1

t∫

0

Γij(r, Y
(1)w(r−), Z(1)w(r−)) dyj(r)

+

t∫

0

Γi1(r, Y
(1)w(r−), Z(1)w(r−)) d(Y (1)w)(r) ( 3.9 )

(ii)′ Z(1)w(t) ∈ H̄1 for all t ≥ 0;

(iii)′ Y (1)w(0) ≥ 0, Y (1)w(·) is nondecreasing;

(iv)′ Y (1)w(·) can increase only when (Z(1)w)1(·) = 0.

With `, Γ, w(·), yj(·), j 6= 1 as above satisfying (B1), (B2), (3.7), if Y (1)w, Z(1)w solve the

above Skorokhod problem, then it can be proved as in Proposition 3.2 of [Ra 1] that for t ≥ 0,

0 ≤ Y (1)w(t) ≤ ((I − W )−1h)1(t). ( 3.10 )

In view of the above a priori estimate it is enough to consider only those y(1)(·) ∈ D↑[0, T ]

satisfying (3.10).

Let t > 0; for (Y (1), Z(1)), (U (1), V (1)) ∈ D↑([0, t] : IR+) × D([0, t] : H̄1) define the metric dt by

dt((Y
(1), Z(1)), (U (1), V (1)))

= Var (Y (1) − U (1) : [0, t]) + sup
0≤s≤t

|Z(1)(s) − V (1)(s)| ( 3.11 )

where Var(g : [0, t]) denotes the total variation of the real valued function g over the interval

[0, t]. Note that we get a complete metric space.

To solve SP (w, `,Γ;H1, y−1(·)), if

w1(0) − w1(0−) +
∑

j 6=1

Γ1j(0, Y
(1)w(0−), Z(1)w(0−))[yj(0) − yj(0−)]

:= w1(0) +
∑

j 6=1

Γ1j(0, 0, 0)yj(0) < 0, ( 3.12 )

take Y (1)w(0) = −[w1(0) +
∑
j 6=1

Γ1j(0, 0, 0)yj(0)], Z
(1)w(0) = 0. So we may take without loss of

generality that l.h.s. of (3.12) ≥ 0.

For (Y (1), Z(1)) ∈ D↑([0, T ] : IR+) × D([0, T ] : H̄1) define (Ŷ (1), Ẑ(1)) ∈ D↑([0, T ] : IR+) ×

D([0, T ] : H̄1) by stipulating that (Ŷ (1), Ẑ(1)) solves the Skorokhod problem for the function

t 7→ wi(t) +

t∫

0

`i(r, Y
(1)(r−), Z(1)(r−)) dr
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+
∑

j 6=1

t∫

0

Γij(r, Y
(1)(r−), Z(1)(r−)) dyj(r), 1 ≤ i ≤ d.

Note that the above is a known IRd-valued function. Getting Ŷ (1), Ẑ(1) is done by solving the

one dimensional Skorokhod problem for

t 7→ w1(t) +

t∫

0

`1(r, Y
(1)(r−), Z(1)(r−)) dr

+
∑

j 6=1

t∫

0

Γ1j(r, Y
(1)(r−), Z(1)(r−)) dyj(r).

Put S(Y (1), Z(1)) = (Ŷ (1), Ẑ(1)). If yj(·), j 6= 1 satisfy (3.7) it follows that Ŷ (1) satisfies (3.10).

Using Shashiashvili’s estimate [Sh 2] one can show that there exists t1 > 0 such that S is a strict

contraction on

(D↑([0, t] : IR+) × D([0, t] : H̄1), dt) for all t < t1. So SP (w, `,Γ;H1, y−1(·)) is well posed

on [0, t1) and hence Y (1)w(t1−), Z(1)w(t1−) are defined. Well posedness on [0, t1] follows by

defining

Y (1)w(t1) − Y (1)w(t1−)

= max{0,−[(Z(1)w)1(t1−) + w1(t1) − w1(t1−)

+
∑

j 6=1

Γ1j(t1, Y
(1)w(t1−), Z(1)w(t1−)) · [yj(t1) − yj(t1−)]]}

and then defining Z(1)w(t1) accordingly; in particular (Z(1)w)1(t1) = 0 if Y (1)w(t1) > Y (1)w(t1−).

Repeating the above as in [Ra 1] one can get 0 < t1 < t2 < . . . < tn < . . . such that

SP (w, `,Γ;H1, y−1(·)) is well posed on [0, t] for all t ≤ tn, n = 1, 2, . . . Now use an argument as

in Step 7 of Section 3 of [Ra 1] to conclude that SP (w, `,Γ;H1, y−1(·)) is well posed on [0, T ]

for any T > 0. Thus we have

Theorem 3.4 Let `,Γ, w(·), yj(·), j 6= 1 satisfy (B1), (B2), (3.7). Then SP (w, `,Γ;H1, y−1(·))

is well posed on [0, T ] for any T > 0. Moreover Y (1)w(·) satisfies (3.10) for all t. 2

4 A Nash equilibrium

We begin with a brief description of the deterministic dynamic d-person game with state space

constraints, alluded to in Section 2.

Let w(·) ∈ D([0,∞) : IRd). For y(·) = (y1(·), · · · , yd(·)) with yi(·) ≥ 0, yi(·) nondecreasing

r.c.l.l., consider the integral equation, called the state equation,

z(t) := z(t;w(·), y(·))
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= w(t) +

t∫

0

b(r, y(r−)), z(r−)) dr +

t∫

0

R(r, y(r−)), z(r−)) dy(r)

( 4.1 )

where
t∫

0
· · · =

∫

[0,t]

· · ·, and we take w(0−) = y(0−) = z(0−) = 0; clearly
t∫

0
b(r, y(r−), z(r−)) dr =

t∫
0

b(r, y(r), z(r)) dr. Note that (4.1) can be written, for i = 1, 2, . . . , d

zi(t) = wi(t) +

t∫

0

bi(r, y(r−), z(r−)) dr + yi(t)

+
∑

j 6=i

∫

[0,t]

Rij(r, y(r−), z(r−)) dyj(r). ( 4.2 )

Proposition 4.1 Under (A1), (A2) for given w(·), y(·) as above, equation (4.1) has a unique

solution z(·) ∈ D([0,∞) : IRd).

Proof: We just indicate the key steps of the proof. By (4.1) it is clear that z(0) should be

given by

z(0) = z(0−) + [w(0) − w(0−)] + R(0, 0, 0) [y(0) − y(0−)].

With z(0) uniquely determined, putting z(0) = z0, note that (4.1) may be written as

z(t) = z0 + [w(t) − w(0)] +

∫

(0,t]

b(r, y(r−), z(r−)) dr

+

∫

(0,t]

R(r, y(r−), z(r−)) dy(r).

For t > 0, set Dz0,t = {z ∈ D([0, t] : IRd) : z(0) = z0}; note that Dz0,t is a complete metric

space under the uniform metric. For r.c.l.l. z with z(0) = z0 define (Sz)(·) by

(Sz)(t) = z0 + [w(t) − w(0)] +

∫

(0,t]

b(r, y(r−), z(r−)) dr

+

∫

(0,t]

R(r, y(r−), z(r−)) dy(r).

By Lipschitz continuity of b,R in the z-variables we get

sup
0≤s≤t

|Sz(s) − Sẑ(s)| ≤ K


t +

d∑

j=1

(yj(t) − yj(0))


 · sup

0≤s≤t
|z(s) − ẑ(s)|
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for r.c.l.l. z(·), ẑ(·) with z(0) = ẑ(·) = z0. By right continuity of yj’s, one can get t̂ > 0 such

that S is a strict contraction on Dz0,t̂ and hence the state equation (4.1) is well posed on [0, t̂].

If t̂ is a point of continuity of all the yj’s, repeat the above procedure with t̂, z(t̂) playing the

roles of 0, z0. Iterating, one can get t1 > 0 such that the problem is well posed on [0, t] for

every t < t1. Thus z(t1−) is uniquely determined.

It is clear that z(t1) should be given by

z(t1) = z(t1−) + [w(t1) − w(t1−)]

+R(t1, y(t1−), z(t1−)) [y(t1) − y(t1−)];

thus z(·) is uniquely determined on [0, t1].

Repeat the above steps with t1, z(t1) playing respectively the roles of 0, z0. Iterate. One can get

0 < t1 < t2 < · · · < tn < · · · such that z(·) is uniquely determined on [0, tn] for every n. Apply

an argument as in Step 7, Section 3 of [Ra 1] to conclude that z(·) is uniquely determined on

[0, T ] for any T > 0. 2

We consider a d-person game whose state equation is given by (4.1) or (4.2). The nondecreasing

function yi(·) represents the control for the ith player, 1 ≤ i ≤ d. However we consider only

those controls that ensure that z(·) lives in Ḡ; so it is a d-person dynamic game with state space

constaints; cf. see [Ra 2].

For T > 0, w(·) ∈ D([0, T ] : IRd) let A(w(·), T ) = {y(·) = (y1(·), . . . , yd(·)) ∈ D([0, T ] : IRd) :

yi(·) ≥ 0, yi(·) nondecreasing and z(t) ∈ Ḡ for all 0 ≤ t ≤ T , where z(·) is given by (4.1)}

denote the set of feasible controls. By Theorem 3.3, under (A1) - (A3), A(w(·), T ) 6= φ. In

view of the discussion in Section 2, we consider the cost function Ji for the i-th player given

by, for T > 0, w(·) ∈ D([0, T ] : IRd), y(·) ∈ A(w(·), T )

Ji(y(·);w(·), T ) = yi(T ). ( 4.3 )

As each player tries to minimise his cost, the a priori bound (3.5) suggests that it may be

fruitful to consider the restricted class

Ah(w(·), T ) = {y(·) ∈ A(w(·), T ) :

0 ≤ yi(t) ≤ ((I − W )−1h)i(t), 0 ≤ t ≤ T, 1 ≤ i ≤ d}

( 4.4 )

where W is as in (A3), h given by (3.6). In addition to Y w(·), the y-part of the solution

to SP (w, b,R) under (A1) - (A3), another element of Ah(w(·), T ) is given by yi(t) = ((I −

W )−1h)i(t), 0 ≤ t ≤ T, 1 ≤ i ≤ d; see Theorem 5.1 of [Ra 1].

A feasible control y∗(·) = (y∗1(·), . . . , y
∗
d(·)) ∈ Ah(w(·), T ) is said to be a Nash equilibrium in

Ah(w(·), T ) if for each i = 1, 2, . . . , d,

Ji(y
∗(·);w(·), T ) ≤ Ji((yi(·), y

∗
−i(·));w(·), T ) ( 4.5 )
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for any yi(·) ∈ D([0, T ] : IR) such that

(yi(·), y
∗
−i(·)) ≡ (y∗1(·), . . . , y

∗
i−1(·), yi(·), y

∗
i+1(·), . . . , y

∗
d(·)) ∈ Ah(w(·), T ).

In order to understand the connection between the d-person game above and the Skorokhod

problem in the orthant, it is convenient to consider the following control problem in a half

space.

Let H ≡ H1 ≡ {x ∈ IRd : x1 > 0}. Let `,Γ, w(·), yj(·), j 6= 1, h(·) be as in Theorem 3.4. For

y1(·) ∈ D↑([0, T ] : IR+) we consider the state equation given by the system of d equations

z1(t) = w1(t) +

t∫

0

`1(r, y1(r−), z(r−)) dr

+
∑

j 6=1

t∫

0

Γ1j(r, y1(r−), z(r−)) dyj(r) + y1(t) ( 4.6 )

and for i = 2, . . . , d

zi(t) = wi(t) +

t∫

0

`i(r, y1(r−), z(r−)) dr

+
∑

j 6=1

t∫

0

Γij(r, y1(r−), z(r−)) dyj(r)

+

t∫

0

Γi1(r, y1(r−), z(r−)) dy1(r). ( 4.7 )

The function y1(·) is regarded as the control; moreover we consider only those controls such

that the solution z(·) of (4.6) - (4.7) lives in H̄1, that is, z1(·) ≥ 0. We seek a feasible control

such that y1(T ) is minimal. In view of Theorem 3.4 (more precisely (3.10)) it is enough to

focus on

V ≡ V
(1)
h := {y1(·) ∈ D↑([0, T ] : IR+) : y1(·) is feasible

in the sense that z1(·) ≥ 0, and

0 ≤ y1(t) ≤ ((I − W )−1h)1(t), 0 ≤ t ≤ T}. ( 4.8 )

T > 0 is fixed for our discussion. Note that V 6= φ by Theorem 3.4. We next define a suitable

topology on V.

Remark 4.2 It can be shown that y1(t) = ((I − W )−1h)1(t), 0 ≤ t ≤ T is an element of

V; the modifications needed in the proof of Theorem 5.1 of [Ra 1] are pretty obvious. Now,

if ((I − W )−1h)1(T ) = 0 then by monotonicity ((I − W )−1h)1(t) = 0 for all 0 ≤ t ≤ T .
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It is then easily shown that the y-part of the solution to SP (w, `,Γ;H1, y−1(·)) is given by

Y (1)w(t) = 0, 0 ≤ t ≤ T . Therefore in this case the optimal control is clearly given by Y (1)w(·),

the y-part of the solution to the Skorokhod problem in the half space. 2

In view of the preceding remark we assume that ((I − W )−1h)1(T ) > 0. Extend y1(·) ∈ V to

IR by putting y1(r) = 0, r < 0, and y1(r) = y1(T ), r ≥ T ; identify it with the measure given by

µy1((a, b]) =
1

((I − W )−1h)1(T )
[y1(b) − y1(a)], a, b ∈ IR, a ≤ b.

Note that {µy1 : y1(·) ∈ V} is a family of subprobability measures on IR; these measures are

supported on [0, T ]. Any r < 0 or r > T is a continuity point of y1(·) (or equivalently µy1).

We say {y
n)
1 (·)} converges vaguely to y1(·), denoted y

(n)
1

v
→ y1, if µ

y
(n)
1

v
→ µy1; that is y

(n)
1

v
→ y1

if [y
(n)
1 (t) − y

(n)
1 (s)] → [y1(t) − y1(s)] for continuity points s, t of (extended) y1(·). See [Ch]

for a detailed discussion on vague convergence of subprobability measures. By Helly selection

principle it follows that V ≡ V
(1)
h is relatively compact in the above topology.

To prove that V is compact it is enough to show that it is closed. For this we make the following

additional assumptions:

(B3): `1 does not depend on zl, l 6= 1; that is, `1(t, ξ, z) = `1(t, ξ, z1).

(B4): Γ1j is a function only of the time variable t; that is, Γ1j(t, ξ, z) = Γ1j(t), j 6= 1.

Now let y
(n)
1 (·) ∈ V and y

(n)
1

v
→ y1; we need to show that y1(·) ∈ V. Let z(n)(·), z(·) denote the

respective IRd-valued solutions to the system of state equations (4.6), (4.7) corresponding to

y
(n)
1 (·), y1(·). It is fairly simple to check that 0 ≤ y1(t) ≤ ((I − W )−1h)1(t) for all 0 ≤ t ≤ T .

It remains to show that z1(t) ≥ 0, 0 ≤ t ≤ T .
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By (4.6) and the hypotheses (B1) - (B4),

|z
(n)
1 (t) − z1(t)| ≤ |y

(n)
1 (t) − y1(t)| + K

t∫

0

|y
(n)
1 (r) − y1(r)| dr

+K

t∫

0

|z
(n)
1 (r) − z1(r)| dr

= αn(t) + θn(t) + K

t∫

0

|z
(n)
1 (r) − z1(r)| dr, (say) .

Gronwall inequality now implies [BC],

|z
(n)
1 (t) − z1(t)| ≤ αn(t) + θn(t) + K eKt

t∫

0

(αn(r) + θn(r)) e−Krdr.

Note that θn(s) → 0 as n → ∞ for all s, αn(s) → 0 as n → ∞ at points of continuity of

y1(·); θn, αn are uniformly bounded. So the above implies that z
(n)
1 (t) → z1(t) for a.a.t. Hence

z1(t) ≥ 0 for a.a.t; now right continuity of z1(·) implies z1(t) ≥ 0 for all t. Thus y1(·) is a

feasible control, and we have proved

Theorem 4.3 Let `,Γ, w(·), yj(·), j 6= 1 satisfy (B1) - (B4) and (3.7). Let V
(1)
h be given by

(4.8) and endowed with the topology of vague convergence of bounded measures. Then V
(1)
h is

a nonempty compact space. 2

Note that y
(n)
1

v
→ y1 ⇔

∫
f(r) dy

(n)
1 (r) →

∫
f(r) dy1(r) for any continuous function f on IR

with compact support. Now let f0 be a continuous function on IR with compact support such

that f0(·) = 1 on [0, T ]; as µy1 is supported on [0, T ] for any y1(·) ∈ V,

y1(T ) = y1(T ) − y1(0−) =

∫
f0(r) dy1(r).

So the cost function given by y1(·) 7→ y1(T ) is a continuous function on the compact space V
(1)
h .

So there exists y
(0)
1 (·) ∈ V

(1)
h such that

y
(0)
1 (T ) = inf{y1(T ) : y1(·) ∈ V

(1)
h }. ( 4.9 )

We want to show that Y (1)w(T ) = y
(0)
1 (T ), under suitable conditions.

Lemma 4.4 Let `,Γ, w(·), yj(·), j 6= 1 satisfy (B1) - (B4), (3.7). In addition, assume that

`1 is a function of only the time variable. Then Y (1)w(T ) = y
(0)
1 (T ). In fact, (Y (1)w)(t) ≤

y1(t), 0 ≤ t ≤ T for any feasible y1.
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Proof: By our assumptions, t 7→ w1(t) +
t∫

0
`1(r) dr +

∑
j 6=1

t∫
0

Γ1j(r) dyj(r) is a known function

of t. Clearly (Y (1)w)(·), (Z(1)w)1(·) solve the one dimensional Skorokhod problem for the above

function. For any y1(·) ∈ V
(1)
h , if z(·) = (z1(·), . . . , zd(·)) denotes the corresponding solution to

the state equation (4.6), (4.7), then by our hypothesis.

z1(s) − y1(s) = w1(s) +

s∫

0

`1(r) dr +
∑

j 6=1

s∫

0

Γ1j(r) dyj(r).

Hence it follows that

(Y (1))w(t) = sup
0≤s≤t

max




0,−


w1(s) +

s∫

0

`1(r) dr +
∑

j 6=1

s∫

0

Γ1j(r) dyj(r)









≤ y1(t)

as z1(·) ≥ 0. The lemma now follows. 2

Theorem 4.5 Let `,Γ, w(·), yj(·), j 6= 1 satisfy (B1) - (B3), (3.7). In addition let the following

hypotheses be satisfied:

(B5): ξ ≤ ξ̃ ⇒ `1(r, ξ, z) ≥ `1(r, ξ̃, z)

(B6): `1 is differentiable w.r.t. z1 and has a nonpositive derivative, viz.

`13(r, ξ, z1) :=
∂

∂z1
`1(r, ξ, z1) ≤ 0.

(Here we are implicitly assuming (B3) as well.)

(B7): Γij depends only on the time variable r, 1 ≤ i, j ≤ d. (Clearly (B7) ⇒ (B4); also recall

Γii = 1).

Let Y (1)w(·) denote the y-part of the solution to SP (w, `,Γ;H1, y−1(·)). Then

(Y (1)w)(t) ≤ y1(t), 0 ≤ t ≤ T for all y1(·) ∈ V
(1)
h . ( 4.10 )

In particular (Y (1)w)(T ) = y
(0)
1 (T ) = r.h.s. of (4.9).

Proof: Let y
(0)
1 (·) ∈ V

(1)
h be such that (4.9) holds. Let z(0)(·) = (z

(0)
1 (·), . . . , z

(0)
d (·)) denote

the solution to the state equation (4.6), (4.7) corresponding to the feasible control y
(0)
1 (·). Put

z̃(0)(·) = z(0)(·). Note that z̃
(0)
1 (·) = z

(0)
1 (·) ≥ 0 as y

(0)
1 (·) is feasible.

For k = 1, 2, . . . define y
(k)
1 (·), z(k)(·), z̃(k)(·) inductively as follows. Set `(k−1)(r) = `(r, y

(k−1)
1 (r−), z̃(k−1)(r−)),Γ(k−1)

Γ(r, y
(k−1)
1 (r−), z̃(k−1)(r−)) = Γ(r). Note that once y

(k−1)
1 (·), z̃(k−1)(·) are known, `(k−1)(·),Γ(k−1)(·)
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are known functions of r. Let y
(k)
1 (·), z(k)(·) be the solution to the Skorokhod problem SP (w, `(k−1),Γ(k−1);H1, y−1(·))

so that

z
(k)
1 (t) = w1(t) +

t∫

0

`
(k−1)
1 (r) dr +

∑

j 6=1

t∫

0

Γ1j(r) dyj(r) + y
(k)
1 (t)

= w1(t) +

t∫

0

`1(r, y
(k−1)
1 (r−), z̃

(k−1)
1 (r−)) dr

+
∑

j 6=1

t∫

0

Γ1j(r) dyj(r) + y
(k)
1 (t) ( 4.11 )

and for i = 2, . . . , d

z
(k)
i (t) = wi(t) +

t∫

0

`i(r, y
(k−1)
1 (r−), z̃(k−1)(r−)) dr

+
∑

j 6=1

t∫

0

Γij(r) dyj(r) +

t∫

0

Γi1(r) dy
(k)
1 (r). ( 4.12 )

Note that z
(k)
1 (·) ≥ 0. Next let z̃(k)(·) be the solution to the state equations (4.6), (4.7)

corresponding to y
(k)
1 (·) so that

z̃
(k)
1 (t) = w1(t) +

t∫

0

`1(r, y
(k)
1 (r−), z̃

(k)
1 (r−)) dr

+
∑

j 6=1

t∫

0

Γ1j(r) dyj(r) + y
(k)
1 (t) ( 4.13 )

and for i = 2, . . . , d

z̃
(k)
i (t) = wi(t) +

t∫

0

`i(r, y
(k)
1 (r−), z̃(k)(r−)) dr

+
∑

j 6=1

t∫

0

Γij(r) dyj(r) +

t∫

0

Γi1(r) dy
(k)
1 (r). ( 4.14 )

We claim that z̃
(k)
1 (t) ≥ 0, 0 ≤ t ≤ T, k = 0, 1, 2, . . . This is proved by induction on k. It is

already done for k = 0. Assume it for k ≤ (n− 1). As `(n−1),Γ(n−1) are functions only of r, by

the preceding lemma, y
(n)
1 (t) ≤ y1(t), 0 ≤ t ≤ T , for any y1(·) ∈ D↑([0, T ] : IR+) such that for

0 ≤ t ≤ T

w1(t) +

t∫

0

`
(n−1)
1 (r) dr +

∑

j 6=1

t∫

0

Γ1j(r) dyj(r) + y1(t) ≥ 0.
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But by induction hypothesis z̃
(n−1)
1 (·) ≥ 0, and hence (4.13) for k = n− 1 implies y

(n−1)
1 (·) has

the above property. So y
(n)
1 (t) ≤ y

(n−1)
1 (t) for all t. Consequently (4.11) with k = n, and (4.13)

with k = n − 1 give z
(n)
1 (t) ≤ z̃

(n−1)
1 (t), 0 ≤ t ≤ T .

Next (4.11), (4.13) with k = n, (B3) and the mean value theorem give

z̃
(n)
1 (t) − z

(n)
1 (t) =

t∫

0

α(n)(r) dr

+

t∫

0

`13(r, y
(n−1)
1 (r), θ(n)(r)) [z̃

(n)
1 (r) − z

(n)
1 (r)] dr

( 4.15 )

where θ(n)(r) is a point between z̃
(n)
1 (r) and z̃

(n−1)
1 (r), and

α(n)(r) = [`1(r, y
(n)
1 (r), z̃

(n)
1 (r)) − `1(r, y

(n−1)
1 (r), z̃

(n)
1 (r)]

+[`13(r, y
(n−1)
1 (r), θ(n)(r))] [z

(n)
1 (r) − z̃

(n−1)
1 (r)].

In the above we have also used the fact that in dr integrals, (r−) occurring in the integrands

can be replaced by (r), as the discontinuities are countable. By the preceding paragraph and

assumptions (B5), (B6) note that α(n)(·) ≥ 0. Therefore from (4.15) we get

z̃
(n)
1 (t) − z

(n)
1 (t) =

t∫

0

α(n)(r) exp




t∫

r

`13(r
′, y

(n−1)
1 (r′), θ(n)(r′))dr′



 dr

and hence z̃
(n)
1 (t) − z

(n)
1 (t) ≥ 0 for all t. As z

(n)
1 (·) ≥ 0 we have z̃

(n)
1 (·) ≥ 0, proving the claim.

It therefore follows that y(n)(·) ∈ V
(1)
h for all n. We have also proved y

(n)
1 (t) ≤ y

(n−1)
1 (t) ≤

· · · ≤ y
(0)
1 (t), 0 ≤ t ≤ T for all n. But by definition of y

(0)
1 (·), note that y

(0)
1 (T ) ≤ y

(n)
1 (T ), ∀ n.

Hence y
(n)
1 (T ) = y

(0)
1 (T ) for all n.

The theorem will now follow once the following lemma is established. 2

Lemma 4.6 Let `,Γ, w(·), yj(·), j 6= 1 satisfy (B1), (B2), (3.7) and (B7). Let y
(0)
1 (·) ∈

D↑([0, T ] : IR+), z(0)(·) ∈ D([0, T ] : IRd) be such that 0 ≤ y
(0)
1 (t) ≤ ((I − W )−1h)1(t), z

(0)
1 (t) ≥

0, 0 ≤ t ≤ T , but otherwise arbitrary; (in particular they need not be as in the above proof).

For k = 1, 2, . . . define y
(k)
1 (·), z(k)(·), z̃(k)(·) inductively by analogues of (4.11) - (4.14). Then

y
(n)
1 (·) → Y (1)w in the total variation metric, z(n)(·) → Z(1)w, z̃(n)(·) → Z(1)w both in the

supremum metric.

Proof: For k = 1, 2, . . . note that y
(k)
1 (·), z(k)(·) solve the Skorokhod problem SP (w, `(k−1),Γ(k−1);H1, y−1(·))

where

`(k−1)(r) = `(r, y
(k−1)
1 (r−), z̃(k−1)(r−)),Γ(k−1)(r) = Γ(r)
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(which are ‘known’ functions of r), and z̃(k)(·) solves the state equation (4.6), (4.7) for the

control y
(k)
1 (·); note that z̃(k)(·) need not be H̄1-valued. As y

(k+1)
1 (·), y

(k)
1 (·) are maximal func-

tions for one dimensional Skorokhod problem, (and as y
(k+1)
1 (0) = y

(k)
1 (0)), by Shashiashvili’s

estimate [Sh 2], we get, denoting ϕ(k+1)(r) = Var (y
(k+1)
1 − y

(k)
1 : [0, r]),

ϕ(k+1)(t) ≤ K

t∫

0

ϕ(k)(s) ds + K

t∫

0

(
sup

0≤r≤s

|z̃(k)(r) − z̃(k−1)(r)|

)
ds.

( 4.16 )

By the state equations for z̃(k+1)(·), z̃(k)(·),

sup
0≤s≤t

|z̃(k+1)(s) − z̃(k)(s)| ≤ K ϕ(k+1)(t) + K

t∫

0

(
sup

0≤r≤s

|z̃(k+1)(r) − z̃(k)(r)|

)
ds

and hence by Gronwall inequality

sup
0≤s≤t

|z̃(k+1)(s) − z̃(k)(s)| ≤ K1e
K1tϕ(k+1)(t) ( 4.17 )

for some constant K1. Put

g(n)(t) = ϕ(n)(t) + sup
0≤s≤t

|z̃(n)(s) − z̃(n−1)(s)|, 0 ≤ t ≤ T, n = 1, 2, . . .

Then (4.16), (4.17) and iteration gives

g(n)(t) ≤ C
t∫

0
g(n−1)(s) ds ≤ C1C(n−1)tn−1

(n−1)!

→ 0, as n → ∞.





( 4.18 )

So {y
(n)
1 (·)} is a Cauchy sequence in D↑[0, T ] under total variation metric, and {z̃(n)(·)} is

Cauchy under supremum metric; these converge in the respective metrics to say, ỹ1(·), z̃(·).

By analogues of (4.11) - (4.14) for z(n)(·), z̃(n)(·) it now follows that for 0 ≤ t ≤ T ,

sup
0≤s≤t

|z(n)(s) − z̃(n)(s)| ≤ K g(n)(t) → 0.

Therefore lim z(n)(·) = lim z̃(n)(·) = z̃(·) in the supremum metric. Consequently it is clear that

z̃1(·) ≥ 0 (as z
(n)
1 (·) ≥ 0 for all n) and

z̃1(t) = w1(t) +

t∫

0

`1(r, ỹ1(r), z̃(r)) dr

+
∑

j 6=1

t∫

0

Γ1j(r) dyj(r) + ỹ1(t),

z̃i(t) = wi(t) +

t∫

0

`i(r, ỹ1(r), z̃(r)) dr

+
∑

j 6=1

t∫

0

Γij(r) dyj(r) +

t∫

0

Γi1(r) dỹ1(r).
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In view of well posedness of Skorokhod problem in the half space, to complete the proof it is

enough to prove that

ỹ1(t) =

t∫

0

1{0}(z̃1(s)) dỹ1(s), ( 4.19 )

that is, ỹ1(·) can increase only when z̃1(·) = 0. Note that (4.19) would follow once it is

established that
t∫

0
z̃1(s) dỹ1(s) = 0 for all t. Since y

(k)
1 (·) → ỹ1(·) in total variation and

z
(k)
1 (·) → z̃1(·) uniformly, it is easily seen that

t∫

0

z̃1(s) dỹ1(s) = lim
k→∞

t∫

0

z
(k)
1 (s) dy

(k)
1 (s) = 0

as y
(k)
1 (·), z(k)(·) solve Skorokhod problem for each k. 2

We now go back to the d-person game in the orthant Ḡ with state space constraints.

Theorem 4.7 Let b : [0,∞) × IRd × IRd → IRd, R : [0,∞) × IRd × IRd → IMd(IR) be as in

Section 3. In addition to (A1) - (A3) let the following hypotheses hold:

(A4): Rij are functions only of the time variable for 1 ≤ i, j ≤ d, that is, R(t, y, z) = R(t).

(A5): For 1 ≤ i ≤ d, bi are independent of zl, l 6= i, that is, bi(t, y, z) = bi(t, y, zi).

(A6): For fixed 1 ≤ i ≤ d, y−i = (y1, . . . , yi−1, yi+1, . . . , yd) ∈ IRd−1, t ≥ 0, z ∈ IRd

bi(t, (ξ, y−i), z) ≥ bi(t, (ξ̃, y−i), z)

whenever ξ ≤ ξ̃, (here (ξ, y−i) = (y1, . . . , yi+1, ξ, yi+1, . . . , yd)).

(A7): For fixed i, the function zi 7→ bi(t, y, zi) is differentiable and

∂

∂zi

bi(t, y, zi) ≤ 0.

For w ∈ D([0, T ] : IRd) let Y w,Zw be the solution to the Skorokhod problem SP (w, b,R;G)

in the orthant. Then Y w is a Nash equilibrium in Ah(w(·), t) for any 0 ≤ t ≤ T for the cost

functions given by (4.3), viz. Ji(y(·);w(·), t) = yi(t).

Proof: Fix 1 ≤ i ≤ d. Set y−i(·) = (Y w)−i(·), `(r, ξ, z) = b(r, (ξ, (Y w)−i(r)), z), Γ(r) = R(r).

Then (B1) - (B3), (3.7), (B5) - (B7) are satisfied with 1, H1 replaced by i,Hi respectively,

where Hi = {x ∈ IRd : xi > 0}. By uniqueness of solution to the Skorokhod problem in the

half space H̄i, and as Ḡ ⊂ H̄i, it follows that (Y w)i(·), Zw solve SP (w, `,Γ;Hi, (Y w)−i(·)).

So by the preceding theorem, (Y w)i(t) ≤ yi(t) for any yi(·) ∈ V
(i)
h , where V

(i)
h is defined
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analogous to (4.8). It is now clear that (Y w)i(t) ≤ yi(t), 0 ≤ t ≤ T for any yi(·) such that

(yi(·), (Y w)−i(·)) ∈ Ah(w(·), t), because any feasible solution in the orthant is a feasible solution

in the half space H̄i. This completes the proof. 2

In the converse direction we have the following result

Theorem 4.8 In addition to (A1) - (A3), assume the following hypotheses:

(A8): For 1 ≤ i, j ≤ d, bi, Rij are independent of the z-variables.

(A9): For 1 ≤ i, k ≤ d,

bi(t, (yk, y−k)) ≥ bi(t, (ỹk, y−k))

whenever yk ≤ ỹk.

(A10): For 1 ≤ i, j, k ≤ d, i 6= j

0 ≥ Rij(t, (yk, y−k)) ≥ Rij(t, (ỹk, y−k))

whenever yk ≤ ỹk.

If y∗(·) = (y∗1(·), . . . , y
∗
d(·)) is a Nash equilibrium in Ah(w(·), t) for each 0 ≤ t ≤ T for the cost

functions given by (4.3), then y∗(·) = Y w(·).

Proof: The proof of Theorem 5.11 of [Ra 1] can be applied here. 2

Note: Existence of a Nash equilibrium is not asserted in the above result.

The following result is now immediate from the preceding theorems.

Corollary 4.9 Assume the combined hypotheses of Theorems 4.7 and 4.8, that is, (A1) -

(A3), (A4), (A8), (A9) hold and Rij(t) ≤ 0, i 6= j. Then Y w is the unique Nash equilibrium

in Ah(w(·), t) for each t. 2

Remark 4.10 In addition to the hypotheses of the above corollary, assume that t 7→ Rij(t) is

nondecreasing. Then it is shown in Theorem 5.3 of [Ra 1] that (Y w)i(t) ≤ yi(t), t ≥ 0, 1 ≤ i ≤ d,

for any feasible control y(·) = (y1(·), . . . , yd(·)); that is, Y w can not be improved upon in any

company; see [Re], [CM] for earlier results; see also Theorem 2.6 of [Ra 2]. In the terminology

of [Ra 2], Y w is the unique utopian equilibrium in this case. 2

Note: Example 4.14 in [Ra 2], in the context of absolutely continuous w(·), shows that Nash

equilibrium (even serving for all t) need not be unique. 2

In Theorem 4.7 note that the conditions on Rij are more stringent than those on bi. One reason

for this is that we do not know of a suitable Gronwall inequality when dyj(·) measures have
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atoms (that is, when yj(·)’s have discontinuities). When yj(·) are continuous, conditions on Rij

or equivalently Γij can be weakend. This is quite useful because, when w(·) come from sample

paths of Brownian motion (for example, in the network model in Section 2), the solution to

Skorokhod problem is continuous; so (Y w)i(·) are continuous.

Proposition 4.11 Let `,Γ, w(·), yj(·), j 6= 1 be as in Theorem 4.3 except that

(a) yj(·), j 6= 1 are continuous;

(b) instead of (B4) assume

(B4)′: Γ1j does not depend on zl, l 6= 1, for j 6= 1; that is, Γ1j(t, ξ, z) = Γ1j(t, ξ, z1).

Then the conclusion of Theorem 4.3 still holds.

Proof: Proceeding as in the proof of Theorem 4.3 we get, using the same notation,
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|z
(n)
1 (t) − z1(t)| ≤ |y

(n)
1 (t) − y1(t)| + K

t∫

0

|y
(n)
1 (r) − y1(r)|


dr +

∑

j 6=1

dyj(r)




+K

t∫

0

|z
(n)
1 (r) − z1(r)|



dr +
∑

j 6=1

dyj(r)



 .

As yj(·), j 6= 1 are continuous, Gronwall inequality implies as before z
(n)
1 (t) → z1(t) a.a.t. Proof

is completed as before using right continuity of z1(·). 2

Note: In the above proposition, even if w(·), y
(n)
1 (·), n = 1, 2, . . . are continuous, y1(·) (and

hence z(·)) can possibly have discontuities; this is because vague/weak limit of continuous

probability distributions can have atoms.

Lemma 4.12 Let f be a bounded measurable function on [0, T ], ν a bounded nonatomic signed

measure, and µ a finite (nonnegative) nonatomic measure on [0, T ] such that

f(t) =

t∫

0

dµ(s) +

t∫

0

f(s) dν(s), ∀ 0 ≤ t ≤ T. ( 4.20 )

Then

f(t) =

t∫

0

exp(ν[s, t]) dµ(s), 0 ≤ t ≤ T ( 4.21 )

and hence f is nonnegative.

Proof: Since ν is nonatomic, by Fubini’s theorem, the n-fold product (ν × · · · × ν) gives zero

measure to any (n−1) or lower dimensional hyperplane. Next note that (ν×· · ·×ν) is invariant

under permutation of coordinates. Therefore for any s < t, n = 1, 2, . . . it follows that




t∫

s

dν(r)




n

= n!

∫

s<s1<s2<...<sn<t

dν(s1) dν(s2) . . . dν(sn). ( 4.22 )

The lemma can now be proved by iterating (4.20), and repeatedly using Fubini’s theorem and

(4.22). 2

We are now in a position to give the analogue of Theorem 4.5.

Theorem 4.13 Assume (B1) - (B3), (B4)′ and

(B5)′: ξ ≤ ξ̃ ⇒ `1(r, ξ, z1) ≥ `1(r, ξ̃, z1),Γ1j(r, ξ, z1) ≥ Γ1j(r, ξ̃, z1) for r ≥ 0, z1 ∈ IR, j 6= 1;
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(B6)′: `1,Γ1j are dfferentiable w.r.t. z1, have bounded derivatives and

`13(r, ξ, z1) :=
∂

∂z1
`1(r, ξ, z1) ≤ 0,

Γ1j3(r, ξ, z1) :=
∂

∂z1
Γ1j(r, ξ, z1) ≤ 0.

Let w(·) be continuous with w1(0) ≥ 0. For j 6= 1, let yj(·) be continuous, yj(0) = 0, yj(·)

nondecreasing and yj(·) satisfies (3.7). Then (Y (1)w)(t) ≤ y1(t) for all 0 ≤ t ≤ T, y1(·) ∈ V
(1)
h .

Proof: Let y
(0)
1 (·), z(0)(·), z̃(0)(·) be as in the proof of Theorem 4.5, denoting an optimal element

in V
(1)
h and the corresponding solution to state equation. For k = 1, 2, . . . let y

(k)
1 (·), z(k)(·), z̃(k)(·)

be defined inductively by analogues of (4.11) - (4.14). Note that though y
(0)
1 (·), z(0)(·), z̃(0)(·)

may not be continuous, by continuity of w(·), yj(·), j 6= 1 it follows that y
(k)
1 (·), z(k)(·), z̃(k)(·), k ≥

1 are all continuous.

Proceeding as in the proof of Theorem 4.5, we get

z̃
(n)
1 (t) − z

(n)
1 (t) =

t∫

0

dµ(n)(r) +

t∫

0

(z̃
(n)
1 (r) − z

(n)
1 (r)) dν(n)(r) ( 4.23 )

where
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dµ(n)(r) = [`1(r, y
(n)
1 (r), z̃

(n)
1 (r)) − `1(r, y

(n−1)
1 (r), z̃

(n)
1 (r))] dr

+
∑

j 6=1

[Γ1j(r, y
(n)
1 (r), z̃

(n)
1 (r)) − Γ1j(r, y

(n−1)
1 (r), z̃

(n)
1 (r)) dyj(r)

+[`13(r, y
(n−1)
1 (r), θ(n)(r))] [z

(n)
1 (r) − z̃

(n−1)
1 (r)] dr

+
∑

j 6=1

[Γ1j3(r, y
(n−1)
1 (r), θ(n,j)(r))] [z

(n)
1 (r) − z̃

(n−1)
1 (r)] dyj(r)

dν(n)(r) = `13(r, y
(n−1)
1 (r), θ(n)(r)) dr

+
∑

j 6=1

Γ1j3(r, y
(n−1)
1 (r), θ(n,j)(r)) dyj(r),

θ(n)(r), θ(n,j)(r) being points between z̃
(n−1)
1 (r) and z̃

(n)
1 (r). Note that (4.23) is the analogue of

(4.15). As in the earlier proof, using induction and our hypotheses, it is seen that dµ(n)(r) is

a nonnegative measure; it is also clear that µ(n)(·) is a bounded nonatomic measure on [0, T ].

Similarly dν(n)(r) is a bounded nonatomic signed measure; (in fact, ν(n)(·) is a nonpositive

measure). Therefore the preceding lemma now implies that z̃(n)(t) − z
(n)
1 (t) ≥ 0 for all t.

Consequently it follows as before that y
(n)
1 (·) ∈ V

(1)
h for all n, and y

(n)
1 (t) ≤ y

(n−1)
1 (t) ≤ . . . ≤

y
(0)
1 (t), 0 ≤ t ≤ T and hence y

(n)
1 (T ) = y

(0)
1 (T ) for all n.

To get the analogue of Lemma 4.6, let g(n)(·) be as in the proof of that lemma. Mimicking the

arguments there

g(n)(t) ≤ C

t∫

0

g(n−1)(r)


dr +

∑

j 6=1

dyj(r)




≤ C1

Cn−1

[
t +

∑
j 6=1

yj(t)

]n−1

(n − 1)!
→ 0 as n → ∞.

In the above we have used Gronwall inequality for integrals involving dr and dyj(r), j 6= 1. The

other details being exactly the same as in the earlier case, the proof of the theorem is complete.

2

The following analogue of Theorem 4.7 is now easy to obtain; (cf. Theorem 4.9 of [Ra 2]).

Theorem 4.14 Let w(·) be continuous with w(0) ∈ Ḡ. In addition to (A1) - (A3) assume

(A4)′: For 1 ≤ i ≤ d, bi, Rij are independent of zl, l 6= i; that is, bi(t, y, z) = bi(t, y, zi),

Rij(t, y, z) = Rij(t, y, zi) for all j.

(A5)′: For fixed 1 ≤ i ≤ d, y−i = (y1, . . . , yi−1, yi+1, . . . , yd), t ≥ 0, z ∈ IRd

bi(t, (ξ, y−i), z) ≥ bi(t, (ξ̃, y−i), z),

Rij(t, (ξ, y−i), z) ≥ Rij(t, (ξ̃, y−i), z)
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whenever ξ ≥ ξ̃.

(A6)′: The functions zi 7→ bi(t, y, zi), zi 7→ Rij(t, y, zi) are differentiable, have bounded deriva-

tives and

∂

∂zi

bi(t, y, zi) ≤ 0,
∂

∂zi

Rij(t, y, zi) ≤ 0, 1 ≤ i, j ≤ d.

Let Y w,Zw be the solution to SP (w, b,R;G) in the orthant. Then the conclusion of Theorem

4.7 holds. 2

In view of Theorems 4.8 and 4.14, the analogue of Corollary 4.9, when w(·) is continuous, is

now obvious.
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