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Abstract

The asymptotic properties of the least squares estimator of the cusp in some nonlinear
nonregular regression models is investigated via the study of the weak convergence of the least
squares process generalizing earlier results in Prakasa Rao (Statist. Probab. Lett. 3 (1985) 15).
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1. Introduction

Nonlinear regression models are widely used for modeling of stochastic
phenomena. Several examples for such modeling are given by Bard [2]. The study
of asymptotic properties of the least squares estimator (LSE) of the parameters
occurring in nonlinear regression models has been the subject of investigation since it
is in general difficult to obtain the exact distribution of the LSE for any fixed sample.
Jennrich [9], Malinvaud [10], Bunke and Schmidt [3] and Wu [20], among others,
have investigated the asymptotic properties of the LSE for nonlinear regression
models. All the works cited above, on the asymptotic distribution theory for the LSE
in nonlinear regression models, assume regularity conditions which include in
particular the condition on the twice differentiability of the regression function with
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respect to the parameter in addition to other conditions (cf. [7]). We have given an
alternate approach to the problem which circumvents the condition on the
differentiability of the regression function in a series of papers in Prakasa Rao
[15-17]. A comprehensive presentation of this approach is given in Prakasa Rao [18].
A review of these and related results is given in Prakasa Rao [19]. Detailed discussion
of this approach for a special class of nonregular nonlinear regression models is
given in Prakasa Rao [14]. Maximum likelihood estimation for cusp-type nonregular
problems was first started in Prakasa Rao [11] and later by Ibragimov and
Khasminskii [8]. Other works dealing with problems of estimation for nonregular
models include Akahira and Takeuchi [1], Dachian [4] for the estimation of the cusp
of Poisson observations and Dachian and Kutoyants [5] on the cusp estimation for
ergodic diffusion process among others.
Consider the nonlinear regression model

Y= S(x1,0) +&, i=l. (1.1)

We now discuss the problem of estimation of the parameter 6 by the least squares
approach when the parameter 0 is a cusp for the function S(x,0) = s(x — 0). This
problem in general is not amenable to standard methods using the Taylor’s
expansion, for instance, the function S(x,0) = |x — 6", 0<)L<% is not differentiable
at 0. We study the asymptotic properties of the LSE via the least squares process
developed in Prakasa Rao [15] (cf. [18,19]). A special case of this problem was
studied in Prakasa Rao [14].

2. Main result
We now have the following main result.

Theorem 2.1. Consider the nonlinear regression model

Y, =S(x;,0) +¢, i1, (2.1)
where

S(x,0) = alx — 0)* + h(x — 0), x<0,

S(x,0) = blx — 0] + h(x — 0), x>0, (2.2)

where a#0, b#0, 0<i<3, 0@ and h(.) satisfies the Holder condition of order
B>A+ % Suppose O is compact. Let Oy be the true parameter. Furthermore, suppose

that {&;,i>1} are independent and identically distributed random variables with mean
zero and variance one. Let {x;} be a real sequence satisfying

zn: {S(x1,0) — S(x1,00)}> = 2nC(A)]0 — 0o (1 + 0(1)) (2.3)
i=1
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as n— oo where C(1)#0 and further suppose that there exists 0 <k <k, < oo such
that

nky |01 — 021 <> {S(xi, 01) — S(xi — 02)} <y |0y — 0o (2.4)
i=1

forall 0, and 0, in ©. Let én be an LSE of 0 based on the observations {Y;, 1<i<n}.
Then there exists a constant C>0 such that, for any 1>0 and for any n>1,

Py, [n°]0, — 0] > 1] < Co~ 3D (2.5)
and
() <z 7
n (0, —0p) > ¢ asn— o0, (2.6)

where p = W and ¢ is the location of the minimum of the gaussian process
{R(¢),— 0 <p< 0} with

E[R(¢)] = 2C(2)| """ (2.7)
and
Cov[R(¢1), R(92)] = 4CA[11 [ + o[ — |y — ). (2.8)
The process {R(¢p), — o0 <¢p< oo} can be represented in the form
= \/BCYW(p) +2C(2)|p/*, (2.9)

where WH is the fractional Brownian motion with mean zero and the covariance
Sfunction

Coo( W™ (9), W(9) = 3lI1 !+ 1sPH*1 — 16y — 6, (2.10)

and H = 4 +% is the Hurst parameter.

Proof. Let 0, be an LSE of 0 obtained by minimizing

n

0n(0) =" (¥i = S(x;,0))*. 2.11)

i=1
It is obvious that 0, minimizes

Qn(o) - QH(OO)

:zn:(Y[—S(X” Z Y SXMQO)

i=1

=2 Z S(x;,0) — S(x;,6p)) —|—Z (x:,0 x,,Ho)) . (2.12)
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Observe that condition (2.3) implies that

n

E,[0n(0) — 0n(00)] = > (S(xi,0) — S(x1,00))°

i=1

=2nC(A)|0 — o[ (1 + 0(1)) (2.13)
and
Vargo[Qﬂ( ) Qn 90 Z xl; xl790))
=8nC(A)|0 — 0o (1 + 0(1)). (2.14)

In general, it follows from condition (2.4) there exists k> >0 independent of #n, 0
and 0y e ® such that

Eg,[04(0) — Ou(00)] <nka2|0 — 0o (2.15)
and

Varg,[Qn(0) — On(00)] <4nks|0 — 0o (2.16)
Furthermore,

COU(;O[Q,,(GI) - Qn(go), Qn(92) - QH(GO)]

=4 (S(xi,01) = S(x;,00))(S(x1,02) — S(x1,60))

i=1
=4nC(A)[|01 — 0/ + 10, — 0o =10, — 0,]*(1 + (1)) (2.17)

from the relation

LA+ 1lgll” = 11f = gl =2< £, 9>

for any two vectors f and g in R". Let
Ju(0) = 0n(0) — On(00).

In view of the above relations, it follows by arguments similar to those given in the
Theorem 3.6 of Prakasa Rao [11] that there exists #>0 such that

Ju(0)

lim lim sup Pgo W < n

20 pow |0—00|>Tn—"

=0, (2.18)

where p = (24 + 1)71. In fact the same proof shows that, for any 7>0,
Py, [n"16, — o] > 1] < Co~ D), (2.19)
where the constant C is independent of n and 7. In view of the above observation, the

process {J,(0), 0e®} has a minimum in the interval [0y —tn 7”0y + tn*] with
probability approaching one for large t. For any such 7>0, let

Rn(¢) = Jn(GO + d)nip)’ qs € [_T’ T] (220)
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and let R(¢) be the gaussian process on [—t, 7] with

E[R(§)] = 2C(2)|¢[**! (2.21)
and

Cov[R(¢y), R(¢)] = 4C(A) 1|7 + o™ = |61 — 2. (2.22)

Observe that the process {R(¢), —o0 <¢ < o0}, where

(o) — K@)~ EIR@)] 2.23)
8C(1)

is a gaussian random process with mean zero and the covariance function

Coo(R(), R($2)) = 3ll9n P+ 162" — [y — 9] (224)

which is the fractional Brownian motion with the Hurst parameter H = / + %
Let

n

Zn(d)) = Z Si(S(X,',Go + ¢n—p) - S(xiaeo))

i=1
n

= Z api&i (225)
i=1

and

n

To(®) =Y (S(xi, 0 + bn™") = S(xi,00))". (2.26)

i=1
Observe that T,(¢) is continuous in ¢ for any fixed n>1 and
Tu($)=2C(A)[p[*"" as n— oo, (2.27)

In addition,
Zu(d) 2 N(0,2C(D)| ¢! as n— oo (2.28)

since {¢, i=1} are independent and identically distributed random variables
with mean zero and finite positive variance and {a,, 1<k<n} satisfy the
condition

2
max —omk 0 as n oo. (2.29)

I<k<n Y1, a2

ni
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This follows from a central limit theorem due to Eicker [6]. The above relation can
be proved by the following arguments. Note that

i Gy = Z (S(xi, 00 + ¢pn") — S(x;,00))°
i=1

i=1

=Tu(¢) (2.30)

which tends to 2C(1)|¢|** ™" as n— oo by relation (2.27) and the latter in turn implies
that

max (S(x;,00 + pn") — S(x;,600))> - 0. (2.31)

1<i<n

This follows from the observation that if Y-, _, _, az —¢>0 and max,<x<y dpy, —0

for every fixed N > 1, then max; <<y af,k —0 as n— oo. The above discussion proves
(2.28). Similarly, it can be shown that all the finite-dimensional distributions of the
process {Z,(¢), —1<dp<t} converge to the corresponding finite-dimensional
distributions of the gaussian process {Z(¢$), —1<¢$ <1} with mean zero and

CovlZ($1), Z($2)] = CA)[I1 [ + 12 = |y — o). (2.32)

In addition, observe that

E|Zy(¢1) = Zu(d2)* =Y (S(xi, 00 + p1n7") = S(xi, 00 + on ™))’
i=1

<kalgy — o, (2.33)

where k, is independent of n, ¢, and ¢,. Hence, the family of measures {u,}
generated by the stochastic processes {Z,(¢), —1<¢p <t} on the space C[—1,1] of
continuous functions on the interval [z, t] with supremum norm topology forms a
tight family. This observation together with the fact that the finite-dimensional
distributions of the process {Z,(¢), —t1<¢ <t} converge weakly to the corre-
sponding finite-dimensional distributions of the process {Z(¢$), —1<Pp<1} prove
that the sequence of processes {Z,(¢), — 1< ¢ <t} converge weakly to the gaussian
process {Z(¢$), —t<¢<t}. Hence, the sequence of processes {R,(¢}), —1<Pp<1}
converge weakly to the gaussian process {R(¢), —1<¢p <t} with mean function
and covariance function given by (2.7) and (2.8), respectively. Applying arguments
similar to those given in Prakasa Rao [11], it follows that

nﬁ(en — 6o) A ¢ asn— oo, (2.34)

where ¢ has the distribution of the location of the minimum of the gaussian process
{R(¢),— 0 <¢p< o0} with

E[R($)] = 2C ()| (2.35)
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and

Cov[R(y), R(y)] = 4C(A)11 |7 + 1o — |, — o). (2.36)

3. Remarks

(i) Observe that p>% if 0<)v<% and the asymptotic variance is of the order
O(n=?#) which is small compared to the case when the regression function S(x, 0) is

smooth and the asymptotic variance is of the order O(n~') (cf. [13]). Furthermore,
for any 7>0,

P()O[l’lp|én — 90|>‘L’}<C‘E_(2;L+l) (3.1)

where the constant C is independent of n and 7.
(i) Let

d(x) = a ?fx<0
b if x>0.

Conditions (2.3) and (2.4) on the sequence {x;} are plausible conditions that can be
assumed. This can be justified by the following arguments.

Suppose the sequence {x;,i>1} is the realization of a sequence of independent
identically distributed random variables {X;,i>1} with the probability density
function

h(x — Og)exp{alx — 0o|*} if x<0,
f(xa 00) = 2 .
h(x — 0p)exp{b|x — 6y|"} if x=6,.
Then the strong law of large numbers implies that
n! Z {S(‘Xiv 01) - S()(iv 90)}{S()(i7 92) - S(‘Xh 00)}
i1

converges almost surely to

E[{S(X1,01) — S(X1,00)H{S(X1,0,) — S(X1,00)}]
which is equal to

C()*)HQIFA-H n |02|22+1 — 0 - 92|21+1].

This can be seen from Lemma 4 in Dachian and Kutoyants [5]. In fact,

/i [d(x — 0))|x — 0, —d(x — 0p)|x — 0| [d(x — 62)|x — 0]

o0

—d(x — 0p)|x — 0o|"] dx
_ C(/AL)[|0]|2;V+1 + |02|2;L+1 _ |01 _ 02|2)v+1]’ (32)
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where
_r(2a+ Nre—2)
)= 22“1\/E(212+ 1)

[@® + b* — 2ab cos(nl)].

A special case of this result, when a = b, is proved in Prakasa Rao [12]. For the
general case, see Ibragimov and Khasminskii [8].

(i) If 2 = % in model (2.1), and the conditions stated in (2.3) and (2.4) hold, then it
can be checked by similar arguments as before that there exists a constant C >0 such
that

Py, (n'?]0, — 6] >1) < C172 (3.3)
and

n'/2(0, — 0y) 2 $ asn— oo, (3.4)

where ¢ is the location of the minimum of the gaussian process {R(¢),
—w<p<oo} with mean function E(R(¢)) =2C*¢> and Cov(R(¢,), R($,)) =
8C* ¢, ¢, for some constant C*>0. Tt is easy to see that the process R(¢) can be
represented in the form

R(¢) =2C"¢* + Loy, (3.5)
where L = +/8C* and y is a standard normal random variable. Hence,

. L

=1V (3.6)

Combining the above remarks, we obtain that

A

0,2 0y as n— oo, (3.7)

there exists a constant C >0 independent of n and 7 such that
Py, (n'?10, — 0] >1) < C172 (3.8)
and

n'/2(0, — 00) % N(0,(2C)") as n— . (3.9)

Note that the limiting distribution of the LSE 0, is normal if 1 = % in the model.
This case illustrates the situation when the standard regularity conditions do not
hold and yet the estimator is strongly consistent and asymptotically normal.
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