Arijit Chakrabarti - Jayanta K. Ghosh

Optimality of AIC in inference
about Brownian motion

Abstract In the usual Gaussian White-MNoise model, we cons.. = nroblem of
estimating the unknown square-integrable drift function of the standara Brow nian
motion using the partial sums of its Fourier series expansion generated by anortho-
normal basis. Using the squared L, distance loss, this problem is known 1o be the
same as estimating the mean of an infinite dimensional random vector with [; loss,
where the coordinates are independently nommally distributed with the unknown
Fourier coefficients as the means and the same variance. In this modified version
of the problem, we show that Akaike Information Criterion for model selection,
followed by least squares estimation, attains the minimax rate of convergence.

Keywords Nonpammetric regression - Minimax - AIC - Oracle - Brownian
motion - While-noise

1 Intreduction

The Akaike Information Crteron (AIC), the now well-known penalized likeli-
hood model selection cateron, was introduced and studied by Akaike ( 1973,1978).
Different asymptotic optimality properties of AIC have been proved in the litera-
ture by several authors in the last three decades. In the first line of work, Shibata
(1981, 1983) proved the optimality of AIC as a model selection rule in the infinite
dimensional problem of nonparametric regression, where the goal is to find out
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the optimum number of terms to retain, for the purpose of prediction, in the Fou-
rier series expansion of the unknown function generated by a given orthonormal
sequence. Shibata (1983) has shown that AIC does as well as an oracle introduced
by him in this problem. In a second line of work, Li { 1987) and Shao (1997) proved
the asymptotic optimality of AIC as a model selection mle in the context of selec-
tion of variables from a given set of variables in a Linear model setup. But the
optimal rate of convergence of AIC has not been studied in the literature. The nov-
elty of our paper is to show that model selection by AIC followed by least squares
estimation achieves the minimax rate of convergence in one form of nonparametric
function estimation problem.

We study ALC in the following problem of inference about an unknown signal
ordnft = La[0, 1] of a Brownian motion and prove it attains the optimal rate of
convergence in two different senses. Given n, one observes {Z(1)} given by

dBir)

dZ(t) = fir)dr + Ji O=r=1, (1)

where B(1) is the standard Brownian motion. This is essentially the problem
i(Eq. 31) of Ibragimov and Has minskii (1981, p. 3453). In problem (Eq. 1), we
consider a complete orthonormal basis {¢.i = 1,2,...} of L1[0, 1]. Then one
can write

fi =" agin), (2)
1=l

with equality inthe sense of L, convergence, where 8;'s are the Fourier coefficients
oiven by

I :
o= [a0r0a.  wm S &
0 i=l
Then we need to study the somewhat simpler problem as follows:
yi=6+ % PR i 1 @)

A A A o A
Let & = [#;} be an estimate of # and let f{r) = ¥ 8,¢(1) the corresponding
=1

estimate of f. Then by Parseval’s theorem,
2

Lf = FIP =2 "6 -8, (5)
1=l

where || .|| 1s the usual Ly norm. Soestimating f inmodel (Eq. 1) is the same as esti-
mating # in model Eq. (4) in terms of the above losses. We use the setup of Eq. (4)
in this paper and use the squared error {5 loss. We show that model selection by AIC
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followed by least squares estimates attains the minimax rate of convergence for
convergence in probability over the usual Sobolev balls E, (8) (defined in Sect. 2),
for any 8 = 0.This result is based on a strong property of AIC with lower tnca-
tion. Under lower truncation it is shown that AIC is asymptotically equivalent to
an oracle uniformly in E,(8). where the oracle provides a lower bound to the loss
in a certain class of decision rules. We also show that model selection by ALC with
upper truncation followed by least squares estimation, attains the minimax rate of
convergence, i.e, n-4/%%!_over the Sobolev balls mentioned before.

1t is worthwhile to mention here that the definition of AIC [see Eq. (7)] does not
require the knowledge of the order of smoothness ¢ or the constant & appearing
in the definition £,(8) (in Sect. 2) of the class of functions being considered. Yet
model selection by ALC followed by least squares estimation yields the minimax
rate over E,(B); showing that AIC is adaptive.

1t is not hard to show that the Bayes Information Criterion (BIC) cannot have
this kind of optimality. A counter-example is presented in Sect. 4.

Problem (1) has been shown in Brown and Low (1996) © be an equivalent
version in a decision theoretic sense, upto the minimax rate of convergence, of the
following nonparametric regression problem

r,:f( ' )+f,,f,"if'mﬂ, ),i=1,2,....n. ()
n+1

Using Eq. (1) through Eq. (6), Zhao (2000) has pointed out that nonparametric
regression can in principle be studied through the v's. Her main result is to intro-
duce a hierarchical prior on the parameter space and show that the corresponding
Bayes estimator achieves the minimax rate of convergence. The relation between
Egs.(1)and (6) suggests thatour AIC for Eq. (1) can be lifted in principle to provide
an asymptotically minimax method of estimation for nonparametric regression.
This is discussed in the last section.

Section 4 alsoincludes a discussion on how touse the theoretical results derived
for continuous pathdata, when one observes the process {2 (1) } only at afinite num-
ber of equally spaced points.

2 Preliminaries, notations and theorems

Suppose, as in Eq. (4), one has mndom variable v's which are independent
Nig, lfn),f = 1,23, ..., where Eﬁ;,r’%‘l < oo. Using v;'s one has to come
up with estimates # and the loss is L = Zf“';l{é, — &1%. We consider a restricted
parameter space in our study, as in Zhao (2000), which is a Sobolev-type subspace
of I given by E, = [# = (8]} : 302,i%87 < oc), ¢ = 1/2. We then study
the asymptotic rate of convergence of model selection by ALC followed by least
squares estimation in the Sobolev ball

8 : iﬂwﬁ < B
I=l

E (B) =
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With respect to the usual trigonometric basis, for g an integer, £, comesponds
to all pedodic L[0, 1] functions with absolutely continuous (g — 1)th derivatives
and g-th derivatives with bounded £, norm.

The AIC is not well defined in this case since we have an infinite sequence of
observations. However, if we take é, = (for all i = n, the contabution to error for
#in E (B) is

i*g?

1 & 2 2a
- 4 Tl — X+
E 8 = E i = Bin+1) _u(n )ﬂsn—>:x:-,

d =it =i

since & & E,(B). So at least for the problem of finding decision rules that
attain the minimax rate, we can ignore observations beyond the nth. With this
modification one can define AIC as follows. Lat

L3
2m

m™€ = argmin S{m) where S(m) = Z Vi i, (7
H

| = =i
3 = s+l

The estimate of & is v fori = m™ and zero thereafter. The loss is E’,"MI
01— 60 + X arc, & + Za 60

Onemay interpret this as first choosing a model M, for which & = Ofori = m
and then estimating 8; by least squares, i.e., by vy, for i = m.

We will now introduce some notations before we state our theorems. Define
Lyim) by

L o0
Lym) = Z{}u — ) + Z&‘f. l1<m=<n, (8)
I

i+ |

the loss in choosing model M, and then using least squares estimates. Let

nt 2 4
@) =—+ 6, (9)

i+

the risk of the estimate described above.
We next define two oracles based on L,(m) and r,,(#) as follows.
Define my as

mty = argmin L, (m). (1

| == e =i

MNote that L, {m ) is a lower bound to the loss of any decision rule that first
picks a model M, and then estimates & by zero if i = m and by v fori < m.
Define the second oracle my as

Hig = argmin ry, (§). (11

| e

Intuitively one expects m and sy 1o be close but my is easier to deal with. Note
that both mg and »i) depend on .
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Let AIC* be the model selection procedure which is AIC with upper truncation.
It chooses the model M. where

m" = argmin  S{m). (12)
I
| e = T9H |

where [n'/%%!] denotes the largest integer less than or equal ton /2%

Notation. Henceforth “a, ~ b, asymptotically”™, will mean that there exist
positive constants 00 < &) < k2 such that for all sufficiently large n, kb, < a, =
kab,.

Consider now any sequence {m, | of integers such that m;, — ocasn — o
as slowly as we wish but m, < m* where m* ~ n'/2+! asympiotically, and is
defined in the proof of Theorem 2.1.

Now define mj, and m! as

mly = argminr, (#), m| = argmin L, (m) (13)
M S e, S H
and define m' as
m = argmin S{n). (14)
e S

So m' is the model chosen by AIC!, the model selection procedure which is
AIC with lower truncation as described in Eq. (14).
We now state the main results proved in this paper. (Note that we are suppressing

the dependence of & on n for notational convenience.)
Theorem 2.1 For the case m = m,, we have, (a)
Ly(m" ) (1 4+ 0,(1) = Ly (my) (1 +0,(1)), (15)

where the o, (1) terms on both sides of Eg. (15) tend to 0 in probability as n — o0
uniformly in 8 € E (B), and

Ly(m') = Ly (m)(1 + 0,(1)), (16)
where the equality Eg. (16) holds on a set whose probability tendsto 1 asn — 00
uniformly in 8 € E,(B) and the o,(1) term on the vhs. of Eg. (16) tends to 0 in

probability as n — o0 uniformly in 8 € E (B).

Also, for this case,
ib) n T L"{m'r} = Ou(1) uniformlyin 8 € E (B).

Theorem 2.2 Uniformivin 8 € E (B), we have

n31 L, (m™C) = 0,(1).
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Theorem 2.3 Let & be the estimate af & after a model is chosen by AICY, ie.,

5 - z:
= 0fori = m" and 8; = v fori = m". Then & achieves the minimax rate of
convergence, Le, for any B = oo,

lim sup n E(1§ — 01 < oo
n—o0 BeE (B)

Remark The lower tuncation in Theorem 2.1 cannot be removed. This is easy o
see by considering what happens for 8, = (1/.,/n, 0.0, ...).

Proofs are given in the next section.

3 Proofs

Proaf of Theorem 2.1, In the following, e¢; = vy — 8,i = 1,2, ... and B = 1
without any loss of generality. The proof has been divided into three steps for the
purpose of clarity.

Step 1. In this step we will look at a simple minimax rule as follows. Consider
rule r; for a fixed m: For m < n, estimate & by v, for 1 =i < m and fori = m,
estimate &; by (.

Risk of r,, at & is r,, (8) as defined in Eq. (3). Note that we can write

a0
1
ra i) = it + Z !_Tqiz"ﬁ‘f.

n

e+
Then,
" S R m 1
su r, {H] — =+ 5U *_-“-r"'rH;‘ = — ) ——
HFEF:H 4 N geF [p”(% 2 ) n {m+1}1:_r
Now choose m* as
1
= sty iy 17
ﬂrg:ﬂlf} {m + 1)? "} (1)

Itis easy to show that m* ~ n'"*! asymptotically, whence the maximum risk of

the rule r,,. is

m* 1 -3
sup rypeld) = — + —————— ~n 50 asymptotically,
HFE,,F:H n (m*41)H Lo :
; =
e, lim niS0 sup re(8)<oo. (18)
iz e Ey il

Thus r,,. 15 a rule which attains the asymptotic minimax rate of convergence. Now

note that r,,, (#) = r,.(8),¥8 € E (1), ie,
SUp rp (8) = sup r,.(8) ~ AT asymptotically, (19}
fe E L) GeE (1)

whence the rule r,, based on the oracle mgy does at least as well as the rule
asymptotically.
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Step 2. In this step we will consider the lower tuncated AIC and derive several
properties associated with it

First recall the definitions of L, (m) and 5(m) from Eqs. (8) and (7) respectively.
MNote,

i £

Lylm) = Z e'll 4

| e+l

I.'?‘Jl = (8 + (Z 11— g) ;

Again,
S(m) = Ze +Za +°Zae, o 2
e+ | e+l i+
H
=Z —Ze +ZH +”Zﬁhv, +£
w41 s+ | n
= Lyim)+ K, (m) + Ze — Z H‘
n+l

= L,(m)+ B,(m) + {“ constants” independent of m),

where

Rm) = 7iﬁ},e, —Z(ief —g)
I

e+ |

Hence, minimizing S(m) with respect 1o m is equivalent to minimizing L, (m) +
R, (m) over m. So we have, with m’, mj, and m', as in Egs. (13) and (14),

Ly(m') + Ry(m"y < Ly(mp) + Ry (m}) (20)
and
Lu(m") + Ry(m') < L, (m) + R, (m)). (21)

Let us now prove three lemmas which essentially show that the remainder tenms
R,,{mI}, Ry{my) and R, {m'l|}l in Eqgs. (20) and (21) are negligible. These lemmas
are crucial for proving the theorem.

Lemma 3.1
Y et — = = 0, (r(8) (22)
n
aned

ZHE = 0,(r,(8)), (23

m+ |
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uniforndy 8 € E (1) and form, =m = nasn — o0
So, for such a sequence {my}, we alvo have

R"{H‘J':I = (J",;.(f'm{l.'?:”

uniformly in 8 € E (1) and for my, =m =nasn — o0

Proof E(Y Vel —m/n)=0.Fixe = 0. Then

‘El el —mjn <

(24)

) _E(Xte—m/n)

I Jrr{e:] fzf"?"{!?}
But.
m 2 A
. 2 Uy 5 F 1y, =
E(Z.‘""I) =Wr($‘"' ‘z)z’”‘“’”{”—
Also,
- s 2 mt 2m e
!;{H}— ZHJ_ +H_1+T Zf?‘_
| fi41
So,

ELET e"l - mfn}l 4 2min®
=

{Zm+l J:J +"T_l'f” +.2'mll'lln {Em+| }
2 2
— =———0 asn—oo,
i B S

foreach # = E, (1), proving Eq. (22). Similarly,

E (gae) =0 and Var (Z H.e.) = (T. ﬁ‘f) ﬁ

i+

<

whereby

Var {Srwl &:e‘) i {E”’"‘l Hl

d Jr
f.«f.-{gj mz.'fnl 7 {Em+l i :] +?Jn'f” {E"ﬁ'l 8'1}
1 1
< — < —— —0asn — 00,
3”’]' ","T“

for each # = E, (1), proving Eq. (23). Equation (24) now follows trivially from
Eqgs. (22) and (23) as

R, im) = Zi fe —Z(ie‘ﬂ he E) ;

n
e+ I

So, Lemma 3.1 is proved.
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Corollary 3.1
LymD(1+o,(1) = g, ()(1 + 0,(1)) (25)

almost surely, where the o,(1) termy on both sides of Eg. (25) tend 1o zero in
probability as n — oo uniformly in8 € E (B).

Progf Using Lemma 3.1, we get
Ly(m) = ry(8) + (Zf.l ) = (8)(1 +o0p,(1)),
[

uniformly iné & E; (1) and form, =m < nasn — oo,
As mi] is a nonandom integer in [m,, n|, it also follows from the above obser-
vation that

ey

L,,{m{h) - rm:'}{!?) B Ze: oy
|

= J'm:'}{l.‘?}:]{]. +o,(1)) uniformly in & = Eq{ 1) as n — oo.

Now observe that, from definition, L,(m}) < L,(m}), r,, 1 (8) < 1,1 (8). Also note
that
"'“'.; "T'I
Y el —— =0,(r,q(8)), uniformly in 6 € E (1) as n — oc.
n

The last statement follows using the same argument employed in proving R, | (m') =
0,1, (@) uniformly in 8 € E (1) as n — oo in Lemma 3.3. Combining all the
above facts, one gets after some algebra,

La.{:n.l = 1 ()1 +op(1) = g (8)(1+0,(1))
= L,(m})(1 + 0,(1)) almost surely,

where all the o,(1) terms tend to 0 in probability as n — oo uniformly in 8 £
E,(B). The proof of Eq. (25) now follows immediately from the above sequence
of inequalities. |

Lemma 3.2 R,(m) = o,(L,{m)) uniformly in & € E (1) and for m, <m <n
and as n — oo

Proof Fix 0 =¢e = 1.

P[ Ry(m) E} = PHE.(:H) e |Eatm) | _f}
Ly (m) Ly(m) Fnld)
Ry im) Lyim)
P[ L, (m) @) | 1”}
RJI {”T:I .L” {H‘T:I
”L,,{m} e EIH}' )
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The first two terms on the r.h.s. of Eq. (26) converge to zero as L, (m) /1, (8) =
1+ op(1), uniformly in & € E (1) and for m,, = m = n asn — o00. The third
term is less than

PI Rar (r)
ru(€)

by Lemma 3.1 uniformly in &  E, (1) and for m, = m = n. This proves
Lemma 3.2,

::-E{l—f]} — (b as n — 0o,

Lemma33 R,(m') = u,,{L,r{mJ]] unifonenly in & € E (1) as n — oo,
Progf” We first prove that
R, m') = o, (r (8)), uniformly in #e E,(1) asn — oo, (27
Now write,
Ky(m) = Ry (m) + Ryalm),
where

Roi(m) = =2 2_ DY and Rua(m) =2} ey,
() (Ze‘ ”) an alm) Z I

| et |

Fix € = 0. Then,

I Ryi(m') } [ Ry (m)
P =€t = P max = €
Fu(8) mazimzin| Py ()
Ry (o) 1 E(R} (m))
= I ; i I J'",.{Q:I } = I g-—.n € JW{H] -

Noting that {3 e¢f —m/n, m = 1} is a Martingale, we have, by a result
proved in Dharmadhikari et al. (1968),

e 4 4
1
E(E ,._v‘l e E) = Dy’ E (e% — —) for a positive constant D)

; n n
U|n:r
= E{:w| — 1]
D: -
=— , for some new constant D> as nej ~ x,,.
n

In the above J{ﬁ] refers to a central chi-square distribution with one degree of
freedom.
Z E.{R;L{HT]) - lﬁﬂgmljn'I

e, i rﬂ" {HJ - e, i st {H‘J’ K‘” g E‘:-l— 1 811}1
16D,

¥ 2 0
Mg SR [T

So,
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as n — oo, whenee Ry, (m') = el (8)), uniformly in 8 € E (1) asn — o0
MNow consider 8,2 () and note that

sham = 30~ (0 (327) ).

So we get, E (X", 8ie)' = 3(X" ., 8%)" - I/n?. This implies, by a simple
algebra, that

{Em |HE"‘} G 1
{H]I T 2w

Using the last inequality in the same way as we did for £, (m'), wehave R,2(m') =
ol (8)) uniformly iné# e E (1) as n — oo, proving Eq. (27).

We are done if we can show that L,(m') = r(8)(1 + oy (1)) uniformly in
# € E (1) as n — oo, because then B, (m') = ap{L,,{m'I]l]l will follow by using
exactly the same logic as in the proof of Lemma 3.2,

Fix e = 0. Then, by a simple argument,

2 4
L, (m') 1 E(XVe —m/n)
r® 1‘ ) f} =L E ne "

Mg S

as n — oo foralld € E, (1), as already shown before. So, Lemma 3.3 is proved.
O

Step 3. In this step we combine the results in Step 1 and Step 2 to finally prove
Theorem 2.1.

Equation (15) of Part (a) of Theorem 2.1 follows by applying Lemma 3.3 to
the left-hand side of Eq. (20) and Lemma 3.2 to the right-hand side of Eq. (20), by
Just noting that ""ia is a nonrandom integer in [my,, n].

Equation (16) is then proved as follows. By Eqgs. (15), (23) and the facts that
Ly(my) = ryt (1 4 0,(1) uniformly in 8 € E, (1) as n — oo and Ly(m') =
L, (m"), one has

Ly(m)(140,(1) = Ly (m') (1+0,(1)) =1, (1+0,(1)= Ly (m}) (1+0,(1),

where the above holds on a set whose probability tends to 1 as n — oo uniformly
in & = E,(B). (Note that all the o,(1) terms in the above statement tend to
in probability as n — o0 uniformly in 8 € E,(8).) Equation (16) then follows
immediately from the above.

We shall now prove Part (b) of Theorem 2.1. To prove this, we first recall the
definitions of njy, m* and the asymptotic minimaxity property of r,,. as inEqs. (13),
i(17) and (18) respectively. Then it follows that

rut () < 1y (8) < Dn~%/4tD

for some D = 0 foreach 8  E, (1) for all sufficiently large n in the same way as
one shows in Eq. (19). Pant (b) then follows easily by applying this fact together
with Corollary 3.1 in part (a) of Theorem 2.1.
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Remark If we choose m, = m™* in Theorem 2.1 and then combine with it the result
of Theorem 2.3, Theorem 2.2 follows immediately. To see this one has to note that

I'Lr .E{L“{H’J' ))1
K

i P In‘ﬂ_"L,,{m"}l = Kl =< h foreach K = 0,

[ii}lnlji' E{Ly{m")) is bounded for each @ & E (1) foreach n, and

(1i1) L,,{mMC}I = male,,{m"), Ln{m'r),f_n QHMC_.__ l<m c:m')} if m*= nﬁ,

[ St
L,,{mMC} = max {L,, (m"), L, {m'r)]- if m* < n!-IL'-' £
and E{L,(m)) = F::_J-_}l”_' for all large enough n, if[nﬁ] <m = m,
where F is a positive number. In the above,

T ! = argmin  S{m),
[t Ta+T | care ame* N
[# g+ | ==

where S(m) is as in Eq. (7). |

But we present a more direct proof of Theorem 22 which does not require
Theorem 2.3 and which explains the interesting behaviour of ALC for relatively
small m.

Proof of Theorem 22 Fix ¢ = 0 and 5 = 0 arbitrary. We can choose m large
enough such that

p {z
and

P In"ﬂéJ”L {m

Ll

D b

i+ |

= EL,,{:E’}} =1— g ¥n =, Y8 € E (B)

K. ] = 1 —u, for all large enough n = m,¥8  E, (B)

= .lrr]

for some suitably chosen K., where m2!*. is defined as
AIC ;
s = Argmin S{m).

it S

The above two probability statements follow directly from the arguments used in
the proof of Theorem 2.1. We shall henceforth write mA" = m?MC_ For each
# = E (B, define :
Ki{d) =max {1 : Zt’f > en~4/i2a+h
1=l

where the maximum is taken over the range [1, m].
MNow note, for each 8 € E, (B), the following two cases occur.
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Case 1. i &“1 = en W20 if | =m! < K(0) — 1.

ml 4l
Cuase 2. i !?‘1 < en 2D i K (8) <= m! = 1.
ml 4l
Consider Case 2 first. Let st = m! = K(8). Then
Lim'y = L,()— R.(m"),  where

Rl(m") = Z (n — 6 — Z" 0.

st 1 et

Now fix ' = 0, arbitrarily small. It is easy to show, by noting thatn 37, | (v —

B ~ ;{Sﬁ , and st is fixed, that for all large enoughn,

‘|

Letting S(m) = S(m) — () & — 32051 67). henceforth, we have

—

21 2g4+1) o I
n R(m")

ng} =1—y', V8eE B)and K(8) =m' < m.

[ |

.lrrl |

i'[’”|3'=La.'[mlll+2ifﬁe,+2ifﬁf.—2 ZEE—E

el Hi+ | |

MNow note that m 15 a fixed number, 8,6, ~ N0, e?f,.-’n] independently ande} —1/n

are independently distributed with mean 0 and variance 2/n°. Using these facts
and the last equality, it is easy to show that

Ll

> b

Hir+ |

T 3 3 3 & Yo D
H_q,l_¢;+|]L“{,n|:l E"_q;'l_q+|]5~{’n|]+26+-_;ﬂ_q,l_¢_r+|]

for all large enough n with probability at least | — 2!, for each 8 £ E (B) and
Kigh EmI < M.
We now consider Case 1. Note that

= .l it
S = SmYH+ {2 (m " ) = Z _1,-‘1
" 41
and
7 5 H—m : D 1 " 2 - |

Z}T—Z =- I;{;E_m|_|]+ W= —2 (i —m :J]

ml 41 i n
where
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Since,m' < K(#)— 1,n 0, 82 > en'/%+)) 5 o6 a5 n — 0o, So, again, we
can choose n large enough so that

Z} H{:n—:n]}ﬂ }1_n|1

ml +]

forall 8¢ E,(B)and 1 =m' < K(8) — 1, implying

S(m) = S(mY, ie., mﬁ_[ﬁm. = mﬁ‘,ﬂ:,
where m‘“': ot = m‘glnm Sim), with

J.IT=JITI

probability bigger than 1 — »' each 1 =m' = K(#) — 1.

Finally note that the fact S(mAF) = L, (mAS) + R, (mAC), where R, (m) is
as defined in the proof of Theorem 2.1, implies. by an easy argument, that each of
the following events

4

n T L, {m
—E

{ A[f'}_i_

and
s {mi‘ﬁ:} ={l+e)l, {mi]ff
holds with probability bigger than 1 — /3, forall 8 € E, (B) and ¥n = m.

Mow, consider, for each & € E,(B), the probability of the following occurring
simultaneously

forall Kig)=m' <m,

iﬁ‘.f‘.

i1

IH%L"{H‘IIJ = :alffq_hrf{mlj+2£+lr:-‘:_:f

Iy
n¥TR! (m')| = 2 forall K@) <m' <m,

L, (m o MIC ) =L, {"h:.m forl <=m' < K(#) —1,

new, it

= 4
_fﬁ'{:n;;ff:l+ ‘

-
n: e L, {m d :] = e+l

2 ié‘.f‘.

Hir+ 1

SmAS) < (1 +eLu(mi5)}.

1—¢’

= Ao
< gL, (M), ns" L, {mijff:] = K.,

The probability of this event can be shown to be larger than 1 — 11/65 — dsiy!
for all large enough n foreach # € E (B). Sothe above event, in tum implies, the
following event,

14¢ de

I
nTA L, (mMY)y < —— K, 4+ A
3 )= 1—¢ 1—¢
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The above statement follows by observing that

AlC AIC AlC | =
n = Mgy OF Mpay forsome 1 = m < m.

Now we are done, as i is a fixed number for a given  and € and so n' can be
chosen to be /244, to start with, making the quantity 1 — 11/65 — 4/’ equal
to 1 — 25 This completes the proof of Theorem 2.2, o

Proof of Theorem 2.3 Fix any C = 0. Define A(#) as in Zhao (20007, i.e.,

e e
@) =max{1:3" 87> (B+ Cynuh ] :
=1l

Itis easy to see, vide Zhao (2000), that A(8) < n!/2a+1),
MNow recall the definition of m" from Eq. (12). Note that

E (116 —811) = E(Ly(m")

_.e‘in, 8)* +Za—}

e+ |
Now E(L,(m")) = E(Ly(m" )y <aen) + ECLy (M) gy aieyy) - But,

"

E(Ly(m" ) poopon) = E {ZU‘. — Ha}ll[m":-.'.[ﬁ']]
|

a0
(Z 811) ]-I,m" =k (H))
'+ |

The second term in the r.hs. of Eq. (28) is trivially less than (B 4+ C)n~24/(24+ 1)
The first term is less than or equal to E IE',"IIMI]{_F. —H,]ll = [n'/2a+1)in

= n~ 2240 whence E(Ly(m")onipy) < (B+ C + Dn— 24/,
Again,

(28)

Al
E(Ly(m" ) jpacien) = E (Z{h — &)+ Z 6; 2+ Z # ) 1 e < gy

| A+

A
(Z H,l) ]-I'm"j'-.'.ll‘i']]] . (29

"+

<(B+CH+Dn w +E
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Now consider any number K > /2. The second expression in Eq. (29) equals

{(m"za-lél ) " Sh(8), oy 6 =K 2204 _m“:]}

ALY
‘(Z H ) kI, Z: +I|l¢-__,ﬁ 2290 .‘.ﬂ-ll]l}
" 41
Al
7 _ta .
= K°n Il 4 E 4(/2 l.'? ) " < AL, M.I|I‘J"-"'ﬁ P F Jq;ln)}

"+ |
Al —1 A6
= K*n ~%h + Z BP(m" =mil (ZH = K’n _“‘f["“'”),
=1 e+ |
asé € E (B).

MNow for any m < A{#),

A
Pim" =m) = P{S(LA) = Sim)} =P ‘H Z _}',1 = 2(A(8) —m]} R 1]

m+1

Noting that n Y00} y7 = + W2, where W ~ N( n i 6 )

mtl ¥i = xl-’-[h‘]—m Iy

the expression in Eq. (30) is less than
P Iw < V2,/08) —m] < P[Z < (W2- K]IHR_'L‘"'],

where Z ~ N(0, 1), using the fact that 37, 8 = K2n~24/24+D) and p(8) <
nt/ 20 B,
F IZ < (22— K}n'*"l“*'l“”]

= 1/ o3 exp[— 120 K — T2l “‘“""}
K- \."'L'-']Jr'“"l“'

S0,

=1 A
Z BP(m" =m)I (’Zall - Kl,!—lq,flqu])

m=1 i+ 1

Bnl/20+20)]

=
T V2T — V2exp{1/2(K — /2)2nl/0+2))

< Clp~ 2/t

for some constant C'. Hence Theorem 2.3 is proved. o
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4 Discussion

A counter-example to show the nonoptimal behaviour of BIC

Considerg = 1, 8 = 1. Define Hin) = [W] where ) = § = 1.

Consider a sequence 8" as follows.

I 1—5/2
d=0"= 1= % =12 ... Hnyand 8; =0if j = H{n}}_
Facr 1. Easy 1o check that for large enough n, 8" € £,(1).

Hiamy i
Fact 2. For 8 = 8" as defined above E 82 = {Hin) —1}! ilogn)' =

"

Consider now the upper truncated BIC defined as follows:

5 PR
m" = argmin ‘ Z W+ loga
R TR I P "

Then the estimate of this rule followed by least squares estimates is 6 = yi fori <
m* and & = (0 otherwise. It is easy to see that the expected squared error loss for
this estimate is greater than or equal to

Hin) Him His) (']
E( > H,l):_:.e" (( ¥ H,l) .f[m..=.)= ZH}} 1= P(m"=j)}.

="+ | =m"+ | =2

MNow evaluating at 8 = 8", the last expression is

ot

{H(n) — }'“-III:"‘E"”!:I Z Pim" = )

_i_-"

MNote that P{m" = j) = P{lf' = logn/n).

MNow P“’J_, = logn/n) = P{]r’_, = Jlogn/n)+ P(Y; = —/logn/n). Using
tails of standard normal probabilities, itis easy w show that foreach? < § = H(n),

under # = 8", the above probability is less than 4n W—””;f;']:! .So

|.lr|"'1] T
. 1/(logn)*~

Pt = f) sl l

Z (m J)=4dn TR

Then it immediately follows by a simple algebra that

i=1

|.lrI i |

I—Z Pim"'=j)]| =

=

Pk | —

for all sufficiently large n.
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But note that

|4
n*3Hn) — }M—rmﬂsn—rm.
"

Using the above facts it follows that "Iinrﬂuh_ sup n*E (Ef:l @ -8 }1) = 0o,
TR
So the upper tuncated BIC does not achieve the minimax rate of convergence.

In fact, a careful inspection reveals that this same sequence &' can be used
to show that BIC does not attain the minimax rate of convergence for any kind
of upper truncation. More imporantly, the same sequence can be used to show
unrestricted BIC followed by least squares also does not achieve the minimax rate,
even in the sense of convergence in probability as shown 1o be true for AIC. But
we do not present those arguments in the present paper.

We explore below the connection between the problem studied in our paper
and nonparametric regression, vide Eq. (7). Define

n+1 i i

n n—1
= if < f=1.
f(n+1) I n i

It is shown in Brown and Low (1996) that under cerain conditions, estimating
{f(1)} in problem (1.1) through { Zir)} is asymptotically equivalent to estimating
{ fin)} through {£ir)}, where

f'{r]:f(;), iI"i_lc_frﬁi fori=1,2,..., n—1

dB(1)

H

dZ() = findr +

,0=¢f=1.

They also observe that {8; = n(Z;, — Zi_14) .i=1,2, ..., n} are sufficient for
Z(t). Now note that n{ Z, s z,_“,,) = TFd= 172, n, and the ¥,'s are

trivially sufficient for the prml:nlem [I:q 7). So any decision rule based on 5;'s can
be replaced by the same decision rule based on the ¥, 's and both will have the same
properties. [tis also easy to verify, at least heuristically, that the minimization cn-
terion for AIC studied in our theorems is close (up to O,(1 /n)) in distribution to
the minimization criterion for AIC based on the ¥is and so the models selected by
AIC in these two problems are also expected to be close.

We briefly explain below how the theoretical results about the rate optimality
of AIC obtained for continuous path data can be applied to the situation when one
observes the process { Z(1)} only at points {1y = K /N K =0,1,..., N}, where
N = N,;ie, N depends onn.

L

Let{¢y - i = 1} be the usual Fourier basis of L, [0, 1]. Analogous to the v;s, let

R ®-)

i =1,....n;which can be rewritten as

Y =6 +eii=1....



AlC in inference about Brownian motion 14

where 6] = Yk_; fx 1w ®i(K/N)f@)du and ¢ = + YN _ di(K/N)
(B(K/N) — B(K — 1/N)); where Bi.) is the Brownian motion. [t follows that
|8; — 8| = % for some positive constant ¢ which does not depend on i, 8°s and
@"sande; ~ N0, 1/n-1/N ZL, ¢ (K /N)). So,if N is large compared to n as
n — oo; itis expected that#] and #; will be close; €] will be approximately & (0, ﬁ}l
i.e., distributionally close 1o €; and then any result/procedure obtained from using
the continuous data will be expected to be asymptotically close o the comespond-
ing analogous one based on the discretized version of the problem. Towards that,
let us define

M

2
Sifmy= " gt Mt

i=m+

the criterion function based on the vs corresponding to S{m). Let us heuristically
define the “Akaike Information Criterion” for the discrete problem as

mf‘m = argmin Sy im)

| = i

and the loss L.:r{J'PIJ'JIM':}I = Emf‘"'{}.‘r = '-'?4)1 g Z:I=-'rr'|“.+l 3‘2 + E:h;:.-ta.-l HF’ which is

1=l
defined in a manner analogous o L, (m™€) (as in Sect. 2). Note that L (m) is the
loss in estimating &; by ¥/ if i = m and by 0 otherwise and L] (m) = || f — f'lll,
where f(r) = > ", ¥ei(r).
We have a rgorous argument (not presented here, so as o not increase the
length of the paper) which shows, that

La(m™C) — L, (m ") = 0, (p~ 2/}, (31

M2+
a2

uniformly over & € E, (B); provided 3 = (1) as n — oo. This implies
that L) (m{€) = 0,(n=/24+ 1), yniformly in 8 € E, (B) using our previous
result (Theorem 2.2). (The heart of the argument in proving Eq. (31) lies in show-
ing that with probability tending to 1 (uniformly over # € E {B)) asn — oo
S{m)— 8 (m)and L,{m)— L {m) are uniformly small in magnitute for 1 = m < n
{upto the minimax rate n—24/=4%1y),

In summary, we heuristically apply the analogous definition of AIC based on
the ¥'s and define the natural loss function based on the same observations. We
are able to establish that this transformed version of the AIC for the discretized
process does as good a job as the AIC based on the original continuous process, in
terms of minimax rate of convergence, provided we observe the discrete process at
enough number of equally spaced points. So the results proved for the continuous
path data are adaptive to the need for adjustment for discrete data.
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