A NOTE ON THE SPECIAL UNITARY GROUP OF A
DIVISION ALGEBRA

B.A. SETHURAMAN AND B. SURY

Apsrract. If D is a division alpebra with center a number field
K and with an involution of the second kind, it is unknown if
the group SU(L, D)/[U7(1,D),U(1, D] is trivial. 'We show that,
by contrast, if K is a function field in one variable over a number
field, and if D is an algebra with center K and with an imolution

of the second kind, the group SU(1, D)/[U/(1, D), U(1, D)] can be

infinite in general. We give an infinite class of examples.

1. INTRODUCTION

Let A be a number field, and let D be a division algebra with center
K, with an involution of the second kind, 7. Let U{1, D) be the unitary
group of D, that is, the set of elements in D*® such that dr{d) = 1. Let
SU(1, D) be the special unitary group, that is, the set of elements
of U(1, D) with reduced norm 1. An old theorem of Wang [7] shows
that for any central division algebra over a number field, SL(1, D)
is the commutator subgroup of D*. It is an open question (see [4,
p.536]) whether the group SU(1, D) equals the group [U(1, D), U(1, D)]
generated by unitary commutators.

We show in this note that, by contrast, if A is a function field in
one variable over a number field, and if D is an algebra with center K
and with an involution of the second kind, the group SU(1, D) modulo
[U(1, D), U(1, D)] can be infinite in general. More precisely, we prove :

Theorem 1.1. Let n = 3, and let ¢ be a primitive n-th root of one.
Then, there erists a division algebra D of index n with center Q(C)(x)

which has an involution of the second kind such that the corresponding
group SU(1, D)/[U(1,D),U(1, D)] is infinite.
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Our algebra will be the symbol algebra D = (a,2;(, K, n) where
K = Q(¢{)(x) and a € Q is such that [Q({)(¢/a) : Q(¢)] = n. This
is the K-algebra generated by two symbols » and s subject to the
relations r™* = a, s* = x, and sr = (rs. If we write L for the K
subalgebra of D generated by r, it is clear that L is just the field
Q(¢, vfa)(x). The Galois group L/K is generated by ¢ that sends r to
(r: note that conjugation of L by s has the same effect as o on L. An
easy computation shows that x™ is the smallest power of x that is a
norm from L to K, so standard results from cyelic algebras ( [3, Chap.
15.1] for instance) show that D is indeed a division algebra. It is well
known that D has a valuation on it that extends the r-adic valuation
on K. This valuation will be crucial in proving our theorem.

2. THE VALUATION ON D

We recall here how the r-adic valuation is defined on D. Recall
first how the r-adic (discrete) valuation is defined on any function field
E(x) over a field E: it is defined on polynomials f =3 a;2" (a; € E)
by v(f) = min{i | a; # 0}, and on quotients of polynomials f/g by
v( f/g) = v(f) —v(g). The value group Iy is Z, while the residue L
is £. This definition gives valuations on all three fields Q(¢ + ¢ 1) (x),
K. and L. all of which we will refer to as v. These fields have residues
(respectively) Q(¢ + ¢1), Q(¢) and Q(¢, /a) with respect to v. It is
standard that the valuation v on Q(¢ +¢")(x) extends uniquely to K,
a fact that will be crucial to us.

With v as above, we define a function. also denoted v, from D* to
(1/n)Z as follows: first, note that each d in D* can be uniquely written
asd =g+ hs+---+la1s" Y, for l; € L. (We will call each expression
of the form l;s*, i = 0,1,---n — 1, a monomial.) Define v(s) = 1/n,
and v(l;s') as v(l;) + év(s). Note that the n values v(l;s*);0 < i <n
are all distinet, since they lie in different cosets of Z in (1/n)Z. Thus,
exactly one of these n monomials has the least value among them,
and we define v(d) to be the value of this monomial. It is easy to
check that v indeed gives a valuation on D. We find I'p = (1/n)Z, so
I'p/Tx = Z/nZ. Also, the residue D contains the field @(¢, ¢/a). The
fundamental inequality ( [5, p.21]) [D : K] = [['p/Tk][D : K] shows
that D = L = Q(c, ¢/a).

Note that since D) is valued, the valuation v (restricted to K) extends
uniquely from K to D ( [6]).
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3. COMPUTATION OF SU(1, D) anp [U(1, D), U(1, D)]

Write k for the field Q(¢ + ¢~')(x), and 7 for the nontrivial auto-

morphism of K /k that sends ¢ to (. Note that since a and = belong
to the field &, we may define an involution on D that extends the au-
tomorphism of K/k by the rule 7(fr's?) = 7(f)7r's? for any f € K
(so 7(r) =r, 7(s) = s; see [2, Lemma 7).
Proof of the theorem. Let d be in U(1, D), so dr(d) = 1. Since
v and v o7 are two valuations on D that coincide on k, and since v
extends uniquely from & to K, and then uniquely from K to D, we
must have v o7 = v. Thus, we find 2u(d) = (. that is, d must be
a unit. Then, for any d and e in U(1, D), we take residues to find
ded-Te-1 = ded &-!. However, D =T = Q(C) ¢a) is commutative,
so d and £ commute, so ded-le-! = 1.

Note that we have a natural inclusion of L in the v-units of L; we
identify L with its image in L. Under this identification, for any [ €
L C L.l =1 Since the commutator of two elements in U(1, D) has

residue 1, it suffices to find infinitely many elements in SU(1, D) N L
to show that SU(1, D) modulo [U(1, D), U/(1, D)] is infinite.

Write L, and L, (respectively) for the subfields Q(¢ + ¢7")(r) and
Q(¢) of L; note that L, is the residue field of K. Then the involution
7 on D acts as the nontrivial automorphism of L /L1, so for any | € T
I7(l) is the norm map from L to L;. The automorphism o of L/K
restricts to an automorphism (also denoted by @) of L)Ly, and it is
standard that the reduced norm of | viewed as an element of D is just
the norm of | from L to K { [3, Chap. 16.2] for instance), and hence
the norm of | from L to Ly. We thus need to find infinitely many 1 € L
such that N, (1) = Ng,, (1) =1

Now, the set 5, = {l € L : N, () = 1} is indexed by the L,
points of the torus 77 = R%}Lle (see [4], § 2.1). Similarly, the set
S,={leL: Ng,p, (1) = 1} is indexed by the L, points of the torus
T = HLEI}L:’Gm. To show that S7M5s is infinite, we switch to a commaon
field by fjtitixlg that the groups T7(L,) and 75(L,) are just the k; points
of the groups (R, 11) and ( R, /x,1%) respectively, where kg = Q¢+
¢~'). Thus, it suffices to check that (Rp 4 13N R, 4, T5)(ky) is infinite,
and for this, it is sufficient to check that (R ., 10 N By, 1) (k) is
infinite. As both Rr 17 and Rr,,T5 are ke-tori, the connected
component (R, Th N B,k T2)" is a kyp-torus as well, since it is a
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connected conunutative group defined over & consisting of semisimple
elements. So, its k; points are Zariski dense in its () points by a theorem
of Grothendieck (see p.120 of [1]). Hence, it suffices to check that there
are infinitely many @ points in (Rp, 3,17 N Ry, 15)" Bﬂt for this.
it clearly suffices to check that there are infinitely many @ points in
{Rﬂl.-"i‘c:ji N HL}.HNJI.?}‘

Write any 1 € L as | = X + (( — ¢"')Y where X,Y € L;. Then,
X = Z;;::I:if'i and ¥V = :?__”l yir' where x4 € ky. Consider the
equations N, (1) = 1 and Ng,; (1) = 1. Rewrite these in terms of
powers of r, invoking the actions of & and 7 and using the fact that
r™ = a. The first equation now involves the 2n variables x;, y; and has
coefficients in L;. Equating the coefficients of v (i =0,....n — 1) on
both sides, we get n equations in the variables ¢, 3 with coeflicients in
ky. Similarly, the second equation involves the variables x;, 4 and has
coefficients in Ly. Using the fact that ({ —()? € k; and equating the
coefficients of 1 and ¢ — ¢~ on both sides, we get two equations in the
variables x;. y; with coefficients in ky. Asn > 3, wehave n + 2 < 2n
and these equations have infinitely many common solutions over Q.
This proves the theorem.

4. CONCRETE ILLUSTRATION FOR n =3

We illustrate the theorem for n = 3 by concretely constructing infinitely
many elements in SU(1, D)/[U(1,D),U(1,D)]. We take a = 2 for
simplicity. Write | = a + b/—3. where a and b are in L;. Then

2
: z : : =3
N () = a®+ 3b* = 1 has a parametrized set of solutions a = 213
2s .
b= — =3 for s € L,. Write s = ty + tyr + tor® for t; € @ and
8% + ¢

substitute ina and b above. Then compute N, (1), noting that o(s) =
(ty +wtyr + wtyr®). We solve for the ¢; so that Ny, (I) = 1. We claim
that if we takety, = 1 and ¢; = (), then for arbitrary ¢, = ¢, NE;‘ L) =1
Indeed, | = u/v where

w = 2w + £2r — 2Hw?r?,

v =2+ t%r + trh

Then, an easy computation, using r* = 2, shows that
Npjp,(u) = (2uw+1%r —200%r?) (w4t 2wr —2twr?) (2w +t2%r—2tr%) = —8t34-215.
Similarly,

N, (v) = (2482 +4r2) ( 2+ 2wr +1uw20?) 2+ 2P r Htwr?) = —88% 4215,
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Thus, we have an infinite set of solutions and we are done. (Actually,

the parametric solution above was first obtained using Mathematica™?

The program gives other parametric solutions as well, for instance,
- o 1
to=0,t, = —35.)
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