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Abstract

This paper proposcs several variants of disparity based inference (Lindsay 19%4). We introduce these mod-
ifications and explain the motivation behind them. Several of these estimators and tests have attractive
efficiency and robustness properties. An extensive numerical and graphical investigation is presented to sub-
stantiate the theory developed and demonstrate the small sample properties of these methods. An empty

cell penalty is found to greatly enhance the performance of some of these methods.

Kejpwonds: powered Pearson divergence, robust likelihood disparity, Winsorized and trimmed divergences,

inflection point, empty cell.

1. Introduction

Consider the standard parametric setup of inference where we have a family of model distributions
Fo = {F3,8 € 8}, 8 C RE*. Throughout this paper we will refer to true distribution by G, which
may or may not belong to Fg. We will assume that both G and Fg belong to G, the class of
all distributions having probability density functions (pdf's) with respect to a dominating measure
{e.q., Lebesgue measure for continnons models and counting measwure for discrete ones). We will also
denote the density function for each distribution with the corresponding lower case letter, eq., the

pdf's of 7 and Fy will be g and fy respectively.

*His work was done while he was visiting the Department of Statistics, Pennsylvania State University.
tHis research wes partially supported by NSF Grant DS 98701903,



In reality assumed models are almost never exactly true, and our goal is to estimate 8 efficiently
when the model is correct (i.e., when G € Fg) and robustly in case the troe distribution is in the
neighborhood of the model but not necessarily in it. In hypothesis testing problems we desire to have
a procedure which has high power under the model while being fairly stable in terms of level and
power when model assumptions are violated. In estimation problems, Beran (1977) and Tamura
and Boos (1986) attempted to achieve the above goal by using the minimum Hellinger distance
estimator for continuous models. Simpson (1987) studied minimum Hellinpger distance estimation
under dicrete models. Simpson (1989) also discussed the robust hypothesis testing problem for
general models using the Hellinger distance. Lindsay (1994) pave a general framework to density
based minimum divergence estimation through the construction of disparities and the description of
a general class of estimators that are both robust and first order efficient for discrete models. An

extension to the continnons case was considered by Basu and Lindsay (1994).

In this paper we consider a new class of density based divergences which generates first order
efficient estimators, and several members of which have pood robustness properties. The structure
of these divergences are very much like those of disparities, but some of them do not have the
comvexity property of the defining function C'{-) (Section 2). We investigate efficiency and robustness
of these estimators. We will show that one must exercise caution in the creation of such first order
efficient disparities as several of the estimators needed modifications in order to perform well. We
also illustrate the performance of the method through a large numerical study involving simulation
results and real-data examples. To keep a clear focus in our investigations, we will restrict the present
work to discrete models. We hope to consider the application of similar techniques to continnons

modek in a future paper.

The remainder of the paper is organized as follows: Section 2 contains a brief description of the
class of disparities in general followed by a discussion of the proposed divergences. In Section 3 we
discnss the asymptotic properties of the estimators, and their modifications, the breakdown point
issue, and robust testing of hypotheses using the above divergences. Section 4 presents numerical

results, where we also llustrate the effect of an empty cell penalty on the procedures. Section 5



presents some concluding remarks.

2. Minimum disparity inference and proposed methods

2.1, Disparities and Residual Adjustment Function

Consider a parametric family of distributions Fy. 8 € B, having densities fg(-) with a countable
sample space. Without loss of generality, let the sample space be X' = {0,1,2,...}. Let d(z) be
the empirical density at z (relative frequency at z) based on a random sample of size n from the
true distribution which is modeled by the above parametric family of distributions. Our interest
is in making inference about the unknown 8. Folowing Lindsay (1994), we define a disparity — a
measure of discrepancy between probability densities d{-) and fa(-) — given by a convex function
C(-) as

cld, fo) = D C(8 (1)

e X

where the Pearson residual §(z) is defined to be §{z) = d(z)/ fo(z) — 1. The range of the Pearson
residual is [—1,00), and 4(z) = —1 only when d{z) = 0 (i.e., when the cell z is empty), and equals
0 only when d{-) = fg(-). Under differentiability of the model, the minimization of the disparity
measure (1) corresponds to solving an estimating equation of the form

—Npc = z Ald(z) )V falz) = (2)

rEX
where A(§) = (1 +8)C"(d) — C{d) and ¥ represents the pradient with respect to 8. The function
A(#) can be centered and scaled, without changing the estimating properties of the disparity, so
that A(0) = 0 and A(0) = 1. We will call the centered and scaled function A(-) the residual
adjustment function (RAF) of the disparity. Minimum disparity estimators have received wide
attention in statistical inference because of their ability to reconcile the properties of robustness and
asymptotic efficiency. See Lindsay (1994) for more details of the method, and Baso et al. (1997)
for a comprebensive review including some of the later work, When '(-) & strictly convex, the

disparity measure is nonnegative and equals 0 only when the densities d{-) and fa(-) equal. Through



appropriate selection of C(-), a large family of important divergences and distances can be developed
in this manner, including the power divergence family | Cressie and Read 1984) which generates the
Kullhack-Leibler and Hellinpger distance as special cases. The eurvature parameter A”((0), which &
the second derivative of the RAF evaluated at § = 00, is a measure of the tradeoff between robustness
and second order efficiency (Lindsay 1994). Larpge negative values of A”(0) correspond to stronger
robustness properties (but also preater second order deficiency), while A”{0) = 0 corresponds to

second order efficiency in the sense of Hao (1961, 1962).

2.2, The Powered Pearson Divergence

Here we introduce a new family of divergences — the powered Pearson divergence family — between
dl-] and fg(-) which satisfy the peneral definition of a statistical distance in the sense that it is
non-negative and equal to zero if and only if d{-) = fo(-). In this paper we will consider the powered
Pearson divergence (PPD) and appropriate modifications of it which have reasonable efficiency and
robustness properties. Although the structures of the resulting estimating equations are similar to
those of disparities, some of the PPDs as well as some of their modifications do not belong to the
class of disparities. In addition, we present an extensive comparative study of the proposed methods
with several robust modifications of the likelihood disparity as in Basu et al (2000), and show that

the results are very similar in either case.

The PPD,, indexed by a single parameter a € [0, 1] between two arbitrary discrete densities g(-)
and f(-] on & is given by
PPDu ) = 505 3 [t ] £
Fi
and g(-) and f{-) are replaced by d{-) and fp(-) under the parametric estimation setup. The PPD
family includes Pearson’s chi-square (o = 1) and Hellinger distance (o = 1/2), and can be thought

of as Ls distance on the powered transformed distances.

Az in the case of disparities, one can write PPD,, in the form (1), and arrive at an estimating

equation of the form (2), where the C{.) function, its second derivative C"(-) and A(-) function are



given by

OB) = 556+ 1) ~ 1] 5
e = ;_‘]i{ﬁ + 1]”_2[1 —a—(1—2a){d+1)"] (4)
AB) = 550+ 1) ~ (20— 1)+ 1) +1]. (5)

However C"'(-) is always non-negative only when o > %, g0 the C(-) functions of the PPD,, family are

not convex on [—1,00) when a < 3. But, since smaller values of o provide greater downweighting

for larger outliers, these are the interesting values of o for robustness purposes.

One of our main objectives in this paper is to imvestipate the effect of this nonconvexity, and
muoidify this family appropriately to obtain stable inference. Sinee A'(8) = (§ 4+ 1)C"(d) and § = —1,
it can be seen from equations (3), (4) and (5] that for o < 1/2, the RAF starts to redescend after a
certain inflection point §; where 4'(§;) becomes zero. Some simple alpebra shows that this inflection
point is given by §; = [(1 —a)/(1—2a)]¥* —1. Beyond § = §;, the function A(-) steadily decreases,
and moreover it becomes negative for § > & with §2 = [1/(1 — 2a)]"/* — 1. This results in a
negative impact of a big outlier, as compared to a large positive impact for methods like maximum
likelihood, and minimal positive impact for good robust methods. When used just as it is, the
estimation procedures resulting from the minimization of the the PPD,, with o < 1/2 {particularly
for very small values of o) can lead to nonsensical results. Later on we will look at an example under
the Poisson model where a very small walue of o is shown to lead to a global but silly mininum at

@ =1

We propose the following methods to remedy this problem. One way is to force the RAF to he
equal to zero from the point where it dips below zero for the first time (at ds), and the other is
to extend the RAF at § = 4§, and hold the residual adjustment function constant at slope equal
to zero beyond the inflection point. In the first case A{d) = 0 for § > s, and in the second case
A(d) = A(d;) = 1/[2(1—-2a)| for § = 4;. We call the divergence based on the former modification the

trimmed powered Pearson divergence (TPPD) and the divergence based on the latter the Winsorized



powered Pearson divergence (WPPD). The TPPD and WPPD with o < § are given by

TPPDA(d, fo) =55 3. fola)™2*(d(x)* — fo(x)*)”

22 ; :
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+2(1—2a)'7% 3" d(x)
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The inflection points 4; and the trimming points §2 for each of several values of o are given in

Table 1.

Thble 1: The inflection and trimming points for PPD,, .

fu — 0 005 010 015 0200 025 030 035 040 045 —
4 e—1 185 235 265 321 406 SR LN H£.11 14.59  43.18
dz e—1 T7.23 831 978 11.86 1500 20.21 30.18 54.90 165.81

BB e

Also we present the figures of the C(4) and A(4) functions of the PPD,,, TPPD,, and WPPD,,
families corresponding to o = (1.1 in Figure 1. The WPPD essentially replaces the remaining part of
the {4) curve on the right with a line of slope equal to k from the point where its derivative C7(§)
reaches its maximum value & = €7(4;) on the positive side of the axis (which is the inflection point).
For TPPD the C'(4) function is linear beyond the trimming point ds, with constant slope equal to
'(d4a). Notice that the '(-) functions of WPPD are still convex (although not strictly convex) but
the C(-) functions of TPPD are not. However both C4) functions have unique minimum (equal to

0) at § =0.
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Figure 1: '{-) and A{-) functions of PPD, TPPD, WPPD and LD with o = 0.1.

Notice that for a £ [1/2,1] no modification to PPD,, is necessary since the defining equation
remains convex. Alternatively, the inflection and trimming points are at infinity for oo = 1/2. Thns
PPD, = WPPD, = TPPD,, for o = 1/2. We will see later, however that o = 1/2 & the only case
of interest to us from the robustness viewpoint within the PPD,,, o € [1/2,1] class. For the rest of

the paper, our interest will be on WPPD,, and TPPD,, families only for a € [0, %]

We note that although we arrived at the PPD,, family because weighted sums of squared dif-

ferences seemed natural divergences to mvestigate, we have since noticed that Read and Cressie

=]



(1988) arrived at this very same family as an approximation to the well-known Cressie Read power
divergence (Read and Cressie 1988, p. 95). However, unlike the PPD,, family, the power divergences

all correspond to comvex C(-) functions.

In this paper we will compare the estimators penerated by the PPD, and its modifications
with those resulting from the Winsorized likelihood disparity (WLD) and the trimmed likelihood
disparity (TLD) families which are modifications of the likelithood disparity similar in spirit to the
modifications of the PPD,, discussed earlier. The likelihood disparity (LD) between d{-) and fa(-)

is defined by

D(d, fo) = Z[d ) log ;' d{;r:j+fa{3:]|],

which & minimized by the maximum likelihood estimator of # in discrete models. The corresponding
(-] and A(-) functions are given by C{8) = (d + 1) log(d + 1) — 8 and A(d) = 4 (for comparison we

have presented the C{4) and A{4) functions of the LD in Figure 1 also).

The WLD ), and the TLD, for A any fixed mumber in (0,1] and A =1 — A are of the form.
WLDy(d, fo) = Y [d(x)log (d(x)/ fa(x)) + falz) — d(z)]
dffa<1f X

. X
= X [d{.rjk}g).+1fg{3:]|]

df a1 /%

TLDA(d. fo) = Y. [d(z)log (d(z)/ fo(x)) + fo(z) — d(z)]

dffa<1fX

— Y (A=) oz A+ M)

df fa=1/2

The WLD,, & a form of the robustified likelihood disparity (RLD) considered by Basu et al {2000).
It is easy to see that the ') functions for WLD, are convex (althoupgh not strictly comvex) while

the C'(-) functions for TLD), are not. Also WLDy—y = TLD,—; = LD.

For better understanding the robustness of these methods, we also present the combined weight
function w.(d.) (Park et al. 2000) for the TPPD,,, WPPD,,, TLD,, and WLD,, families for different
vahies of o and A. The combined weight function w.(4.) represent the relative impact of the ob-

servation in the estimating equation compared to masdmum likelihood. Here we define a combined
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Fipure 2: Combined weight functions of (a) TPPD,,; (b) WPPD,,; (¢) TLD,; (d) WLD,.

residual 4, as

dp(z)

8.(x) =

Ay ()

d< fa

d = fa

with the Neyman residual dx(z) = [d{z) — fa(z)]/d(z). The combined weight function w,.{4.) is

i

A(de)
"54.'
A'(0)
1—4. d,
A
A'(o0)

£

—1=4d. <0
§.=0

0<d. <1

d.=1



On the positive side of the 4. asds, this amounts to looking at the weights as a function of the
Pearson residuals but in the Neyman scale. For better outlier robustness, it is desirable that the
weight functions converge to 0 as §. — 1. If we restrict TPPD, and WPPD,, to a € [0,1/2], all
the four families of weight functions satify this property, but the TPPD, and WPPD,, appear to
do this more smoothly. The PPD,, TPPD, and WPPD,, families coincide for o = 1/2, and their
behavior for larpe values of § makes them highly nonrobust which is demonstrated here only for
¢ = (1.6 in Figure 2 (b}, but is actually true for all o = 1/2. For the rest of this paper, we focus our

attention on the TPPD,, and WPPD,, families for a € (0, 1/2].

3. Asymptotic results, breakdown issues, and Tests

A1, Asymptotic distributions

While we emphasize the mimerical results in this paper, we present brief remarks about the asymp-
totic behavior of the estimators. Notice that under the model the estimators corresponding to the
minimizers of PPD,,, WPPD,, and TPPD,, are all Fisher consistent, which implies that they are all
weakly consistent under the model as well (e.q., Cox and Hinkley, 1974, pp 288). For the asymptotic
normality of the functional under the model, notice that for the PPD,,, Lindsay’s assumptions on
A(-) hold {Assumption 24, Lindsay 1994) so that the general proof for asymptotic normality works.
To make the asymptotic argument for the WPPD,, and TPPD,, families, let us write d{-) = d.(-)
for the data density at sample size n, and let 8, be the corresponding estimator. For the WPPD,,
case, once again the assumptions of Lindsay (1994) hold except for the inflection point §; where
the second derivative A”(-) is not defined. However, the smoothness conditions are satisfied in an
interval of § around 0, and the results follow by noticing that {z : d,.(z)/ fo.(z) — 1 = &} converges
to a set of probakility zero under the true distribution which belongs to the model. Similarly, A{-)
and A"”(-) do not exist for the TPPD,, at the trimming point § = §, but the probability of the set

{z :dn(z)/ fo.(z) — 1 = 82} goes to zero under the model.

10



3.2, Breakdoum points

The breakdown point of a statistical functional is roughly the smallest fraction of contamination
in the data that may canse an arbitrarily extreme walue in the estimate. Here we establish the

breakdown point of the TPPD,, and WPPD,, estimation functionals under the following set up.

Let T,(G) be the TPPD, or WPPD,, estimation functional at the true distribution . For

e € (0, 1), consider the contamination model,
"q-*'-:"I = {1 _f:IG mp 'E"rir'frh

where {K,,} is a sequence of contaminating distributions, and h, .., g and k,, are the correspond-
ing densities with respect to a dominating measure g (e g, counting measure). Given a contam-
ination sequence {K,,} we will say that there is breakdown i T, for € level contamination if
limy— o [Ta(He m)| = 20, in which case we are interested in v = mf{e : limy, e |Tu(H, )| = o0}

We write below 8, = To(H, ), suppressing the o and e subscripts for brevity.

We develop the following conditions for the breakdown point analysis. The conditions put ap-
propriate structure on the model and on the contamination sequence which allows us to determine
the behavior of the divergences under extreme forms of contamination. The proofs of this section,
however, are not limited to discrete modek and are expressed more generally in the form mvolving

integrals. The following conditions Al - A3 are conveniently expressed in terms of densities.

Definition 1. A contaminating sequence of densities { k., } will be called an outlier sequence relative

to truth g{z) and model fo(x) if:

Al. [min(g(z). kwlz))dp(z) — 0 as m — oo. That is, the contemination distribution becomes

asymptotically singular to the true distribution.

A2, [min(fy(x), kw(z))dp(z) — 0 as m — oo uniformly for |08] < e, for any fized ¢. That is the

contamination distribution is asymptotically singular to the specified models.

Finally we assume that

11



A3, [min(g(z), fo..(z))dp(z) =0 asm — o0 if |f,u] — o0 asm — oo. That is, large values of the

parameter § give distributions which become singular to the true distribution.

Hereafter x will be suppressed from the intepral notation. Intuitively, outlier sequences represent
the worst possible type of contamination sequences. Before proving the asymptotic breakdown

results, we first derive a boundedness result for the divergences.

Theorem 1. For given densities g(-) and f(-), the TPPD,, and WPPD,, are bounded for() < a <

that is,

0 < TPPDL(g, f) < — +2(1 —2a) /22,
2

1 (1-2a)t/=2
<W i et

0<WPPD.(g, f) < o3 + M —a)i/at

The left equality holds if and only if g(-) = f(-), and the vight equality holds when the supports of the
two densities are disjoint almost everywhere, i.e, {z : f(z) > 0} N {z : g(z) > 0} is a set of measure

0 with respect to the dominating measure.

Proof. Denote Dy (g, f) = (2a2) 7 1 22(g™ — ) and Da(g, f) = 2(1 — 2a)¥*~2g. Then the

TPPD,, can be rewritten as

TPPDa(g. f) = f Di(g, f)du + f Di(g, f)du + f Da(g, f)dp.

g=f (1—2a) mgfag 0= f(l =2t ey

First, for fixed f and g € (0, f), look at Dy{g, f) as a function of g.

F.;']"Dl (g, ) = ifl—?u{gu —f":lg"_l <0, for ¥ge (0 f).
iy o

Since Dy(-, f) is strictly decreasing for g € (0, f) and right-contimmous at g = 0, we have Dy(g. f) <

D10, f) = (2a®)7f for g € (0, f) with the equality only when g = 0.

Second, for fixed g and f € ((1 - 20) Yoy, g}, look at Dy(g, f) as a function of f.

lé) 1 ¥ T w oy r— Ay
57 D10 ) = 5 = g - (L= 205>,
and %Dl{y, fi=0at f = f* = (1—2a)"*g. An inspection of the signs of the derivative J%.Dl{g, fl

on either side of f = f* shows Di(g, f) < Dy(g, f*) = 2(1 — 2a)t/*2g for f € ((1— 20 ) g, g)-

12



Next, f € [0,(1 — 2a)Y/g], and it is easy to see Di(g, f) < Da(g, f) = 2(1 — 2a)"/*~2g. Thus

we have Di(g, f) < Dalg, f) = 2(1 — 2a)**2gfor f <g.

It follows that

TPPD,(g. f) < f

gf

Dy (0, fidp + f Da(g, f)dp

T<y

1
< [ Du0.Ndn+ [ Dalg. i = 35 + 21 ~20) V2,

It 5 easily shown that the equality holds only when the two densities have disjoint support almost

everywhere. Similar arpuments establish the result for WPPD,, (g, f). O

Lemma 2. Denote gj(z) = ngl(z) and for any 5 € (0,1}, TPPD,(g". f) = Crpen(y — 1) and
WPPD, (g% f1 = Cwpppln — 1), where Cpppp(-) and Cywppp(-) are the defining functions for the

TPPD, and WPPD,, in (G) and (7] respectively.

Proof. Even though gi(-) & not a density, one can formally calculate TPPD, (g, f). For brevity,
denote C(-) = Crppp(-). For any § > —1 and any 5 € [0,1], we have C(§) = C'(g—1) (§ — (g —

1)) +C(n—1). It follows that for any 5 € [0, 1],

1 1
il s gin=1 %— 1—(n—1)) +Cln —1).
If we integrate both sides above with respect to F(-), we have TPPD {5y, f) = Cln— 1).

Note that WPPD,(ng. f) = Cwepn(n — 1) holds directly by Jensen’s inequality since Cwpppl-)

15 COnvex. O

Theorem 3. Let {k,} be an outlier sequence of densities with respect to the true distribution and
the model (i.e. {k,,} satisfies conditions Al and A2). In addition suppose that the model satisfies
condition A3 in relation to the true distribution. If the true distribution belongs to the model, then,
for any e < 1/2, limsup,,_ . [TolH, )| < o0 where T, is the TPPD, or WPPD,, estimation
functional When the true distribution does not belong to the model, imsup, __ |[TW(H, )| < =

whenever € < €, where ¢ = inf{e : ble) < v(e)} and for the TPPD, functional Ke) = 2(1 —

13



€)1 — 2a)Y 22 4+ Crppple — 1) and v(e) = 2e(1 — 2a) V22 4 TPPDL{(1 — €)g, fo-), and 8* is the
minimizer of TPPDL((1 — €)g, fa); for the WPPD,, functional, be) = (1 —e)(1 — 2a)t/*2/(1 -
a)l/e=1 4 Cweppnle — 1) and v(e) = e(1 — 2022 /{1 — ) />~ L WPPDL((1 — €)g, fa-), and 8*

is the minimizer of WPPD, ({1 — €lg. fa).

Proof. Let T, be the TPPD,, estimation functional, and denote

(2a®)" 112 — f)E : g/ f < {1_12;.:]”"

i 1/
2(1 — 2a) /o2y 9/ f =2 (=)

Dig.f) =

For brevity, denote C'(-) = Crppp(-). Given a level € of contamination, suppose, if possible,
breakdown occurs, that is there exists a sequence {k,,} such that |#,,| — o0 as m — oo, where

O = To(H, ;). Define A, = {z: g{z) > max(k,.(z), fo_ (z))}, 50 that

TPPD. (ke s foo,) = f T s i S f D{he s fo.. )i (9)
A Al

We start by determining the limit in m of the first term in the right of (9). Let Fa(-) be the indicator
function of the set 4. Notice that IA by = fﬂ'Am by < f min(g, k., )dp — 0 as m — oo by
Al and thus the set A, converges to aset of zero probablity under &, . Similarly it follows from A3

that the set A, converges to a set of zero probability under fz . Next notice that A}, C By, UBa,,

where By, = {z: g(z) < kn(z)} and By, = {z: glz) < fo..(z)}. The integrals [ Fp, , gdy and
[ g,  gdp converge to zero as m — oo from conditions Al and A3 respectively. Thus under g,

the set AS, converges to a set of zero probability. Thus

Ty, Dihe s fo.) = D1 —elg, 0
a5 1 — o0,

Next notice from the proof of Theorem 1 that

|IAm-D{h;..wh fvﬂm:l

< | Dlhteams fo,.)| = Dlltesm fo..) < (20%) 7 fo, + 21— )(L = 2a) /=2, ,,
and [[(2a®) 7 f,, +2(1 — €)(1 — 2a)V/ 2R, . )dp equals (2a%)71 +2(1— €)(1 — 2a)' /2 for all m.

Thus by a generalized version of the dominated convergence theorem (Royden, 1988, pape 92)

| [ Dt o~ [ (1 = )g.0)du] 0. (10

™
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which gives the limit to the first term in (9), since [ D((1 — €)g,0)dp = 2(1 —e€)(1 — 2a)t /22

Similarly, we have

| [ Dlberms o~ [ Dk fo. )i

™

— 1) i(11)

which gives us the second term in (9). Putting (10) and (11) together, we get,

lim inf TPPDy (ke fo.. ) = 2(1 — €)(1 — 2a)*/*~% + lim inffD{E#,,,,fgmjd_u.

e—oo e—oo

Notice that [ D(ek,,, fo,. )dp = C(e — 1) by Lemma 2. It follows that

liminf TPPD, (Bem, fo. ) = 2(1 — €)(1 — 2a)t% 2 4+ C(e — 1). (12)

™
e — oo

We will have a contradiction to our assumption of the existence of a sequence {k,, } for which
breakdown occurs if we can show that there exists a constant value 8% in the parameter space such

that

limsup TPPD{h, ... fa-) < ble) (13)

wE— o0
where b(e) i the right hand side of equation (12) as then the {6,,} sequence above could not minimize
TPPD, for every m. We will show that this is troe for all € < 1/2 under the model where 8% is the

minimizer of [ D((1 —e€)g, fo)dp.

Using analogous techniques, assumptions Al and A3, and Lemma 2 we obtain, for fived any 8,

lim TPPD. (e, fo) = 26(1 —2a)¥ %2 4 fﬂ{{l —€)g, foldn

we— oo

> 2{{1—Enj”"_z+i:;1ffD{{l—£jg,fgjd_u. (14)

with equality for & = #*. Notice from (14) that among all fixed 8 the divergence TPPD, (ke i, fo)

is minimized in the lmit by 8%,

If g(-) = fau(-), that is the true distribution belongs to the model, [ D((1—¢) fa, fa, Jdpt, = C(—¢)
which is also the lower bound (over 8 € @) for D((1—€)fs,. fa). Thus in this case 8* = 6, and from
(14),

lim TPPD.(hem, for] = lim TPPD,(Rem, foo) = Ze(1 — 20) /%2 + C(—e). (15)

wE—o0 Te—+ oo
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As a result asymptotically there is no breakdown for € level contamination when ale) < ble), where
ale) is the right hand sides of equation (15). Note that a{e) and be) are strictly increasing and
decreasing respectively in e, and a{1/2) = b{1/2), so that asymptotically there i no breakdown and

limn smapy, oo [T {H e )| < 0o for e < 1/2.

The proof also shows that under g = fo, as m — o0, # is the minimizer of TPPD. (b o, f5)

when e < 1/2 for any outlier sequence {k,, }.

More generally, when g does not belong to the model, there is no breakdown for any outlier

sequence whenever e < e, where
e = inf{e: ble) < ~(e)},

where ~(e) is the right hand side of (14).

The asymptotic breakdown results for the WPPD,, estimation functional, inchiding a breakdown

point of 1/2 or more at the model, are similarly established.

3.3, Robust Tests of Hypotheses

Given a parametric hypothesis Hy : 8 = 8y (or more generally H : # € By C 8), one can define
robust tests of hypothesis for the above using the TPPD,, and WPPD,,. Given the empirical density

dl -], the WPPD,, test statistic for the above hypothesis is given by
2n |WPPD.(d, f; ) — WPPD,(d, fﬁ]] :

where :Fjﬂ and @ are the minimizers of WPPD,,(d, fo) over 8y and the unrestricted parameter space
B respectively. One can generate a corresponding statistic wing the TPPD,, in place of WPPD,,.
Similar statistics can be defined for WLD,, and TLD,. Combined with the result of Section 3.1, it

follows from Theorem 6 of Lindsay (1994) that the mull distribution of the WPPD,, and TPPD,

statistics have the same chi-square imit as the —2 x log likelihood ratio.
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4. Numerical Studies

4.1. Preliminaries

We perform an extensive numerical study to investigate the properties of the minimum divergence
estimators and the corresponding tests of hypotheses for the proposed families and compare them
to the methods based on the WLD,, family (those based on TLDy were very similar). We chose
the Poisson and geometric models (which are the two most common count data models) to base
our investigations upon. Since the results are very similar, we concentrate primarily on the Poisson

maodel in our presentations to make our point more succinet.

First, to demonstrate the peculiarities of the PPD,, method, we consider a part of an experiment
originally reported by Woodruff et al. (1984), and analyzed by Simpson (1987). The frequencies of
frequencies of daupghter flies carrying a recessive lethal mutation on the X-chromosome are considered
where the male parents have been exposed to a certain degree of a chemical. Roughly 100 danghter
flies were sampled for each male. This particular experiment resulted in (z;, f;) = (0,23), (1.7},
(2,3), (91,1), where x; is the number of danghters carrying the recessive lethal mutation and f; is
the mumber of male parents having z; such danghters. We will refer to this as the Drosophila Data I.
Table 2: The estimated parameters under the Poisson model for the Drosophila Data I The estimated

parameters under the LD are § = 3.059 and § = 0.394 with and without the outlier respectively.
The same are # = 32565 and # = 0,424 when # is the minimum Pearson chi-square estimator.

« PPD, TPPD, WPFD, pWPPD, PPD,—s(HD) PPD,—q.s5i

.1 0 (L1453 (L1610 (1352
0.2 (0.244 (1,244 (1246 (1360 0.364 11.018
03 0302 (1.302 (1.302 (368
4 0330 (1539 (.538 (5376

The estimators of § under a parametric Poisson (#) model corresponding to o = 0.1, 0.2, (0.3, (.4
for the Drosophila Data I are presented in Table 2 for the PPD,, TPPD,, WPPD,, and pWPPD,,
families. The pWPPD_, method is a modification of WPPD,, to be introduced later in this section.

For this model it can be shown that PPD,(d, f) converges to ¢; = g (d{0)* — 12 asf — 0. In
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this example it appears (Figure 3) that # = 0 iz the pglobal minimum of PPD,, for o = 0.1. It
means that the estimator tends to “implode” toward 0 in this case. On the other hand as 8 — 0
TPPD,.(d, fg) converges to ez = z7(d(0)* — 1)2 + 2(1 — 2q)/e-2 ¥ engdlz), and WPPD,(d, fa)

1 =2
comverges to g = Ti;{d{{}]“ =y (:}—_2{:;] =T 2pwq @(2). Notice that £; <z < ¢3 fora < %, and

at least for the Drosophila Data 1 example, cs, ¢ are not the global minima of the corresponding
divergences at o = (1.1, See Figure 3 for a graph of the three divergences as a function of § when
¢ = ().1. This example demonstrates the possible pitfalls of the PPD,, for small o, and the need to
modify it. A similar imploding behavior towards zero has also been noticed by Jones ef al (2000

in another density based minimum diverpence estimator for a different model.

=
o —
[=]
w1
8
=
=
g
= T T T T T T T
0.0 0.05 0.10 015 0.20 0.25 030
2]

Figure 3: Values of the divergences over # for the Drosophila Data I excample.

A second concern was the small sample efficiency of the proposed estimators. Notice that the
the vale of C{—1) for the PPD,, and the derived families is 1/(2a?), so that families with very
small values of o put a bmge weight on an empty cell (§ = —1, ie., d{z) = 0), this can lead
to the small sample performance of the methods to be quite inefficient at the model, although
their outlier robustness properties make them otherwise attractive. A similar phenomenon for the
Hellinger distance and some of its relations was observed, among others, by Lindsay (1994), Harris

and Basu (1994) and Basn, Harris and Basu (1996). We show here that an empty cell penalty
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as developed in Harris and Baso (1994) can lead to dramatic improvements in the method. The
penalized versions of TPPD, and WPPD,, are obtained by modifying the weight of an empty cell

to be equal to that of LD as

pTPPD, (d, fo) =~ Yo falx) () — folz)*)?

Pt
0 <=z )=
+2(1-2)"2 Y d@)+) fola)

2 rm ) e =0

pWPPD,, (d, fo) =zrlT > fol)' P (d(2)™ — folx)®) .
O (g e

o e
£ 3 [id{zj - ;jfa{n:j] + falz).

1 — q)tfn-t 2(1 — 2ax
= (L=a) { d=l

While the improved performance of the penalized estimators and tests will be self evident in
the simulations, here we present a small praphical mvestigation of the nature of improvement using
the test statistics and their asymptotic limits. We take the Poisson (#) model, generate data from
Poisson (5), and consider testing Hy : 8 = 5 versus Hy - 8 # 5. For illustration we choose o = 0.3, In
Figures 4 {a) and (b) we present the histograms of the test statistics for the TPPDy 3 and pTPPD,, 4
methods. The sample size was n = 20 with 100 replications. We also superimpose the y2(1) density
on it, which is its asymptotic limit. Clearly the y? curve provides a far superior approximation for
the histogram of the penalized test statistic — particularly the tail part. The vertical line represents

the 5% critical point of ¥2(1).

For the same hypotheses and same true distribution, in Figures 5 (a) and (b) we present the
probability plots (Wilk and Goanadesikan 1968) of the gquantiles of the ordinary and penalized
version of the WPPDy 5 test statistics against the quantiles of the (1) distribution. A sample size

n = 100 with 100 replications was used. The significant improvement due to penalty is apparent.

4.2. Examples

We applied the methods proposed in this paper to some real data sets. The first example nvolves

the incidence of peritonitis on n = 390 kidney patients (Table 3). A plance at the data sugpests that
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a geometric model with & around 1/2 may fit the data well. The data set, provided by Prof. P. W.
M. John, was previously analyzed by Basu and Basu (1998). The observed frequency (O4) of the
mumber of cases of peritonitis (k) is modeled by the peometric distribution with success probability
f. For an estimate 0, the expected frequencies are then obtained as By = né{l - é:lk The largest
mumber of cases of peritonitis is & = 12, s0 we merged all the expected frequencies for & = 12, To
assess the poodness-of-fit of the model, we use the log likelihood ratio statistic which is given for
this data as
12
G* =2 Oplog(O/Ey).
k=l
In this example the fit provided by the MLE is excellent; those for the estimators based on the
penalized divergence are almost as good, and certainly much better than those for the estimators
based on the ordinary divergence. The two marginally large observations at 10 and 12 have little

impact since the sample size & so larpe. This example shows that when the data roughly follows the

model the penalized methods are close to likelihood based ones in performance.

The second example ako involves data from Woodroff e al. (1984). The responses now are the
frequencies of frequencies of daughter flies having a recessive lethal mutation on the X-chromosome
where the male parent was either exposed to a dose of chemical or to control conditions. This data
set, also analyzed by Simpson (1989, Table 5) will be referred to as the Drosophila Data IT. The
responses are modeled as Poissons with mean 8 (control), and #s {exposed) respectively. For testing
Hy -8y = 8 against Hy @ 8y < f, a two sample signed divergence & appropriate. Suppose that
random samples of size n; are available from the population with density fp,(-) and let d;(-) be the
empirical density of i-th sample, 1 = 1,2, For a divergence p(-) between two densities, define the

overall divergence for the two sample case as

D = D(6,,62) = (napldy, fo,) + nap(da, fo,)) .

Ty + na

Given the ordinary divergence test statistic +, = Zai{ﬁ'u - ﬁ?:l, where E‘ﬂ and D are the minimizers
of D{-,-) under the null and without any restrictions respectively, the sipned divergence statistic is

given by f&,‘xﬁzsigu{ég —8y) where 8, and §5 are the unrestricted minimum divergence estimators of the
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Table 3: The observed frequencies (O ) of the mimber of cases (k) of peritonitis for each of 390 kidney
patients and the expected frequencies under different methods with the poodness-of-fit likelihood

ratio statistics (G°).

i 0 1 2 a3 4 5] G 7 8 o 1 11 124 G
O 199 4 4l 23 L7 e e 1 0 i 1 i 1
ML 1935 975 491 247 125 634 32 16 08 04 02 01 .1 104
i TPPD,
0.1 237.8 928 362 141 0.0 22 08 04 01 00 00 00 00 524
0.2 2168 963 428 190 84 A7 L7 O 03 0.1 01 00 0.0 219
04 2078 971 453 212 99 46 22 10 05 02 01 0.0 00 14.8
04 2029 973 467 224 18 52 25 12 046 03 0.1 0.1 .1 12.3
05 1991 975 477 234 114 56 2.7 14 07 03 02 01 0l 11.1
I pTPPD,,
0.1 2006 974 473 230 112 54 246 14 046 03 0.1 0.1 .1 11.6G
0.2 2000 974 475 231 113 55 27 13 046 03 0.2 0l (.1 11.4
04 1993 975 474 233 114 56 27 14 07 03 0.2 0l .1 11.2
04 1983 975 479 236 116 57 28 14 07 03 0.2 0.1 .1 11.0
05 1967 975 483 239 119 59 29 14 07 04 02 0.1 0.1 0.7
o WPPD,
0.1 237.7 928 362 142 0.0 22 08 04 01 0.1 00 00 00 522
0.2 216.46 963 428 190 845 38 1.7 O 043 0.1 01 00 0.0 218
0.3 207.7 971 454 212 99 46 22 10 05 02 0.1 0.0 0.0 14.8
04 2028 973 467 224 108 52 25 12 046 043 01 0.1 .1 12.3
0.5 1991 975 477 234 114 56 27 13 07 03 0.2 0l .1 11.1
I pWFPPD,
0.1 2004 974 474 230 11.2 54 26 13 046 03 0.1 0.1 .1 11.5
0.2 1999 974 475 232 113 55 27 14 046 03 0.2 0l .1 11.3
03 1992 975 477 233 114 56 27 13 07 03 02 0.1 .1 11.2
04 1983 975 479 236 116 &7 28 14 07 03 02 01 01 11.0
05 1967 975 483 239 119 59 20 14 07 04 0.2 0l .1 .y

parameters; for both the ordinary divergence and the penalized divergence, the signed divergence
test is asymptotically equivalent to the sipned likelihood ratio test. For the full data and the reduced
data (after removing the two large observations from the treated group) the signed diverpences and

the associated p-values wsing the standard normal approximation are given in Table 4.

The presence or absence of the two large counts in the treated group has little effect on the
robust methods. The null hypothesis, that the mean number for the control proup & no smaller

than the treated group is supported in either case. The conclusions, however, are opposite when one
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Table 4: The signed divergence statistics and their p-values for the Drosophila Data T1

. All observations Outliers Deleted
Divergence . ; ; ;
signed div.  p-walue signed div.  p-walue
LD 25095 0.002 L0499 (1136
HD (1G9 0.243 (.743 0.229
pHD 0.707 (.2410) 0.750 0.227
a=10.1 0028 (.459 0187 (1426
0.2 0.105 (.458 0.226 411
TEF T, 0.3 0.244 (.40 0.326 0.372
(.4 0448 0327 0.507 (300G
a=10.1 0027 (.489 0187 (426
0.2 (.104 0.459 (.225 0411
eTEED: 53 0.244 0.404 0.326 0372
(.4 451 (1.326 0,504 (1.305
a=10.1 (1.162 (.436 0.247 0402
- 0.2 0.171 .432 0.264 (1.396
WPPD, 0.3 ().245 0.403 0327 0.372
0.4 (.448 0.327 0.507 (L3046
a=(.1 .162 (.436 (.248 0.402
iz 0.2 .171 0.432 00.264 (1.396
PWPPD. 4 0.245 0.403 0.327 0.372
0.4 .451 (.326 0.5019 (1.305

uses the signed likelihood ratio test. The outliers cause the result to be sipnificant in this case. Also
the p-values for the ordinary and penalized statistics are very close, indicating that the robustness

property has not been compromised by the wse of the penalty in this case.

4.3 Simulation Results

In the first study, the data are generated from the Poisson distribution with mean 5, and modeled
as the Poisson (#) distribution. Next, data are generated from the 0.9 Poisson (5) + 0.1 Poisson ( 15)
mixture, and the assumed model is Poisson (#). Here, as well as in the rest of the paper, three sample
gizes o= 20, 50, 100 are considered. In Tables 5 and 6, we have presented the bias and the mean
square errors of the estimators of § (against the target value of 5) obtained by minimizing the WPPD,,
and TPPD,, and their penalized versions for several walues of o for pure and contaminated Poisson

data respectively. It & clear that the small sample efficiency at the model is an increasing function
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of . The performance of the penalized versions are remarkably better. At sample size n = 100,
the efficiency of the pWPPD, . estimator is over 95% compared to the MLE. The performance of
the TPPD,, and WPPD,, estimators are very close. For contaminated data, more robust methods

(those with smaller values of o) start doing better.

Table 5: Estimated bisses and mean square errors of the estimators under consideration. 5000

random samples were drawn from Poisson (5] with sample size n = 20, 50, 100.

TPPD,, pITPPD,, WPPD, PWPPD,
Bias MSE Bias MSE Bias MSE Bias MSE
Sample Size n = 20
0.1 -0.6163 1.1902 -0.1031 (1.48091 G144 1.1832 =(L0858 03753
0.2 -0.5182 0.9108 =(1.0996 03521 ).5154 0.9026 -0.0935 03421
0.3 =0.4088 (.G5OG =[0858 03181 (14003 0.G492 -(10852 03136
0.4 -0.2774 0.4402 =(1.06G92 (.2882 -).27T64 0.4384 -(1L06G82 0.2872
0.5 -0.1587 0.3126 =0.04104 0.2633 AL 15RT 03126 =(L0404 0.2633
MLE  0.0079 10,2403

Sample Size n = 50
0.1 L5578 (1. THG6 -0.0701 1.1471 L5555 (LT85 =0L06TT (.1450
0.2 4078 (.40498 ~0L06G48 .1343 (14063 (L4074 -3 (0.1530
04 02751 1.2414 -0L056GT .1232 -(}.2742 02403 -0055T 01226
04 AL1772 (L1601 RIRIESTH] 01137 L1769 0.1599 -0.0447 (.11:35
0.5 L1009 (.1206 -0.0287 010559 L 100 0.1206 -(L028T (10559
MLE  0.0020 0. 1005

Sample Size n = 100
.1 ALA510 (L5780 -0.0572 (LOGTS (15454 (L5745 =056 .066S
2 L3165 (2206 -(.0512 (L0627 ALA15T (.2193 =0L0504 (L0624
03 L1047 1.11:38 ~0L043T (0586 1159433 01135 ~00453 (0585
04 -0.1197 (.0742 BIRIEEE (L0551 11194 00741 RUEIEES (L0551
0.5 06T 00579 -0.0225 0.0523 LOGTS 00579 -(L0225 (L0523
MLE  0.0003 (1.0503

For comparison corresponding values for WLD,, are presented in Tables 7 and 8 for several values
of A. The efficiencies are now increasing in A under the model, while smaller values of A are better
for robustness. It appears that one can get similar degrees of small sample efficiency and robustness
for WPPD,, and WLD,, by suitable choice of index parameters o and A Exact calibration of the o
and A values are difficult, but equating the Winsorizing point gives A =1 — {11%?;']”". The resulting

A vahies for several values of a are piven Thble 9. This however is just a crude correspondence.

Visual inspection shows somewhat smaller values of A than given by the above relation will give
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Table 6: Estimated biases and mean square errors of the estimators under consideration. 5000
random samples were drawn from 0.9Poisson (5) 4+ 0.1Poisson (15) with sample size n = 20, 50, 100.

TPPD,, pTPPD,, WPPD, PWPPD,
Bias MSE Bias MSE Bias MSE Bias MSE
Sample Size n = 20
0.1 -0.5112 1.1982 0.0106 0.5027 -().5084 L. 1930 00260 0.400%
0.2 -0D.4218 0.945953 0.0115 (1.4556 4179 0.9423 0.0264 (0.4495
0.3 -0.3107 0.7126 0.0253 (0.4223 3051 0. 70610) 00387 04217
0.4 -0.17TH2 (.5150 L0603 (.40132 ).1724 0.5127 0.07T05 04058
0.5 0.02581 0.42G3 0.2002 0. 4577 00281 04263 02002 04577
MLE  1.0038 1.7522

Sample Size n = 50
1 -0L3854 (.7158 0.0212 (11861 L3826 (.7114 (0.0:322 (L1859
0.2 02406 0.3923 0033 01708 (12360 (.3901 00443 01717
04 -0.13145 (.2472 00531 (. 1608 11254 (1.2461 00635 0.16G25
04 00817 (.1827 0.0907 (.1601 L0258 (.1528 (L0955 1621
(.5 0 13T (11868 0.2212 (1.2085 01837 (1.1868 0.2212 (.2085
MLE 1.0009 L3153

Sample Size n = 100
L -0L1485 (4935 (L0460 (L0 11451 0.49159 (L0559 (.09059
0.2 -0.0499 0.1953 (L0609 00870 L0436 .1954 007089 (.0584
0.3 00140 (.1183 00833 (LO86T 0.0214 0.1190 00928 (LOSAT
0.4 00781 (0993 0.1228 (L0933 0.0848 0.1007 (L1305 00955
(1.5 (.2180 (1365 02517 (.1458 (1.2180 (135465 02517 (11458
MLE 1.0061 1.1591

better calibration.

We now turn our attention to problems of hypothesis testing. Here again we looked at the
TPPD,, WPPD,,, WLD, and TLD, families in detail. However, as the results are very similar,
we only present the results for the WPPD,, case. Once apgain we looked at the Poisson (#) model,
generated data from the Poisson (5) distribution and tested Hy @ # = 5 against H - § £ 5. Since the
distributions of the ordinary test statistics are very far off from the limiting chi-square distributions,
we computed the empirical eritical walues for each of the test statistics at our true null distribution
based on 5000 replications of the test statistic for all the three sample sizes considered. We have
not presented these empirical eritical values here, but by the time n equaled 100, the critical values

of pWFPPD,, . were practically equal to those of LRT.

24



Table 7: Estimated biases and mean square errors of the WLD,, estimators. 5000 random samples
were drawn from Poisson (5) with sample size n = 20, 50, 100.

\ n=20 n o= ol n= 100
Bias MSE Bias MSE Bias MSE
0.5 =(0.1095 (L3152 0515 (L1156 =(1L.0306G 0.05:40)
.632 =(L06G5T (.2850) 1.0:329 0.10893 -0.0196 0.0524
(.G92 =0.0505 02777 (L0264 0.1073 =(1L.0158 0.0517
(.763 =0.0352 0.2702 10194 0.1052 =(.0118 .0512
(0.802 =(L0283 0.2660) 0157 (.1042 =005 0.05110
(1.5845 =0.0210 0L.2617 L0118 0.1031 =(L.0070 0.0508
(1L.8TH =(1.015% (L2587 L0059 0.1025 =().00)54 0.0507
0936 BRI ST (.2530 -.0032 (L1016 =025 0.0505
1 0.0079 0.2493 0.0020 0.1005 00003 0.0503

Table 8: Estimated biases and mean square errors of the WLD, estimators. 5000 random samples
were drawn from (1.9Poisson (5) 4+ 0.1Poisson (15) with sample size n = 20, 50, 100.

\ n=20 no= ol no= 100
Bias MSE Bias MSE Bias MSE
0.5 (0013 (1. 4050 (L0693 ().1522 0.1132 (LOSET
.632 0.0535 (1.3952 0.1075 (. 15509 01507 0.0995
(.692 00777 (1.3959 0.1279 0.1652 0.1713 0. 1076
(.763 0.1105 0.4067 (.1572 01777 (.2012 01211
0.802 (1. 1336 (0.4214 01773 (L18TH 0.2217 0.1314
(1.5845 1621 (.4421 0.2047 0.2035 (.2491 (. 1466
(1L.5TH (. 1865 0.4625 (.2289 .2193 (.2738 0.1622
0.9:36 0.2G19 (.5323 03060 (.2795 0.3519 (.2213
1 L.O03s 1.7522 L9 L3133 L.l 1.1591

Next we penerated data from Poisson distributions with 8 in the ranpge (3, 7), and determined the
power of each of the tests for the same set of hypotheses based on both the chi-square critical values
and empirically determined critical values. The results for the nominal level v = 005 are presented
in Figure 6 and are based on sample size 50 with 1000 replications. The thidk solid line represents the
likelihood ratio test for each case. Notice that when the chi-squared critical walues are wsed, some of
the powers of the ordinary test statistics, particularly those for the lower values of o are very high,
but that means very little because these tests are not even close to being level 0.05 test. When the

true levels of the ordinary test statistics are held at 0,05 by wing the empirically determined critical



vahies, the actual power of the more robust divergences are easily found to be quite poor (Figure 6h).
However most of theses problems are resolved by using the penalized divergences. Notice that the
application of the penalty makes the performance of the methods based on empirically determined
critical values and chi-square critical values dramatically closer. This is particularly encouraging
since in actual practice when one wants to wse these tests determining empirical critical values for
each individual case is obviously not practical. Our results show that for the penalized tests the
use of the chi-square critical values leads to results almost identical to the true powers of the tests.

While results for other levels of sipnificance and other sample sizes are not reported, they were very

similar.

Table 9: Corresponding tuning parameters o and A obtained by equating the Winsorizing points.

a 0 0.1 02 1/4 03  1/3 04 05
A 0.632 0602 0.763 0802 0845 0875 00836 1
Sifa) =&(N) 1.718 2247 3.214 4063 5458 7 14588 o

We next looked at the powers of the methods for the same set of hypotheses under contamination.
Diata are now generated from 0.9 Poisson (#) 4 0.1 Poisson (15) mixture. The results for the nominal
level ~ = (L05 are presented in Figure 7 and are based on sample size 50 with 1000 replications. For
comparison purposes the power curve of the likelihood ratio test for the no contamination case is
presented with the other graphs as the thick solid line. While the power curve of the likelihood ratio
test under contamination shows a dramatic shift with substantial loss of power at several cases, the
other curves are largely unchanged in comparison, demonstrating the relative stahility of these test

statistics munder contamination.
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Figure 4: Histogram of the mill distribution of TPPDy 5 and pTPPD,, ; test statistics. Sample size
n = 20 with 100 replications. (a) ordinary test statistic; (b) penalized test statistic.
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Figure 5: v2(1) Q-0 plot of WPPDy 5 and pWPPD,, ; test statistics. Sample size n = 100 with 100

replications. (a) ordinary test statistic; (b) penalized test statistic.
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Figure 6: Estimated powers for the tests under consideration testing Hy : 8 = 5 versus Hy 18 £ 5
with level v = 0.05. 1,000 random samples were drawn from Poison () with sample size n = 50,
(a) WPPD,, based on chi-square critical walue; (b) WPPD,, based on empirical eritical value; (¢)
pWPPD, based on chi-square critical value; (d) pWPPD,, based on empirical critical value.
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Figure 7: Estimated powers for the tests under consideration testing Hy : 8 = 5 versus Hy 18 £ 5
with level ~ = (0.05. 1,000 random samples were drawn from (0.9 Poisson (#) + (0.1 Poisson (15) with
sample size n = 50. (a) WPPD,, hased on chi-square critical value; (b) WPPD,, based on empirical
critical value; (¢) pWPPD,, based on chi-square critical value; (d) pWPPD,, based on empirical
critical value,
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5. Concluding Remarks

We have shown that modification of the PPD,, leads to nice results, but we also believe that the story

this imvestipation & telling about minimum disparity inference is more important than the story of

PPD,, itself. We can summarize the lessons of this investigation as follows. There are infinitely many

wiys to construct distance measures for discrete models in such a way that the resulting estimators

are first order efficient. However, if one wishes to obtain reasonable statistical behavior in a wider

sense, then:

(1)

(3)

One should avoid residual adjustment functions A(-), or equivalently distance kernelk C(-),
that grow too fast as § — oo, In fact Lindsay (1994) showed that outlier stability follows from
conditions such as A{(8) = O(3'/?) (or more generally A(8) = G(8* V8 for k > 0 as § — oo,
together with A(—1) being finite). Notice that these conditions are not satisfied by the PPD,,

family for o = 0.5.

At the other extreme, one should avoid an A(-) which is decreasing for some range of 4. We
have seen that when unmodified, the estimators from decreasing A{-) functions can lead to
strange results. On the other hand, when modified to preserve their increasing nature, natural

and meaningful results follow.

One should also be careful about A(-) at the lower end of §'s range, as the behavior of A(-)
when § — —1 is also very important. In discrete model §(z) = —1 corresponds to the cell
x having no data, so d{z) = 0. If the RAF pives too large a weight to these cells, then the
estimator become hypersensitive in small samples, and =0 has a larpe variance. Empty cells are
extreme cases of inliers which represent walues with less observed data than expected under
the model. Notice that the MLE, while not outlier robust, is inlier robust. Our empty cell
penalty essentially mimics the treatment of the empty cells by the MLE. We have shown how

this simple empty-cell modification of A(-) can greatly improve statistical behavior.

Another lesson of the paper & that one can develop appropriate modifications of natural diver-

gences for the purpose of improving the robustness and efficiency properties of the corresponding

0



estimators and tests. In this particular paper we have experimented with the powered Pearson
divergence and shown that the proposed modifications can lead to attractive inference procedures.
In general, however such improvements can be effected with many other welkknown disparities and
divergences. We have compared the modifications of the powered Pearson divergences to those of
the likelihood disparity. The modifications of either divergence considered here appear to provide

stable, satisfactory, and similar inference.
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