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Abstract: Different bioinformatics tasks like gene sequence analysis, gene finding, protein structure
prediction and analysis, gene expression with microarray analysis and gene regulatory network
analysis are described along with some classical approaches. The relevance of intelligent systems
and neural networks to these problems is mentioned. Different neural network based algorithms to
address the aforesaid tasks are then presented. Finally some limitations of the current research
activity are provided. An extensive bibliography is induded.

1 Introduction

Ower the past few decades, major advances in the field of
molecular biclogy, coupled with advances in genomic
technologies, have led to an explogve growth in the
biological information generated by the scientific commu-
nity. This deluge of genomic information has, in turn, led to
an absolute requirement for computerised databases to
store, organise and index the data, and for specialised tools
to view and analyse the data.

Bioinformatics can be viewed as ‘the use of computa-
tional methods to make hiological discoveries’ [1]. 1t is an
interdisciplinary field involving biology, computer science,
mathematics and statistics to analyse biological sequence
data, genome content and arrangement, and to predict the
function and structure of macromolecules. The ultimate
eoal of the field is to enable the discovery of new hiological
insights in addition to create a global perspective from
which unifying principles in biology can be derived [2].
There are three important sub-disciplines within bicinfor-
matics

a) development of new algorithms and models to assess
different melationships among the members of a large
biological data set in a way that allows researchers to access
existing information and to submit new information as they
are produced;

b) analysis and interpretation of various types of data
including nucleotide and amino acid sequences, protein
domains, and protein structures; and

¢) development and implementation of tools that enable
efficient access and management of different types of
information.

Artificial neural networks (ANN), a biologically inspired
technology, are machinery for adaptation and curve fitting
and are guided by the prnciples of biological neural
networks. ANN have been studied for many years with the
hope of achieving human like performance, particularly in
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the field of pattern recognition. They are efficient adaptive
and robust classifiers, producing near optimal solutions and
achieving high speed via massive parallelism. Therefore, the
application of ANMN for solving certain problems in
bicinformatics, which need optimisation of computation
requirerents, and robust, fast and close approxmate
solutions, appears to be appropriate and natural. Moreover,
the errors generated in experiments with bicinformatics
data can be handled with the robust characteristics of ANN
and minimised during the trainnig process. The problem of
integrating ANN and bicinformatics constitutes a new
research area.

This artidle provides a survey of the various neural
network hased techniques that have been developed over
the past few years for different bioinformatics tasks.

2 Elements of bioinformatics

Deoxyribonucleic acid (DNA) and proteins are biological
macromolecules built as long linear chains of chemical
components. DNA sirands consist of a large sequence of
nucleotides, or bases. For example there are more than
three hillion bases in human DNA sequences. DNA plays a
fundamental role in different biochemical processes of living
organisms in two respects. First it contains the templates for
the synthesis of proteins, which are essential molecules for
any organism [3]. The second role in which DNA is essential
to life is as a mediom to transmit hereditary information
{namely the building plans for proteins) from generation to
generation.

The units of DNA are called nucleotides. One nucleotide
consists of one nitrogen base, one sugar molecule
{deoxyribose) and one phosphate. Four nitrogen bases are
denoted by one of the ketters A (adenine), C (cytosine), G
(guanine) and T (thymine). A linear strand of DNA is
paired to a complementary strand. The complementary
property stems from the ability of the nucleotides to
establish specific pairs (A-T and G-C). The pair of
complementary strands then forms the double helix that
was first sugeested by Watson and Crick in 1933, Each
sirand therefore carres the entire information and the
biochemical machinery guarantees that the information can
be copied over and over again even when the ‘original
molecule has long since vanished.

A gene is primarily made up of a sequence of triplets of
the nudeotides (exons). Introns (non-coding sequence) may
also be present within a gene. Not all portions of the DNA
sequences are coding. A coding zone indicates that it is a



template for a protein. As an example, for the human
genome only 3-5% of the portions are coding, ie., they
constitute the gene. There are sequences of nucleotides
within the DNA that are spliced out progressively in the
process of transcription and translation. In brief, the DNA
consists of three types of non-coding sequences (shown
schematically in Fig 1).

1. Intergenic regions: regions between genes that are ignored
during the process of transcription.

2 Intragenic regions (or introns): regions within the genes
that are spliced out from the transcribed RNA to yield the
building blocks of the genes, referred to as exons.

3. Pseudopenes: genes that are transcribed into the RNA
and stay there, without being translated, owing to the action
of a nucleotide sequence.
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Fig.1 Various parts of DNA

Proteins are made up of 20 different amino acids (or
‘residues’), which are denoted by 20 different letters of the
alphabet. Each of the 20 amino aads is coded by one or
more triplets (or codons) of the nucleotides making up the
DMNA. Based on the genetic code the linear string of DNA is
translated into a linear string of amino aads, i.e., a protein
via mBNA [3].

3 Bicinformatics tasks

The different biological problems studied within the scope
of bicinformatics can be broadly classified into two
categories genomics and proteomics which include genes,
proteins, and amino acids. We describe below different
tasks involved in their analysis along with their urilities.

3.1 Gene sequence analysis

The evolutionary basis of sequence alignment is based on
the princples of similarity and homology [4]. Similarity is a
quantitative measure of the fraction of two genes which are
identical in terms of observable quantities. Homology is
the conclusion drawn from data that two genes share a
common evolutionary history; no metric is associated with
this. The tasks of sequence analysis are as follows.

3.1.1 Sequence alignment: An alignment is a
mutual arrangement of two or more sequences, that
exhibits where the sequences are similar, and where they
differ. An optimal alignment is one that exhibits the most
correspondences and the least differences. It is the alignment
with the highest score but may or may not be biologically
meaningful. Basically there are two types of alignment
methods, global alignment and local alignment. Global
alignment [ 5] maximises the number of matches between the
sequences along the entire length of the sequence. Local
alignment [6] gives a highest scoring to local match between
WO Sequences.

3.1.2 Pattern searching: This deals with searches

for a nudeic pattern in a nucleic add sequence, in a set of
sequences or in a databank (e g INFO-BIOGEN) [7]. It is
the ~otential for vneovering evolutions  =lationships and

patierns between different forms of life. With the aid of
nucleotide and protein sequences, it should be possible to
find the ancestral ties between different organisms. So far,
experience indicates that closely related organisms have
similar sequences and that more distantly related organisms
have more disdmilar sequences. Proteins that show a
significant sequence conservation indicating a clear evolu-
tionary relationship are said to be from the same protein
family. By studying protein folds (distinct protein building
blocks) and famibies, scientists are able to reconstruct the
evolutionary relationship between fwo spedes and to
estimate the time of divergence between two organisms
since they last shared a common ancestor.

3.1.3 Gene finding and promoter identifica-
tion: In general a DNA strand consists of a large sequence
of nucleotides, or bases. Owing to the huge size of the
database, manual searching of genes, which code for
proteins, is not practical. Therefore automatic identification
of the genes from the large DNA sequences is an important
problem in bicinformatics [8]. A cell mechanism recognises
the beginning of a pene or gene cluster with the help of a
promaoter. The promoter is a region before each gene in the
DNA that serves as an indication to the cellular mechanism
that a gene is ahead. For example, the codon AUG (which
codes for methionine) also signals the start of a gene
Recognition of regulatory sites in DNA frapments has
become particularly popular because of the increasing
number of completely sequenced pgenomes and mass
application of DNA chips.

Promoters are key regulatory sequences that are
necessary for the initiation of transcription. Experimental
analysis has identified fewer than 10% of the potential
promoter regions, assuming that there are at least 30,000
promoters in the human genome, one for each gene. On a
genome-wide scale, pattern-based and genomic context-
based computational approaches can suggest possible
transcription factor-binding regions, but the rate of false-
podtive predictions is very high.

3.2 Protein analysis

Proteins are polypeptides, formed within cells as a linear
chain of amino adds [9). Within and outdade of cells
proteins serve a myriad of functions, including structural
roles (cytoskeleton), as catalysts (enzymes), transporters to
ferry ions and molecules across membranes, and hormones
to name just a few. There are twenty different amino acids
that make up essentially all proteins on earth. Different
tasks involved in protein analysis are as follows

3.2.1 Multiple sequence alignment: Multiple
amino acid sequence alignment techniques [1] are usually
performed to fit one of the following scopes: (a) finding the
consensus sequence of several aligned sequences; (b) helping
in the prediction of the secondary and tertiary structures of
new sequences; and (c) providing a preliminary step in
molecular evolution analysis using phylogenetic methods
for constructing phylogenetic trees.

In order to characterise protein families, one needs to
identify shared regions of homology in a multiple sequence
alignment; (this happens generally when a sequence search
reveals homologies in several sequences). The dustering
method can do alignments automatically but is subjected to
some restrictions. Manual and eye validations are necessary
in some difficult cases. The most practical and widely used
method in multiple sequence alignment is the hierarchical
extensions of pairwise alignment methods, where the
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principal is that multiple alignments are achieved by
successive applications of pairwise methods.

3.2.2 Protein motif search: A protein motif search
[8] allows searching for a personal protein pattern in a
sequence (personal sequence or an entry in a gene bank).
Proteins are derived from a limited number of basic
building blocks (domains). Evolution has shuffled these
modules giving rise to a diverse repertoire of protein
sequences, as a result proteins can share a global or
local relationship. Protein motif search is a technique
for searching sequence databases to uncover common
domains/motifs of biological significance that categorise a
protein into a family.

3.2.3 Structural genomics: Structural genomics is
the prediction of the 3-dimensional structure of a protein
from the primary amino add sequence [10]. This is one of
the most challenging tasks in bioinformatics. The four levels
of protein structure (Fig. 2) are

{a) primary structure: the sequence of amino acids that
compose the protein,

(b) secondary structure: the spatial arrangement of the
atoms constituting the main protein backbone, such as
alpha helices and beta strands,

(c) tertiary structure: formed by packing secondary
structural elements into one or several compact globular
units called domains, and

(d) final protein may contain several polypeptide chains
arranged in a quaternary structure.

tariary structura
c d

quatemary structure

Fig.2 Differenr fevels of protein strictures

Sequence similarity methods can predict the secondary
and tertiary structures based on homology to known
proteins. Secondary structure prediction can be made using
Chou-Fasman [10], GOR, neural network, and nearest
neighbour methods. Methods for tertiary structure predic-
tion involve energy minimisation, molecular dynamics, and
stochastic searches of conformational space.
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3.3 Gene expression and microarrays

Gene expression is the process by which a gene’s coded
information is converted into the structures present and
operating in the cell. Expressed genes include those that are
transcribed into mRNA and then translated into protein
and those that are transcribed into RNA but not translated
into protein (e.g., transfer and ribosomal RNA). Not all
eenes are expressed and gene expression involves the study
of the expresgon level of genes in the cells under different
conditions. Conventional wisdom is that gene products that
interact with each other are more likely to have similar
expression profiles than if they do not [11].

Microarray technology [12] allows expression levels of
thousands of genes to be measured at the same time
Comparison of gene expression between normal and
diseased (e.g . cancerous) cells are also done by microarmray.
There are several names for this technology for example
DNA microamrays, DNA arays, DNA chips, gene chips.
A microarray is typically a glass (or some other materal)
slide, on to which DNA molecules are attached at fixed
locations (spois). There may be tens of thousands of spots
on an array, each containing a huge number of identical
DNA molecules (or frapments of identical molecules), of
lengths from twenty to hundreds of nucleotides. For gene
expression studies, each of these molecules ideally should
identify one gene or one exon in the genome, however, in
practice this is not always so simple and may not even be
generally possible owing to families of similar genes in a
genome. The spots are either printed on the microarrays by
a robot, or synthesised by photolithography (similar to
computer chip production) or by ink-jet printing.

Many unanswered, and important, questions could
potentially be answered by correctly selecting, assembling,
analysing, and interpreting microarray data. Clustering is
commonly used in microarray experiments to identify
eroups of genes that share similar expressions. Genes that
are similarly expressed are often co-regulated and involved
in the same cellular processes. Therefore, clustering suggests
functional relationships between groups of genes. It may
also help in identifying promoter sequence elements that are
shared among genes. In addition, clustering can be used to
analyse the effects of spedfic changes in experimental
conditions and may reveal the full cellular responses
trigeered by those conditions.

3.4 Gene regulatory network analysis
Another important and interesting question in biology is
how gene expression is switched on and off, i.e., how genes
are regulated [1]. Since almost all cells in a particular
organism have an identical genome, differences in gene
expression and not the genome content are responsible for
cell differentiation (how different cell types develop from a
fertilised egg) during the life of the organiam.

Gene regulation in eukaryotes, is not well undersiood,
but there is evidence that an important role is played by a
type of proteins called transcription factors. The transcrip-
tion factors can attach (bind) to specific parts of the DNA,
called transcription factor binding sites (iLe, spedfic,
relatively short combinations of A, T, C or G), which are
located in so-called promoter regions. Specific promoters
are associated with particular genes and are generally not
too far from the respective genes, though some regulatory
effects can be located as far as 30,000 bases away, which
makes the definition of the promoter difficult.

Transcription factors control gene expressgon by binding
the gene’s promoter and either activating (switching on) the
gene's transcription, or repressing it (switching it off).
Transcription factors are gene products themselves, and



therefore, in tum, can be controlled by other transcription
factors. Transcription factors can control many genes, and
some (probably most) genes are controlled by combinations
of transcription factors. Feadback loops are possible.
Therefore we can talk about gene regulation networks.
The understanding, describing and modelling of such gene
regulation networks is one of the most challenging problems
in functional genomics. Microarrays and computational
methods are playing a major role in attempts to reverse
engineer gene networks from various observations. Note
that in reality the gene regulation is likely to be a stochastic
and not a deterministic process. Traditionally molecular
biology has followed a so-called reductionist approach
mostly concentrating on a study of a single or very few
genes in any particular research project. With genomes
being sequenced, this is now changing into a so-called
systems approach.

4 Relevance of neural networks in bioinformatics

Artificial neural network ( ANN) models try to emulate the
biological neural network with electronic circuitry. Re-
cently, ANNs have found widespread use for classification
tasks and function approximation in many fields of
medicinal chemistry and bioinformatics. For these kinds
of data analysis mainly two types of networks are
employed; the ‘supervised” neural network (SNN) and the
‘unsupervised’ neural network (UNN). The main applica-
tions of SNNs (eg muliilaver perceptrons (MLPs) are
feedforward neural networks trained with the standard
backpropagation algorithm) are function approximation,
classification, pattem recognition and feature extraction,
and prediction. Moreover, they are able to detect second
and higher order comelations in patterns. This is specally
important in biological systems, which frequently display
nonlinear behaviour. These networks require a set of
molecular compounds with known activities to model
structure-activity relationships and are able to determine the
relevant features in the data set, usually by means of
training processes. This principle coined the term ‘super-
vised' networks. Correspondingly, ‘unsupervised’ networks
(e.z. Kohonen self-organising maps) can be applied to
dustering and feature extraction tasks even without prior
knowledge of molecular activities or properties. Unsuper-
visad learning has the advantage that no previous knowl-
edge about the system under study is required.
The main characteristics of ANNs are:

a) adaptability to new data/environment,

b) robustness/mggednes to failure of components,
¢) speed via massive parallelism, and

d) optimality w.r.t error.

Let us now explain the functioning of an ANN in
bioinformatics with an example of protein secondary
structure prediction from a linear sequence of amino acids
(Fig. 3).

Step 1@ In the ANN usually a certain number of input
‘nodes’ are each connected to every node in a hidden layer.
Step 2: Every reddue in a protein data bank (PDB) entry
can be associated to one of the three secondary siructures
(helix, sheet or neither: coil). ANNs are designed with 21
input nodes (one for each residue induding a null residue)
and three output nodes coding for each of the three possible
secondary structure assignments (helix, sheet and coil).

~Mu|T|lalalc|o|Fle|r|v|T|Aa]|c | D|TC...

Fig. 3 A finear chain of amine acids is applied as inpw 1o the
ANN

Step 3: Each node in the hidden layer is then connected to
every node in the final output layer.

Step 4: The input and output nodes are restricted to binary
values (1 or 0) when loading the data onto the network
during training and the weights are then modified by the
program itself during the training process.

Step 5: Helix can be coded as 0, ), 1 on the three output
nodes; sheet can be coded as 0, 1, 0 and coil as 1, 0, 0. A
similar binary coding scheme can be used for the 20 input
nodes for the 20 amino aads.

Step 6: To consider a moving window of »n residues at a
time, input layer should contain 20 x »# nodes plus one node
at each podtion for a null residue.

Step 7: Each node will *decide’ to send a signal to the nodes
it is connected to, based on evaluating its transfer function
after all of its inputs and connection weights have been
summed.

Step 8 Over 100 protein structures were used to train the
network.

Step 9 Training proceeds by holding a particular data
constant onto both the input and output nodes and
iterating the network in a process that modifies the
connection weights until the changes made to them
approach zero.

Step 10 When such convergence is reached, the network is
said to be trained and is ready to receive new (unknown)
experimental data.

Step 11: Now the connection weights are not changed and
the values of the hidden and output nodes are calculated in
order to determine the structure of the input sequence of
profeins.

Selection of unbiased and normalised training data,
however, is probably just as important as the network
architecture in the design of a successful NMN.

5 Anns in bioinformatics

Let us now describe the different attempts made using
ANNs in certain tasks of bicinformatics in the broad
domains of sequence analysis, structure prediction, and
eene analysis described in Section 3.

5.1 Sequence alignment

Given inputs extracted from an aligned column of DNA
bases and the underlying Perkin Elmer Applied Biosystems
{(ABI) fluorescent traces, Allex ef @l [13] trained a neural
network to determine correctly the consensus base for the
column. They compared five representations empirically;
one uses only base calls and the others include trace
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information. The networks that incorporate trace informa-
tion into their input representations attained the most
accurate results for consensus sequence. Consensus accura-
ces ranging from 9926% to 99.98% are acheived for
coverages from two to six aligned sequences. In contrast,
the network that only uses base calls in its input
representation has over double that error rate.

In [14] a molecular alignment method with the Hopfield
neural network (HNN) s discussed. Molecules are
represented by four kinds of chemical properties (hydro-
phobic  group, hydrogen-bonding  acceptor, hydrogen-
bonding donor, and hydrogen-bonding donor/acceptor),
and then those properties between two molecules
correspond to each other using HNMN. The method is
applied to three-dimensional quantitative structure-activity
relationship ( 3D-0QSAR) analysis and it reproduced success-
fully the real molecular alignments obtained from X-my
crystallography.

GenTHREADER is a neural network architecture that
predicts similarity between gene sequences [13]. The effects
of sequence alignment score and pairwise potential are the
network outputs. GenTHREADER. was used successfully
for the structure prediction in two cases: case 1@ ORF
MG276 from Myeoplasma genitalion was predicted to
share sructure similarity with 1HGX, case 2: MG276
shares a low sequence similarity (10% sequence identity)
with IHGX.

A back-propagation neural network can grossdy approx-
imate the score function of the popular BLAST family
of genomic sequence alipnment and scoring tools. The
resultant neural network may provide a processing speed
advantage over the BLAST tool, but may suffer somewhat
in comparison to the accuracy of BLAST. Further study is
necessary to determine whether a neural network with
additional hidden units or structural complexity could be
used to more closely approximate BLAST. However, doser
approximation may also limit the speed performance
advantages enjoyed by the neural network approach.

Other related investigations in sequence analyds are
available in [16, 17].

5.2 G@Gene finding and promoter
identification

The application of artificial neural networks for discrimi-
nating the coding system of eukaryotic genes is investigated
in [18]. Over 300 genes from eight eukaryotic organisms are
chosen: human, mouse, rat, horse, ox, sheep, soybean and
rabbit. From these penes different discrimination models
are build which are relevant to penes promoter regions,
polyiA) sizgnals, splice qte locations of introns and noose
structures. The results showed that as long as the coding
length is definite, the only comect coding region can be
chosen from the large number of possible solutions
discriminated by neurml networks.

In [19] the quantitative smilarity among tENA gene
sequences was acquired by analysis with an artificial neural
network. The evolutionary relationship derived from ANN
results was congstent with those from other methods. A
new saquence was recognised to be a tRNA-like gene by a
neural network on the analysis of similarity.

The work of Lukashin er of [20] is one of the earlier
investigations that discussed the problem of recognition of
promoter sites in the DNA sequence in a neural network
framework. The learning process involves a small (of the
order of 10%) part of the total set of promoter sequences.
During this procedure the neural network develops a system
of distinctive features (key words) to be used as a reference
in identifying promoters against the background of random
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sequences. The leaming quality is then tested with the whole
set. The efficiency of promoter recognition has been
reported as 94 to 9% and the probability of an arbitrary
sequence being identified as a promoter is 2 to 6%.

In [21] 2 multilayered feed-forward ANN architecture is
trained for predicting whether a given nucleotide sequence is
a mycobacterial promoter sequence. The ANN is used in
conjunction with the caliper randomisation (CR) approach
for determining the structurally/functionally important
regions in the promoter sequences. This work shows that
ANNs are effident tools for predicting mycobacterial
promoter sequences and determining structurally function-
ally important sub-regions therein.

Other related investigations in promoter identification are
available in [22, 23],

5.3 Protein analysis

The most successful techniques for prediction of the three-
dimendonal structure of protein rely on aligning the
sequence of a protein of unknown structure to a homologue
of known structure. Such methods fail if there is no
homologue in the structural database, or if the technique for
searching the structural database is unable to identify
homologues that are present.

The work of Qian & al [24] is one of the earlier
investigations that discussed the protein structure prediction
problem in a neural network framework. They used X-may-
derived crystal structures of globular proteins available at
that time to train a NN to predict the secondary structure of
non-homologous proteins. Over 100 protein structures were
used to train this network. After training, when the NN was
queried with new data, a prediction accuracy of 64% was
obtained.

Rog et al. [25, 26] took advantage of the fact that a
multiple sequence alignment contains more information
about a protein than the primary sequence alone. Instead of
using a single sequence as input into the network, they used
a sequence profile that resulted from the multiple align-
ments. This resulted in a significant improvement in
prediction accuracy to 71.4%. Recently, more radical
changes to the design of NNs including bi-directional
training and the use of the entie protein sequence as
simultaneous input instead of a shifting window of fixed
length has led to prediction accuracy above 71%.

The prediction of protein secondary structure using
structured neural networks and multiple sequence align-
ments have been investigated by Riis and Krogh [27]
Separate networks are used for predicting the three
secondary  structures, fF-helix, fi-strand and coil. The
networks are designed using a priori knowledge of amino
add properties with respect to the secondary structure and
of the characteristic periodicity in ff-helices This method
eives an overall prediction accuracy of 66.3% when using
seven-fold cross-validation on a database of 126 non-
homologous globular proteins. Applying the method to
multiple sequence alipgnments of homologous proteins
increases the prediction accuracy dgnificantly to 71.3% [27).

In [28] a method has been developed using ANNs for the
prediction of beta-turn types 1. 11, IV and VIII. For each
tum type, two consecutive feed-forward back-propagation
networks with a single hidden layer have been used. The
first sequence-to-siructure network has been trained on
single sequences in addition to on PSI-BLAST PSSM. The
output from the first network along with PSIPRED [29)
predicted secondary structure has been used as input for the
second-level structure-to-structure network. The networks
have been trained and tested on a non-homologous data set
of 426 proteins chains by seven-fold cross-validation. The



prediction performance for each turn type is improved by
using multiple sequence alignment, second level structure-
to-structure network and PSIPRED predicted secondary
structure information.

The back-propagation neural network algorithm is a
commonly used method for predicting the secondary
structure of proteins. Wood e af. [3] compared the
cascade-correlation ANN architecture [31] with the back-
propagation ANN using a constructive algorithm and
found that cascade-correlation achieves predictive accura-
aes comparable to those obtained by back-propagation, in
shorter time. Ding e ol [32] used support vector machine
(SVM) and the neural network (NN) learning methods as
base dassifiers for protein fold recognition, without relying
on sequence similarity.

Other related investigations in protein structure predic-
tion are available in [33-38].

5.4 Gene expression and microarray
Clustering is commonly used in microarmy experiments to
identify groups of genes that share similar expression. Genes
that are smilarly expressed are often co-regulated and
involved in the same cellular processes. Therefore, clustering
suggests functional relationships between groups of genes. 1t
may also help in identifying promoter sequence elements
that are shared among genes. In addition, clustering can be
used to analyse the effects of specific changes in experi-
mental conditions and may reveal the full cellular responses
triggered by those conditions.

Most of the analysis of the enormous amount of
information provided on microarray chips with regard to
cancer patient prognosis has relied on clustering techniques
and other standard statistical procedures. These methods
are inadequate in providing the reduced gene subsets
required for perfect dassification. ANNs  trained on
microarray data from DLBCL lymphoma patients have,
for the first time, been able to predict the long-term survival
of individual patients with 100% accuracy [39]. Here it is
shown that differentiating the trained network can narrow
the gene profile to less than three dozen genes for each
classification and artifiial neural networks are superior
tools for digesting microamray data.

Sawa e al [40] described a neural network-based
similarity index as a nonlinear similarity index and
compared the results with other proximity measures for
Saccharomyees cereviviae pene expression data. Here it is
shown that the clusters obtained using Eudidean distance,
correlation coefficients, and mutual information were not
significantly different. The clusters formed with the neural
network-based index were more in agreement with those
defined by functional categodes and common regulatory
motifs.

Diffuse large B-cell lymphoma (DLBCL) is the largest
category of aggressive lymphomas. Less than 50% of
patients can be cured by combination chemotherapy.
Microarray technologies have recently shown that
the response to chemotherapy reflects the molecular
heterogeneity in DLBCL. On the basis of published
microarray data, Ando ef al. [41] described a fuzzy neural
network (FNN) model to analyse gene expression profiling
data for the precise and simple prediction of survival of
DLBCL patients. From data on 5857 genes, this model
identified four genes (CD10, AABO7551, AAROD5611 and
IRF-4) that could be used to predict prognosis with 93%
accuracy. FNNs are powerful tools for extracting significant
biological markers affecting prognosis, and are applicable to
various kinds of expression profiling data for any
malignancy.

Bicaato ¢ ol [42] described a computational procedure
for pattern identification, feature extraction, and classifica-
tion of gene expression data through the analysis of an
autoassociative neural network model. The identified
patterns and features contain critical information about
gene-phenotype relationships observed during changes in
cell physiclogy. The methodology has been tested on two
different microarray datasets, acute human leukemia and
the human colon adenocardnoma.

The Bayesian neural network is used with structural
learning with forgetting for searching optimal network size
and structure of microarray data in order to capture the
structural information of gene expressions [43]. The process
of Bavesian learning starts with a feed forward neural
network (FFNN) and prior distribution for the network
parameters. The prior distribution gives initial beliefs about
the parameters before any data is observed. After new data
are observed, the prior distribution is updated to the
posterior distribution using Bayes rules. Multi-layer percep-
tron (MLP) is mainly considered as the network structure
for Bayesian kearning. Since the correlated data may include
high levels of noise, efficient regularisation techniques are
required to improve the generalisation performance. This
involves network complexity adjustment and performance
function modification. To do the latter, instead of the sum
of squared error (S5E) on the training st, a cost function is
automatically adjusted.

WVohradsky [44] used artificial neural networks as models
of the dynamics of gene expresson. The significance of the
regulatory effect of one gene product on the expression of
other genes of the system is defined by a weight matrix. The
model considers multigenic regulation including positive
and/or negative feedback. The process of gene expression is
described by a single network and by two linked networks
where transcription and translation are modelled indepen-
dently. Each of these processes is described by different
networks controlled by different weight matrices. Methods
for computing the parameters of the model from experi-
mental data are also shown.

Plausible neural network (PLANN) 15 another universal
data analysis tool based upon artificial neural networks and
is capable of plausible inference and incremental keaming
[43]. This tool has been applied to research data from
molecular biological systems through the simultaneous
analysis of gene expression data and other types of
biclogical information.

Relevant investigations for gene expresion and micro-
array are also available in [46].

5.5 Gene regulatory network

Adaptive double self-organising map (ADSOM) [47)
provides a novel clustering technique for identifying pene
regulatory networks. It has a flexible topology and it
performs clustering and cluster visualisation simultaneously,
thereby requiring no a priori knowledge about the number
of custers. ADSOM is developed based on a recently
introduced technique known as double self-organising map
(DSOM). DSOM combines features of the popular self-
organising map (SOM) with two-dimensional postion
vectors, which serve as a visualisation tool to decide how
many clusters are needed. Although DSOM addresses the
problem of identifying unknown number of clusters, its free
parameters are difficult to control to guarantee correct
results and convergence. ADSOM updates its free para-
meters during training and it allows convergence of its
position vectors to a fairly consistent number of clusters
provided that its initial number of nodes is greater than the
expected number of clusters. The number of dusters can be
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identified by visually counting the dusters formed by the
position vectors after training. The reliance of ADSOM in
identifying the number of clusters is proven by applying it
to publicly available gene expression data from multiple
biological systems such as yeast, human, and mouse. It may
be noted that gene regulatory network analysis is a very
recent research area, and neural network applications to it
are scarce.

Appropriate definition of neural network architecture
prior to data analysis is crudal for successful data mining.
This can be challenging when the underlying model of the
data is unknown. Using simulated data, Ritchie ef al. [48]
optimised back-propagation neural network architecture
using genetic programming to improve the ability of neural
networks to model, identify, chamacterse and detect
nonlinear gene-gene interactions in studies of common
human diseases. They showed that the genetic program-
ming optimised neural network is superior to the traditional
back-propagation neural network approach in terms of
predictive ability and power to detect gene-gene interactions
when non-functional polymorphisms are present.

6 Other bioinformatics tasks using ANNs

Dopazo et al [49] described a new type of unsupervised
erowing self-organising neural network that expands itself
following the taxonomic relationships existing among the
sequences being clasified. The binary tree topology of this
neural network, opposite to other more clasical neural
network topologies, permits an efficent classification of
sequences. The growing nature of this procedure allows to
stop it at the desired taxonomic level without the necesaty
of waiting until a complete phylogenetic tree is produced.
The time for convergence is approximately a linear function
of the number of sequences. This neural network metho-
dology is an excellent tool for the phylogenetic analysis of a
large number of sequences.

Parbhane ef al [30] utilise an artificial neural network
(ANN) for the prediction of DNA curvature in terms of
retardation anomaly. The ANN captured the phase
information and increased helix flexibility. Base pair effects
in determining the extent of DNA curvature has been
developed. The network predictions wvalidate the known
experimental results and also explain how the base pairs
affect the curvature. The results suggest that ANN can be
used as a model-free tool for studying DNA curvature.

Drug resistance is a very important factor influencing the
failure of current HIV therapies. The ability to predict the
drug resistance of HIV protease mutants may be useful in
developing more effective and longer lasting treatment
regimens. The HIV resistance is predicted to two current
protease inhibitors, Indinavir and Saquinavir. This problem
is handled in [51] from two perspectives. First, a predictor
was constructed based on the structural features of the HIV
protease-drug inhibitor complex. A particular structure was
represented by its list of contacts between the inhibitor and
the protease. Next, a classifier was constructed based on the
sequence data of various drug resistant mutants. In both
cases, SOMs were first used to extract the important
features and cluster the pattems in an unsupervised manner.
This was followed by subsequent labelling based on the
known patterns in the training set. The classifier using the
structure information is able to correctly recognise the
previously unseen mutants with an accuracy of between 60
and 70%. The method is superior to a random classifier.

In [32] an ANN is trained to predict the sequence of the
human TP33 mmor suppressor gene based on a p33
GeneChip. The trained neural network uses as input the
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fluorescence intensities of DNA hybridised to oligonuceo-
tides on the surface of the chip. In this methodology errors
are reported between zero and four in the predicted 1300 bp
sequence when tested on wild-type TP33 sequence.

MNeural network computations on DNA and RNA
sequences are used in [33] to demonsirate that data
compression is possible in these sequences. The result
implies that a certain discrimination should be achievable
between structured and random regions The technique is
illustrated by computing the compressibility of short ENA
sequences such as tIRNA.

A hasic description of artificial neural networks and
applications of neural nets to problems in human pene
finding for three different types of data are discussed in [34].

7 Conclusion and scope of future research

Artificial neural networks (ANNs) are the first group of
machine learning algorithms to be used on a hiological
pattern recognition problem. The rationale for applying
computational approaches to facilitate the understanding of
various biological processes are mainly:

* To provide a more global perspective in experimental
design.

* To capitalise on the emerging technology of database-
mining — the process by which testable hypotheses are
generated regarding the function or structure of a pene or
protein of interest by identifying similar sequences in better
chamctersed organisms.

MNeural networks appear to be a very powerful artificial
intelligence (Al) paradigm to handle these issues [33]. The
most important, and attractive, feature of ANNs is their
capahility of learning {generalising) from example (extract-
ing knowled ge from data). This feature makes the ANN an
attractive choice for bioinformatics tasks. The combination
of backpropagation learning algorithm and the feed-
forward, layered networks have been applied to virtually
all pattem recognition problems (like sequence analysis,
protein analyds, gene finding) in bioinformatics. The reason
for this is the simplicity of the algorithm, and the vast body
of research that has studied these networks. Although these
networks are theoretically capable of separating a problem
space into appropriate classes irrespective of the complexity
of the separation boundaries, one of the dassical disadvan-
tages of these networks is that a certain amount of a prion
knowledge is required in order to build a uvseful network. A
crucial factor in training a useful network is its size (number
of layers, size of layers, and number of synaptic connec-
tions). In many cases, it takes a large number of simulations
before a close-to-optimum size of the network is found. If
the network is designed to be larger than this optimum size,
it will memeorise (also called over-fit) the data rather than
eeneralising and extracting knowledge. If the network is
chosen to be smaller than the optimum sz, the network
will never learn the entire task at hand. However, there have
been several reports dealing with the determination of an
approprate size of a network for a particular task.

Let us consider self-organising map (SOM), as an
example, which has been widely used in mining biological
data. SOM has the distinct advantage that they allow a
priori knowledge to be included in the clustering process
and well suited for analysing patterns (eg., microarray
data). They are ideally suited to exploratory data analysis,
allowing one to impose partial structure on the dusters (in
contrast to the rgid structure of hierarchical clustering, the
strong prior hypotheses used in Bayesian clustering, and the



nonstructure of k-means clustering) facilitating easy visua-
lisation and interpretation. SOMs have good computational
properties and are easy to implement, reasonably fast, and
are scalable to large data sets. The most prominent
disadvantage of the SOM-based approach is that it is
difficult to know when to stop the algorithm and it may get
stuck to a local minima, so the map is allowed to grow
indefinitely to a point where dearly different sets of patterns
are identified.

Other soft computing tools, like fuzzy set theory and
eenetic algorithms, integrated with ANN [56] may also be
used; based on the principles of case based reasoning [57].
Even though the current approaches in biocomputing are
very helpful in identifying patterns and functions of proteins
and genes, they are still far from being perfect. They are not
only time-consuming, requiring Unix work€ations to run
on, but might also lead to false interpretations and
assumptions due to necessary simplifications. It is therefore
still mandatory to use biological reasoning and common
sense in evaluating the results delivered by a biocomputing
program. Also, for evaluation of the trustworthiness of the
output of a program it is necessary to understand the
mat hematical/theoretical background of it to finally come
up with a useful and senseful analysis.
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