Sushmita Mitra

Fuzzy radial basis function network: a parallel design

Received: 8 September 2005 Accepted: 13 May 2004 [Published online: 31 July 2004

Abstract The fuzzy radial basis function (FRBF) net-
work comprises an integration of the principles of a
radial basis function (RBF) network and the fuzzy
e-means (FCM) algorithm. A programmable parallel
architecture design is proposed for the FRBF, both for
FCM clustering at the hidden layer and the weight
training at the output layer of the network. The behavior
of the system is described in terms of processor utiliza-
tion. The performance of the parallel design is quanti-
tatively evaluated.

Keywords Parallel neural architecture -+ Soft
computing - Radial basis function network -
Fuzzy clustering + Performance evaluation

1 Introduction

Soft computing is a consortium of methodologies that
works synergistically and provides a flexible informa-
tion processing capability for handling real life
ambiguous situations [9]. Its aim is to exploit the
tolerance for imprecision, uncertainty, approximate
reasoning, and partial truth in order to achieve trac-
tability, robustness, and low-cost solutions. Neuro-
fuzzy computing [8] is the earliest and most widely
reported hybridization in this framework. This inte-
eration provides intelligent systems, in terms of paral-
lelism, fault tolerance, adaptivity, and uncertainty
management, in order to handle real life recognition,
decision-making prohlems.

The radial basis function (RBF) [6] s a three-
layered network, typically used for supervised classi-
fication. The hidden layer performs crisp clustering

5. Mitra

Machine Intellipence Unit,

Idian Statistical Institute,

203 B. T. Road, Kolkata, 700 108, India
E-mun l: sushmitaiisical.ac.in

using a Gaussian basis function at the nodes. The
output layer performs a linear combination of the
weighted activations from the hidden layver. The fuzzy
radial basis function (FRBF) [5] is designed by inte-
erating the principles of an RBF network and the
fuzrzy c-means (FCM) algorithm [1]. It incorporates
fuzzy sei-theoretic concepts at the input, output, and
hidden layers. The model can handle both linguistic
and numeric inputs, and provides a soft decision in
case of overlapping pattern classes at the output. The
use of the FCM algorithm in the hidden layer allows
the network to provide a more accurate representa-
tion of real life situations, where a pattern can have
finite non-zero membership to two or more classes.
The architecture of the network is suitably modified
at the hidden layer to realize the fuzzy clustering
algorithm.

As the field of neural networks matures towards real-
world applications, a need arises for hardware systems
to efficiently model larger networks and/or larger data
sets. Many neural algorithms are suitable for imple-
mentation on special-purpose hardware, typically be-
cause of their intrinsic fine-grained parallelism and
computationally intensive nature. Parallel programming
imitates the human thought process by allowing com-
putations to be simultaneously made and distributed
throughout the computer system [2]. Recently, sub-
stantial work has been carried out to design parallel
hardware implementations for neural networks [4]. The
network models have been redesigned so as to enable the
use of parallkel programming techniques for faster
adaptability of the system. There has been research on
using systolic arrays for implementing backpropagation
in multilayer networks [7, 3], and fuzzy clustering neural
networks [10], to enhance the performance of the system
by increasing the amount of processing done per unit
time.

In this article, we propose a parallel hardware design
of the FRBF network. The architecture exploits
the inherent parallelism in the FCM algorithm and the
FEBF model for possible VLSI implementation. The

262

abundance of local computations enable easy parallel
modeling of the FR.BF network. The effectiveness of the
design for both FCM clustering at the hidden layer and
the weight training at the output layer of the FRBF
network, is provided in terms of processor utilization.
The performance of the system is evaluated using dif-
ferent quantitative measures.

Section 2 describes the FRBF network [5] in short.
The parallel architecture design for the hidden layer,
using FCM clustering, is elaborated upon in Sect. 3. The
parallel design for the weight learning at the output layer
of the FRBF network is provided in Sect. 4. The article
is concluded in Sect. 5.

2 Fuzzy radial basis function network

The FRBF network [3] incorporates an amalgamation
of FCM clustering at the hidden layer of the RBF net-
work. Before proceeding to the details of its parallel
design, we provide a brief overview on the RBF net-
work, followed by that of the FRBF network.

The input and output nodes of an RBF network
correspond to the input features and output classes,
while the hidden nodes represent the number of
clusters that partition the input space. Let
X = (X,..., Xp... . Xo)eR" and F=(n,...3,- -,
¥) €R' be the input and output, respectively, and ¢
be the number of hidden nodes. The problem is to
minimize the error:

N ! " W 2
E=33% (-)

T p=1 j=I

(1)

where *y'” and y/” are the desired and computed
output at the jth node for the pth pattern, respectively, N
is the size of the data set, and { is the number of output
nodes. A fixed set of cluster centers, V;, j=1,...,m.is
first formed by a clustering algorithm. Associations of
the cluster centers with the output are then learned by
squared error minimization of £

In an RBF network, the clustering of the input data is
represented by crisp partitions and the clusiers are
modeled by the Gaussian distribution. It is more natu-
ral, from the fuzzy set-theoretic point of view, to
determine the membership value of each data point to
different clusters using the FCM algorithm [1]. Here, the
membership value of a point to different clusters is
determined based on the relative closeness of the point
to the different cluster centers.

In an FRBF network, the input space is partitioned
using overlapping linguistic sets, thereby, utilizing more
local information that aids in better classification. Each
input feature, X, is expressed in terms of membership
values to each of the three linguistic property sets low,
medium, and high. Therefore, an n-dimensional pattern,
X = [Xa.Xa, ..., X, is represented asa 3n-dimensional
vector:

berscus; X3
- [Fk:w{*’fj j(id) s Hlmedium (X3) (ij) 3
F‘Ini,ng[X,,](ii)1 .- -Fhigh[xm](ii)] {2)

Here, the linguistic properties low, medium, and high are
modeled using 1-5, n, and S functions [8)], respectively.
The output is provided in terms of class membership
values to the { classes, such that O< g (X))<1 fork=1,...,
{. This is proportional to the weighted distance of the
training patiern from the kth class mean.

The input-hidden layer weights are initialized by
cluster centers using fuzzy c-means (FCM), instead of
the more conventional hard c-means. The intermediate
(hidden) layer is suitably modified to incorporate FCM
clustering [1] during learning, such that each output
node receives the weighted membership value (as op-
posed to a Gaussian-function-based measure of prox-
imity) of the enhanced input vector within each cluster.
The resultant FRBF architecture is depicted in Fig. 1 [3].

In the FCM algorithm, the membership value of any
pattern vector, X;, to a class k is represented as:

1
(=)

where di; is the distance of the pattern vector, X;, from
the center, ¥; of the kth cluster. Here,

(3)

H,.;E..- =

o Rt
Vs one s (4)

with fuzzifier | <m <ee, such that w; [0, 1], for ¢
clusters 1 <& < ¢, for N pattern points 1 <7 < N, with
Ya-iuy=1, for 1<;< N, and ¥, ,"u,>0, for
l=k=e.

Fig. 1 Fuzzy radial basis function {FRBF) network

The objective is to perform fuzzy partitioning of the
data in the hidden layer of the FRBF network. In order
to perform the local computation of Eq. 3, a modified
architecture is used. Equation 3 is rewritten as:

h
Uy = W (5)
where
: i Ny
Fe e t
} (a) (6]

The activation of each node in the output layer is given as:

O
.}rl"r = Z Wit

=l

(7)

where 3" is the response of the ith output node when X,
is present at the input of the network. From Eqs. 5 and
6, v1”' can be written as:

i 1 - ; i)
W = S Wk (®)
& _||'=|
where
HP =3 4P (9)

i=l

Equations 6 and 8 reveal that the ;5 can be computed
locally in the hidden nodes and that the activation of the
output nodes can be computed from the hidden node
activations with an additional normalization by the total
output in the hidden layer (H,). An auxiliary hidden
node is used in the FRBF (as shown in Fig. 1) to com-
pute the total activation in the hidden layer and feed it to
the output layer. The weights of the links from all hid-
den nodes to the auxiliary hidden node are set to unity.
Note that the membership value, w; of Eq 3 is
implicitdy included in the network architecture in terms
of the hidden node activations.

During training, the rule for updating the weights is
given as:

AP =L (i y,[-”:') K

P (10)

where 1 is the learning rate and *y* is the target output
in terms of class membership of the training pattern.
Here, ,fj.lrlj.E.”-' is the change in W' during training when X,
is presented as the input in the 3n-dimensional form of
Eq. 2.

3 Parallel architecture for clustering

In this section, we propose a parallel implementation of
the clustering layer of the FRBF architecture. For this
purpose, we model the FCM using Eqs. 4 and 5. This is

263

used at the input-hidden layer of the network. The
parallel design, processor utilization, and performance
evaluation are presented in sequence.

The processors are partitioned into four categories:
A, B, C, and D, such that there are ¢ processors each of
type 4, C. and one processor each of the other two
types. These processors are capable of simultaneously
working on a 3s-dimensional vector. We do not,
however, go into the details of either register/gate-level
designs. The buses are wide enough to simultaneously
transmit the 3n-dimensional data.

3.1 Design

Figure 2 provides a schematic diagram of the architec-
ture for implementing the FCM algorithm. Processors of
type 4, additionally, store the centers v; of the ¢ clusters.
These are initialized by the first ¢ samples from the input
data. Thereafter, the 3n-dimensional data, X; (of Eq. 2),
is simultaneously fed to all of the A-type processors.
Each processor calculates i'” for the input pattern w.r.t.
its v, by Eq. 6, and passes a copy of it to processor 8. In
addition, the 4s are also connected to processors of type
C by one-to-one bidirectional connections. These buses
pass the input data, ¥;, and the computed 4 from A to
C in the forward pass.

As data is passed to 8, the processor calculates the
sum, H, by Eq. 9. Because of the need for synchroni-
zation, this process takes extra cycles to let the type 4
processors feed the data to the B-type processors. As
soon as all of the A-type processors have transferred
their output to the & processors, the next input pattern,
%, 1, enters 4. Simultaneously, the output, H," from B
is passed to the type O processors.

Processors of type ¢ are used to calculate the mem-
bership value, uy, of the input pattern, X;, to cluster ¢ by
Eq. 5. They also compute the product of the computed
membership and the input data, using the fuzzifier m.
This product, w;"x;, along with the membership value,
™, are transmitted to processors 4 during the back-
ward pass. As a single bidirectional bus is used to con-
nect the As with the Cs, it is, therefore, used in
alternation during both passes. Processors 4 compute
the sum of the numerator and denominator of Eq. 4 over
each pattern presentation. At the end of an iteration, the
cluster centers, v;, are updated in 4.

Membership values, u; in respective clusters are also
passed to 1. Processor Dis used to compute the sum of all
us. It is used to detect the iteration when the change in
total membership values, summed over all patterns, be-
comes smaller than a threshold, e This provides a stop-
ping signal to processors 4 from further updating the
cluster centers by Eq. 4, thereby, signifying convergence.

3.2 Processor utilization

Table 1 provides the processor utilization diagram
for the proposed parallel FCM design. For ease of

204

Fig. 2 Parallel architecture for
FOCM algorithm

ool

——

uy aum
I — N
i —
J
c
B
A . . C §]
caleulate SH=ime calculate
il H, upcugx
b i § 87
updane

Vv

explanation, let us assume that there are three hidden
nodes such that ¢=3. Thus, we have three processors,
each of types 4 (1, 2, 3) and C (5, 6, 7), while B and D
correspond to processors 4 and 8, respectively. The ar-
rows indicate the uwsage mode of the processors. An
upward arrow indicates input of data to the processor
and a downward arrow is used for clock cycles when the
processor performs some computation. It is seen from
the figure that, while data is fed to processors 1, 2, 3, and
5.6, 7 in one clock cycle, it takes ¢ —1 clock cycles to feed
the data to processors 4 and 8. This is because of the
synchronization problem, which occurs due to conten-
tion in feeding the data to processors £ and D from
processors As and s, respectively.

At time cycle r=1, let pattern X; be input to proces-
sors 4. At 1=2, b is computed at A, and a copy of this
is forwarded to Bat +=3, 4. At + =5, H " is computed at
B, % is passed from 4 to C, and X;; is input to 4. At
t=6, Y is forwarded from A to C, while A¥ ™" is
computed at 4. At ¢=7, H," is transmitted from B to C.
At t=8,9, hV" " is forwarded from A4 to B, while u;"
and u;"x; are computed, respectively, at C. At =10, 11,
uy 18 gassed from C to D, At +=10, simultaneously,
H.JY" Yiscomputed at B, ¥, | is passed from 4 to C, and
;2 isinput to 4. Atr=11, Y is forwarded from A
to C, while &Y is computed at 4. At¢=12, H,Y" " is
transmitted from B to C, and uy; is summed at D.
Simultaneously, at =12, 13, u;" and wu;"x; are fed back
from O to A.

At 1=14, 15, a copy of bV ¥ is forwarded from A to
B, while w;;. " and wy;.,)"x; are computed at C,

respectively. At +=16, 17, gy is passed from C to D,

Table 1 Processor utilization tor parallel FCM

Time cvele Processor
A B C D
1 2 3 5 I 7 8
1 T T T
2 1 L 1
3 T
4 T
5 T T T L T T T
[L L T T T
7 T T T
B T L 1 1
49 T L | L
10 T T T L T T T T
1 l L L T T T T
12 T T T T T T L
13 T T T
14 T L 1 :
15 T L . 1
16 1 L L L T
17 1 1 L T
I8 T T T T T T L
19 L L L T T T
20 T T T T ik T
21 T T T

while " and u;"x; are summed at A, respectively.
Snmult&neuusl:, at ¢ = 16, H,Y" is computed at B. At
1= 18, xJ+: is passed from 4 to €, X3 is input to 4 and
i+ 1y is summed at D. At r=19, 1V is forwarded
from A to ¢, while £Y" " is computed at 4. At =20,
HU*D jg tramnmlﬁd from B to C. Simultaneously, at
:—"'I.'} 21, w4+ ™ and w4 "%+ are fed back from C
to 4. The process in cycles 14 to 21 repeat themselves for
the entire pattern set presentation.

After pattern Xy is input at 4, and the corresponding
;18 computed at C and passed to D for the checksum,
this pattern set presentation (from j=1,..., N)is termed
complete. At the end of this (say at r=T), processor D
checks whether the change in total membership values,
summed over this set, is greater than e. At this stage, an
additional cycle is required by A for updating the cluster
centers by Eq. 4.

3.3 Performance evaluation

The number of clock cycles required is TJ/=13+
Ex(N—2)+2=8N—1. The whole process is repeated
{say, K. times) until a stopping signal from D terminates
the updating of cluster centers, and, hence, the fuzzy
clustering. The total number of cycles consumed is,
therefore, T, = K.xT./+ 1.

The number of clock cycles required by a sequential
processing element (PE) is T.."=3n(9N + 2)c. Hence, for
K. repetitions, To=KxT. +1. Therefore, we have
speedup:

T 3n(9N + 2

e T

and parallelization efficiency:
8 3n(9N + 2)c
"~ = ZPE ~ 38N — D(c + 1)

Latency, 4, is defined as the number of cycles between
input vector presentation and the appearance of output
[4]. Here, i.=6.

(11

(12)

4 Parallel architecture for output layer

In this section, we concentrate on the parallel imple-
mentation of the hidden-output layer of the FRBF
architecture. Asin Sect. 3, there are ¢ processors, each of
types A, C, and one each of types 8, D. The intercon-
nection buses simultaneously transmit 3s-dimensional
data. The parallel design and processor utilization are
described, followed by a quantitative evaluation of the
performance.

4.1 Design

The schematic design for implementing the hidden-out-
put layer architecture of the FRBF network is provided

263

in Fig. 3. The interconnections between the processors
of types 4. 8, C, and D are now different, implemented
using reconfigurable programmable networks. These are
modeled by switch lattice connections between the pro-
cessors that can be changed to get the required design.
As before, the 3n-dimensional data, X, is fed in parallel
to the ¢ processors of type A, and &' is computed w.r.t.
the cluster centers, v;, already stored therein.

Then, the #'"s are transmitted from A to O, and,
finally, a copy of these from C to B, where they are
summed to generate H ' by Eq. 9. Each processor C,
additionally, stores the corresponding weight vector, W,
from hidden node i to the { output nodes. Initially, these
are set as small random numbers, which are then grad-
ually updated during learning. Processor C computes the
product #'W, in the numerator of Eq. 8 and passes it
on to B, where these are summed to compute y,'”. This
process is repeated for k= 1,.../ output nodes.

HWis passed from B to B Processor 1, additionally,
stores the desired output, +¥ v/ which is compared with

the 5'“ transmitted from B The error component,
s el i
B = I{j—j of Eq. 10 i m computed at D.

HY
The error component, E |s fed back from D to C.
. 18 computed on-line,

Here, the weight update, W
using Eq. 10, by multplying |t with 4! residing there.
The change in total error, at the end of the training, is
also computed at . This determines the termination of
weight updating.

4.2 Processor utilization

Table 2 provides the processor utilization diagram for
the proposed output layer design of the FRBF. The
meaning of the arrows and the number of hidden nodes
are the same as in Table 1. Here, processors 1, 2, 3 and
4, 5, 6 refer to types 4 and C, respectively, while pro-
cessors 7 and 8 correspond to B and D, respectively. It is
assumed, for the ease of explaining, that there are only
two output nodes (/=2). As before, some clock cycles
are wasted for synchronization while transferring the
data from parallel processors C to the single processor
B.

At time cycke t=1, let pattern X; be input to proces-
sors 4. At =2, h is computed at 4. This is forwarded
to C at t=3. At t=4, the product, "W, is computed
at C. Then, &' and the product are transmitted from C
to B at t=35, 6 and t=8, 9, respectively, while H," is
computed in B at =7 and passed to D at =8 Simul-
tancously, at +=9, X, is mput at 4.

At =10, 2" and Y W5 are computed at 4 and
C, respectively. At 1=11, 1Y is forwarded from A to
C and y," is computed at 8. Then, h VW is propagated
from C to Bat t=12, 13, while »," is passed from & to
D at +=12. Simultaneously, at +=13, E,Y is calculated
at D. A copy of this is fed back from D to C at t= 14,
while the total error is summed at D and »," is

266

Fig. 3 Parallel architecture for
output laver

A
calulate
n

Table 2 Processor utilization for output laver of the FRBF
Time cvele Processor

A . & Iy

1 2 3 3 b 7 B
1 T T T
2 1 1 1
3 T T
4 b b b
5 T
6 T
7 1
8 T 1
9 T i T T
10 1 1 1 1 1 1
1 T T L
12 T T
13 T 4
14 R I E &
15 i T
16 T &
17 N T T L
18 1 1 1 1
19 T
20 T

I:
—
—
—
—
—
—

computed at B. At + =15, weight W' is updated at C and
v is transferred from B to D. At +=16, 17, a copy of
BTV s forwarded from Cto B Simultaneously, EVis
computed in D, a copy of it is fed back to C, and the
total error is summed at D. At (=18, AYT VI, and
HY'Y are computed at ¢ and B, respectively. Then,
AUV s passed from C to B at =19, 20, while,
simultaneously, H Y " is forwarded to D at +=19. At
time cycle =21, ;;»> is input at 4 and weight W is
updated at C.

4N

C DR

calculate caloulate calculate
nd ew, ' g

i a k k

updaie S
w, crmor
EU' ¥ hn;_.u

k i

The process in cycles 10 to 21 repeats for the entire
pattern set, j=1,.., N. The total error, E, for all
patterns, j, in a single presentation and over all output
nodes, &, is now available at 2. At the end of this, say at
¢=T, processor D checks whether the change in this
total error is less than a threshold 4. This determines the
stopping criterion for the FRBF training.

4.3 Performance evaluation

The number of clock cycles required is T,'=
9+ 12%(N—1)+ 1=2{6N—1). Let the training phase be
repeated for K, iterations. The total number of cycles
consumed is, therefore, T,=K, T,

Considering a purely sequential mode of operation,
the number of clock cycles required by a single PE is
T, =3n13N+ 1)e. Hence, for K, repetitions, T, =

K.xT,. Therefore, we have speedup:
Tos _ 3n{13N + 1)

e 13
T, 2N -1) e
parallelization efficiency:

S, In(13N + 1)

T s i (14)

"/ = ZPE T 3(6N — 1){c + 1)

and latency i,=11. It is, however, difficult to express
these measures in terms of the number of ocutput nodes
involved, mainly due to the high degree of overlap be-
tween the forward and backward passes.

5 Condclusions and discussion

In this article, we have described a parallel hardware
implementation of the FRBF network that involves an

integration of the FCM with the conventional RBF
network. The effectiveness of the design, for both FCM
clustering at the hidden layer and the weight updating at
the output layer of the FRBF network, has been pro-
vided in terms of processor utlization. Quantitative
measures like speedup, parallelization efficiency, and
latency have been used to evaluate the performance of
the system.

The synchronization overhead, while transmitting
data from 4 or C to B or D, is counterbalanced by the
possibility of simultaneous processing of two data pat-
terns. It is seen that the weight update in the hidden-
output layer is done in alternation with the forward
processing of the next data pattern. This is permissible
because the weight update of (say) the second output
node is done for the jth pattern, while the weights of
{say) the first output node are used for output compu-
tation corresponding to the (f + 1)th pattern.

The design has a high throughput because of the
utilization of almost every free cycle of the parallel
processors. It is suggestive of tightly packed processing
elements with a high amount of processing per unit time.
However, the use of barriers would be able to stop all
the parallel processors if one of them happens to con-
sume some extra time in any computation. This would
help the system avoid any error in the output in such
conditions.

It is possible to enhance the performance of the sys-
tem by introducing { registers (corresponding to / output

267

nodes) for the systolic processing of weight and error
vectors at C and D. This would result in reduced pro-
cessing time, at the expense of an associated increased
hardware cost. An investigation in this direction is cur-
rently under way.

References

l. Bezdek JC (1981) Pattern recognition with fuzzy objective
function algorithms. Plenum Press, New York
. Hwang K. Briggs F (1986) Computer architecture and parallel
processing. MoGraw-Hill, New York
3 Jones SR, Sammut KM, Hunter 1 (1994} Learning in linear
svstolic neural network engines: analvsis and implementation.
IEEE Trans Neural Metw 3:384-593
4. Lopez PI (1996) Programmable VLSI systolic processors for
neural network and matrix computations. PhDD thesis. Ecole
Polvtechnique Federale de Lausanne, Switzerland
. Mitea S, Basak 1 (2001) FRBF: a fuzzy radial basis function
network. MNewral Comput Appl 10244 252
6. Moody J, Darken CJ{1989) Fast learning in networks of lo-
cally-tuned processing units. Neural Comput 1:281-294
7. Mavlor I, Jones 5, Myers D (1995) Backpropagation in linear
arrays—a performance analysis and optimization. IEEE Trans
Neural Netw 6:583-3495
B. Pal SK. Mita S (1999) Neuro-furzy pattern recognition:
methods in soft computing. Wiley, New York
9. Zadeh LA (199%) Fuzzy logic newral networks and soft com-
puting. Commun ACM 37:77-54
10. Zhang D, Pal SK {2000) A fuzzy clustering neural networks
(FCNs) svstem design methodology. IEEE Trans Neural Netw
1741177

[B}

Lh

	fuzzy radial basis-1.jpg
	fuzzy radial basis-2.jpg
	fuzzy radial basis-3.jpg
	fuzzy radial basis-4.jpg
	fuzzy radial basis-5.jpg
	fuzzy radial basis-6.jpg
	fuzzy radial basis-7.jpg

