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Abstract

We have studied here the newly observed families of fractional quantum Hall states in the framework of Berry phase. It
has been shown that this approach embraces in a unified way the whole spectrum of quantum Hall states with their various
characteristic features. The newly observed states can be well accommodated within the primary sequence of FOQH states and

need not be considered as second generation FOH states.

1. Introduction

The recent experiments [ 1] on high mobility sam-
ples at very low temperatures predicled the existence
of fractional quantum Hall (FQH) stales at some un-
usual filling factors such as v=4/11, 5/13, 5/17,
6/17.4/13 and 7711 [2]. For the states v =4/11 and
5/13 a deep mummum in gy, and also a respectable
plateau in py, was observed. But for v =6/17,4/13,
5/17 and 7/11 states there was no plateau in gy, and
also minimum in gy, was nol pronounced. [t has been
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observed that the new state at v =4/11 is a fully po-
lanzed FOQH state. A weak state was also observed in
v=3/8 and at v = 3/10. These sequences of frac-
tions do not fit into the standard series [3] of integral
quantum Hall effects (IQHE) of composite fermions
(CF) at v = 5;E=1, but the states v =4/11 or 4/13
appear in the hierarchy of guasiparicle condensates
[4.5]. However, others such as v = 3/8 or 3/10 do not
belong to this hierarchy and the origin of their incom-
pressibility seems o be puzeling. [t has been proposed
[1] that these states may be regarded as FQHE of
composite fermions attesting o residual interactions
between these composite particles. Finite size diago-
nalization of small clusters of electrons by Mandal and
Jain [6] and Chang et al. [7] suggest that the state at
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v =4/11 is partially polarized which differs from the
experimental findings of Panetal [1].

A significant analysis has been done by Quinn
et al. [8.9] in which they mlerpret these states as a
novel family of FQH states involving pairing correla-
tons among the quasiparticles (QP). The correlations
depend upon the behaviour of the QP-0QP pseudopo-
tential Vgp(L") where the inleraction energy of a pair
depends on the angular momentum. These pairs ae
proposed o have Laoghlin correlauons with one an-
other and to form condensed states at a sequence
which include all new fractions found in experiments.

Besides, it 1s also proposed [10] that the new com-
posite particles consist each of a composite fermion of
the first generation and a vortex like excitation which
is based on the framework of Hamiltonian theory of
Murthy and Shankar [11]. Very recently, Lopez and
Fradkin [12] have proposed that the new states may be
viewed as the hierarchical Jain states such that these
are the quasiparicles and quasiholes of the primary
states of the Jain sequence. Indeed, they have con-
structed the FOH states observed by Pan et al. as the
fully polarized hierarchical descendants of the Jain se-
rics. Allthese approaches suggest that these new stales
effectively represent the second generation of FQH
states as these are expressed as FQH states of FQH
states.

In this Letter we shall show that all these new states
may be treated as the FOQH states i the primary se-
quence when we analyze the series from the viewpoint
of Berry phase. Our analysis suggests the existence of
FOQH states which include apart from the states ob-
served by Pan et al. as well as all the predicied states
by Quinn ¢t al. and also by Lopez and Fradkin, Be-
sides, in this fomalism these states are found o be
fully polarized and their particle-hole conjugate states
are found o be unpolarized. This is consistent with the
observation in experiments for the state with v = %
and its particle-hole conjugate stale l__l ;

In some earhier papers [ 13,14 ] we have analyzed the
sequence of quantum Hall states from the viewpoint
of chiral anomaly and Berry phase. In our approach,
we have considered the sphencal geometry which was
first used by Haldane [4] as an attractive aliernative
to finite size studies of gquantum Hall effect. Here, the
electrons are confined on the surface of a sphere of
large radius R with a magnetic monopole of strength
pooat the centre, In this geometry, the single electron 1s

represented as a spin 8, the odentation of which indi-
cates the pomt on the sphere about which the state 1s
localized. We can now wrile the quantum Hall states in
terms of spinor wave functions and take advantage of
the analysis in terms of chiral anomaly which is associ-
ated with the Berry phase. In this geometry the angular
momentum relation 15 given by

J=rxp—puk,
p=0,£1,2, 41, £3/2, ... (1)

From the monopole harmonics ]":_""T with £ =
12, lm| = || = 1/2, we can mtroduce a two-com-
ponent spinor # = {’:I}l where

1y2ag2_ . 6 ;
u=Y = &in 3 uxp[r{r;l — X };‘2],

—1/2,1/2 & A
v="Y = C0% 5 uxp[—r (g + x}ll.-?]. (2}
Here g comesponds o the cigenvalue of the operator
]
I ri'-):' .

Following the same arguments of Haldane [4] we
can construct the N-particle wave function for the
quantum Hall fluid at v = J—'ﬂ- as [4.13]

1,!";.”] o l_[ {“I ll_,l' = “_.l'l'j }JN : f:ﬂ'
i}

m being an odd integer. Here u; (v;) corresponds 1o
the ith (jth) position of the spinor such that the an-
gle between posilion vectors r; and rj is given by
i = 2.'3:1;5iniu;u_|; — vl Apart from a phase fac-
tor [T, e™"™*, which is related o the Berry phase the
N-particle wave function ﬁrlx-u] is identical with that
proposed by Haldane [4] and hence it will not affect
the dynamical calculations.

Since 1;;';:,.”] is totally antisymmetric for odd m and
symmetric for even m we can identify [4] m as m =
Ji + J; for the N-particle system where J; is the an-
eular momentum of the ith particle. It is evident from
Eq. (1)thatwithr x p=0and p = .l, we havem =1
which cormesponds o the complete Illl_ing of the lowest
Landau level. From the Dirac quantization condition
el = ,—l,, we note that this state corresponds 0 e = 1
describing the IQH state with v = 1.

The next higher angular momentum state can be
achieved either by aking r x p=1 and |u| = 1
{which implies the higher Landau level) or by taking
rxp=~0and |p.x| = % implying the ground state for
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the Landaw level. However, with a9 = é}, we find
the filling fraction v = Ii which follows from the con-
dition e = .l_, for = % Generaliemg this we can
have v = If with [jqp] = ; It may be mentioned that
for a quantum Hall particle the charge is given by —ve
when v is the filling factor.

From the relation (2), we note that one can consider
the geodesic projection coordinate

g .
[ =2 =tan ¢ (4)
U 2

for the Hopf fibration §7 = ‘;f,rllll]] and the base space
turns out o be a Kihler manifold. The symplectic
structure 15 given by [15]

di mdi K .
o i s O Ll W (5)
0 o 1 S I 14

where K =In(l + '{;2} 15 the Kihler potential. The
Hilbert space Hy on this Hopf fibration 57 is com-
posed by the N =27 + 1 one particle wave functions
ﬁrJﬂ around the Drac monopole pfJ = |p]). When
we have = n/2 with n an odd integer, we can con-
sider this as an n-particle system with each particle
having = 1/2 and the geodesic projection coordi-
nale is given by a £" = {u/v)". Hence for u = n/2,
noodd and m &£ 1, we have a correlated system whene
the symplectic structure of the phase space is modi-
fied as 2" = n£2. The deformalion causes 1o increase
the occupied area of anelectron and hence changes the
electron density o lie at certain fractions of the density
comesponding to the density of the completely filled
Landaw level. When these electrons condense mto an
incompressible fluid we observe fractional gquantum
Hall effect at the particular filling factors.

It may be remarked that as g bere corresponds o
the monopole strength, we can relate this with the
Berry phase. Indeed o = 1 comresponds o one flux
quantum and the flux through the sphere when there
is & monopole of strength g at the centre is 2. The
Bemry phase of a fermion of charge g, when it moves
in a closed path, is given by &% with ¢ = 2mgN,
where Ng = number of flux quanta enclosed by the
loop raversed by the particle.

If o is an integer, we can have a relation of the form

J=rxp—pi=r=xp (6)

which indicates that the Berry phase associated with g
may be unitanly removed o the dynamical phase. Ev-
idently, the average magnetic field may be considered
o be vanishing in these states. The attachment of 2m
vorlices (m an integer) o an electron effectively leads
o the removal of Berry phase o the dynamical phase.
So, FOQH states with 2p.5 = 2m + 1 can be viewed as
if one vortex line is attached o the electron. Now we
note that for a higher Landau level we can consider the
Dirac quantization condition ep . = 71,::, with n being
a vortex of strength 26 + 1. This can generate FQH
states having the filling factor of the form ,_,J,i” where
both nand 2peq are odd integers. Indeed, we can write
the filling factor as [13,14]

n 1 n
= = ] - ; (7)
Qptep HarFl 4 L Zmn 1
" "

U=

where 2pen F 1 1s an even iteger given by 2mn.
In this scheme, the FOQH states with v having the
form

F

n
v=_—

2mn’ £1
in" an even integer) can be generated through particle—
hole conjugale states

(8}

1 n n2m—1)+1 n
=] — = — o
2mn+ 1 2mn+ 1 2mn' £1
()
Now, from Eq. (7),
n n n
= = (100}
Qe 2m"x1 2mn+1

we note that the integer m” has been taken to be the
product mn. However, not all m" can be writlen in the
product form mn. So we can wrile in a generalized
Wiy,

' & e ;
m =mn=xm, mbeing an integer.

Indeed replacing n by g where g 18 any imleger we can
express the generahzed relabion as
q q q

dugr  2nf £1  2mg+ 2mE1)

(11}

where we have taken m' = mg £+ m, with m being an
integer. The relation (7) is now modified as
1 1

V= - = A
Im i{%} 2m+plg

(12)
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where p = 1 an odd integer. It is noted that for p =1
implying m = 0 corresponds to the Jain sequence.

The even denominator filling factors are oblained
when propy is an integer. As we have pointed out that
for integer . the Berry phase can be removed Lo the
dynamical phase, these states can only be observed
when they appear as pair states [16.17] This corre-
sponds to the non-Abelian Berry phase and represents
non-Abelian quantum Hall fluid. In this case, the rela-
ton (12) will take the form

| 1
= = = — (13}
Im 4+ f! 2mt plyg

where pig) s an even{odd) integer.

Now 1o have a physical interpretation of the states
given by (120 and (13} we note that these correspond 1o
the attachment of p vortices (flux gquanta) in a cluster
of g electrons in the lowest Landau level.

For p = 1 and g odd we can take

(1) g — 2 electrons of which each one is attached with
a vortex s coupled with a residual boson com-
posed of two electrons;

(i) g — 1 electrons, each of them being attached with
a vortex is coupled with the residual fermion.

In a similar way for g even, we may view the relation
(12} such that g — | electrons, each having one vortex
attached with it is coupled with the residual fermion.

It 15 noted that when an electron 15 attached with
a magnetic flux, its statistics changes and it is trans-
formed into a boson. These bosons condense to form
a cluster which is coupled with the residual fermion or
boson composed of two fermions. Indeed the residual
boson or fermion will undergo a “statistical” interac-
tion tied to a geometric Berry phase effect that winds
the phase of the particle as it encircles the vortices.
This suggests that for odd g, p wkes the values g — 2
and g — 1 and for even g, p is given by g — 1. Also
we observe that the attachment of vortices to electrons
i a cluster will make the Quid an incompressible one.
Indeed as two vortices cannot be brought very close
to each other, there will be a hard core repulsion in the
system which accounts for the incompressibility of the
quantum Hall fluid.

Following Wojs, Yi and Quinn [ 18] we may con-
sider here the pseudopotential which is a function
of the relative angular momentum of a pair of elec-

trons each attached with a magnetic flux quantum. It
has been pointed out by these authors that Laughlin
correlations among interacting fermions confined 1o
a spherical surface can be achieved when the largest
vitlues of the pair angular momentum L' or smallest
vilues of the relative angular momentum B =2/ — L,
! being the smgle particle angular momentum ae max-
imally avoided. It has recently been demonstrated that
the adiabatic addition of flux automatically gives rise
o Laughlin correlations [19]. In fact from the angu-
lar momentum relation (1) we note that the addition
of a magnetic flux gquantum (g = 1,/2) o an electron
suggests that the single fermion has angular momen-
wm { = 1/2 and so for a pair of such fermions we
have L° =21 — 1 implying B = 1. Laughlin correla-
tions oceur if and only if the pseudopotential V{R) is
superhammonic, that is, rises with increasing L' faster
than L'{L" + 1) as the avoided values of L' is ap-
proached. The pseudopotential Vi R) for electrons in
the lowest Landau level (n = 0) 15 superharmonic at all
vitlues of L' In our present scheme, of the (g — 1) or
{g —2) fermions each attached with one magnetic flux
quantum even number of fermions will form bosonic
pairs cach with relative angular momentum R = 1 and
L' = 0. These bosonic pairs along with the single bo-
son formed by an electron attached with a magnetic
flux quantum (when (g — 1) or (g — 2) is odd) con-
dense o form a cluster which is coupled with the
residual fermion or boson through a “statistical in-
teraction” caused by the Berry phase effect when the
later encircles the vortces.

1t should be mentioned here that as for the filling
fraction given by Eq. (12) the mother relation 1s the
same as in the conventional filling fraction given by
Eq. (7), ie, v = Irfu . the wave function for these
states will be of the same Laughlin-type as in Eq. (3)
with m = 1/v. The incompressibility of the quantum
Hall fluid having these new filling factors is implicit in
this Laughlin-type wave function.

Now we consider some specific cases (Tables 1
and 2). Values with bold faces in Tables 1 and 2 have
been reported in Ref. [1]. The values v = 4/5 and
v=5/7 have been observed by Du et al. [20] which
appear as weak depressions in the longitudinal resis-
avity. In a similar way, we can carry on with other g
and p-values.

In this context we may add that the states we have
obtained include all the staes predicted by Quinn et
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Tahle 1
godd, p=land p=g —l org —2
g I Gieneral form of v WValues of m v
|
3 2 T | 38 34
2 3714, 3/10
1 .
5 3 T =S 1 513 5/7
2 5023 517
4 AT 1 514, 56
2 5724, 5/16
1
7 5 T 1 T9, 79
2 7733, 7723
1
6 i 1 7720, 7/8
2 T34, 7722
Tahle 2
geven p=land p=g—1
g I Greneral form of v WValues of m v
1
-4 32 TET] | 4/11, 4/5
2 419, 4/13
1 i
I 5 TR 1 6/17, 67
2 6729, 6,19

al. [8.9]. Indeed, their classification scheme suggests
the relations

v =25+ 1+ 2+4/2)7", (14)
where p and § are integers.

As mentioned earhier, the even denominator states
are expected o appear as paired states. Indeed, in this
Case feg 15 an integer and hence can be removed Lo the
dynamical phase. These states can only be observed in
pamed states. This suggests that the newly observed
states v = 3/8 and v = 3/ 10 should appear in paired
states which has also been suggested by some other au-
thors [8,9.21]. From our analysis, it appears that these
states correspond o non-Abelian Berry phase and rep-
resent non-Abelian quantum Hall fluid.

In this formalism it is evident that for the filling
fraction v the charge of the quasipanticle is —ve. This
result is consistent with the experimental results and
is identical with that of others in case of the FQH
states with v = 1/m (m being an odd integer). Bul
there is a controversy regarding the charge of gua-
siparticles in the FOQH states with the filling factor
v=n/m (m an odd integer). In the composite fermion

model, the predicted charge of the quasiparticles hav-
mg v=n/m is always 1/m which 15 supposed o be
supported by experiments at a bit higher temperature
[22] but is in contrary Lo the experimental result [23]
where it is shown that the charges of the quasiparti-
clesare e /3, 2e/5 and ~ 3 /Tatv=1/3,2/5and 3/7
atextremely low lemperature. In this context, we may
add that the Dirac quantization condition which is a
consequence of quantum field theory at T =0 (no fi-
nite temperature effect is taken inlo account) and so
our result is expected to be valid in the close vicin-
ity of T = 0. However at higher emperature it may
happen that for quasiparticles with v = n /m, n being
related o higher Landaw level, the system 1 dissoci-
ated into n copies of quasiparticles each with charge
e =1/m.

In a recent paper [24] we have analyeed the po-
larization of quantum Hall states in the framework of
the hierarchical analysis in terms of the Bemry phase.
There it 15 observed that the states in the lowest Lan-
dau level corresponding 1o the filling factors v = 1 and
Tl-;l with m an integer correspond o the fully
polarized states. Indeed, in such a system even num-
ber of vortices are gauged away and the attachment of
one vortex (magnetic flux) to an electron leads o the
fully polarzed state. However, in the higher Landau
level we have the filling factor given by

W=

n 1 1 n
b= j{.{cﬁ' - Mil - Iz,":l:l ¥ 2mn+ 1’
13 13 L

where nis an odd integer comresponding 1o a vortex
of strength 2f + 1. As this effectively corresponds o
the attachment of % flux unit attached o an electron,
the state will be partially polarized. Again the particle—
hole conjugate states given by

n
2t 1’
n being an odd mteger will comespond o unpolanzed
states. This analysis suggests that the newly observed
states as reported in [1] which appear in the lowest
Landau level will correspond 1o fully polarized states.
Indeed, the states comesponding 1o v = 4/11 has been
observed to be fully polarized and the particle-hole
conjugate state v = 7/11 is found to be unpolar-
ed [1].

Finally, we may mention here that the hierarchical
interpretation of the Haldane—Halperin scheme was

U= =
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questioned [235] because of the specific form of the
QPP interaction. Besides, as mentioned eadier, the
newly observed states v = 3/8 and v = 3/10 do not
belong to this hierarchy. On the other hand, the Jain
classification scheme effectively reveals a fundamen-
tal comection between IQHE and FQHE as the FQH
states are considered o be IQH states of composite
fermions. However, 1o interpret the newly observed
states this fundamental concept has 1o be abandoned
and we have to take into account the residual CF-CF
interaction. A specific form of this interaction [8.9]
based on the pseodopotentials such that the pair in-
teraction energy depends on the relative angular mo-
mentum ncely explains the new states. Bul some other
states observed by Du et al [20] which appear as
weak depression in the longimdinal resistivity cannot
be accommodated in this scheme. Our present analysis
suggests that these second generation FQH states ane
not truly second generation stales, rather these appear
in the primary sequence of the FOQH states. This clas-
sification scheme can explain all the states observed w
date [1,20]. This also predicts the polarization of the
states v =411 and v =7/11 consistent with experi-
menl.
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