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Abstract

Using supersymmetry we obtain solutions of Schridinger equation with a position dependent effective mass exhibiting a
harmonic oscillator like spectrum. We also discuss the underlying nonlinear al gebraic symmetry of the problem.

1. Introduction

Cuantum mechanical systems with a position de-
pendent effective mass are useful in the study of var-
ious physical systems like elecwronic properties of
sermiconductors [1], quantum dows [2], hguid crystals
[3], ete. and they have been studied widely during the
last few years. Exact solutions of Schridinger equa-
tions with an effective mass have also been obined
for a number of potentials [4].

Supersymmelry, on the other hand, has proved o be
very useful in the smdy of gquantum mechanical sys-
tems with a constant mass [5]. Recently it has been
shown that supersymmetric methods are also useful in
the study of effective mass Schriddinger equation and
using supersymmetne methods new potentials with
exactly known solutions have been obtained [6.7].
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On the other hand nonlinear algebras arise in dif-
ferent contexts [8.9]. In particular it has been shown
that in the case of constant mass Schrisdinger equation
there is a class of poentals (which are also super-
symimelric partner of certain solvable potentials ) have
nonlinear algebrue symmetry [10.11]. Here we shall
show that in the case of effective mass Schrisdinger
equation also there exists a similar class of exactly
solvable potentals with nonlinear algebraic symme-
try. More precisely we shall use supersymmetne tech-
niques Lo obtain exact solutions of a potential which
is isospectral with an effective mass harmonic oscilla-
or. Subsequenty it will be shown this potential has a
nonlinear symmetry. We shall also briefly outline dif-
ferent methods of obtaining effective mass isospectral
Hamiltonians. The organisation of the Letter is as fol-
lows: in Section 2, we present a brief review of the
effective mass formalism for the hammonic oscillator;
m Section 3 we construct the 1sospectral potential and
discuss the symmetry undedying the model; finally
Secton 418 devoted to conclusion,
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2. Harmonic oscillator in the effective mass
formalism

When the mass depends on the position the kinete
encrgy operator can be constructed m three ways. In
the present case we shall be following Levy-Leblond
[12] and the Schridinger equation s given by (we take
A=1)

d ( 1 dirix)
dx\2mix) dx
The wave function ix) should be continuous across
the mass discontinuity and it’s derivative satisfies the

condition:

1 dyrx)] ] dirix)]

mix) dx _m{.r}l dx __L-
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We shall now obtain a potential Vix) for which the
spectrum is that of the standard hammonic oscillator.
To do this it is necessary to factorise Eq. (1) and we
consider the following operators [6]

Avr= - E+'I.-'I.-"1,'Ir (3)
W 2m dx ’ )

i d{ ¥

A ﬁ:—E(E)+W¢f, (4)

where A, A" are the supercharges and the function
Wix) is called the superpotential [5]. Then we form
the supersymmetric pair of isospectral Hamillonians
Hy:

H, = AAT
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The corresponding potentials Vi are given by
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The speciral properties of the pair of Hamiltonians H.
are given by (we assume that E:[]_] =)
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We now tum o the construction of effective mass har-
monic oscillator potentials. From Egs. (3) and (6) it
follows that

2w 1 I
wal=Z- () 7m) W
Thus in order that A" and A can be used in the
same way as the standard harmonic oscillator creation
and annihilation operator, respectively, we should have
[A.AT] = 1. Then from Eq. (11) we get the follow-
mng equation involving the superpotential Wix) and
the mass mix):

CARLTER S
2m 2m Im) E
Eq.(12) can be integrated 1o give Wix):

X

Wir) = (%) +f J2mit)dr. (13)

Thus for a given mass mix) the superpotential Wix)
can be determined from (13) and in this case the
spectrum of Hi are given by Ex = (n + l._, == ,l,}l.
The corresponding eigenfunctions can be obtained us-
mg Eq. (10). However it may be noted that due 1o
Eq. (12) the wave functions may simply be obtained
as ¥, (x) ~ (A7) (x).

3. Isospeciral effective mass Hamiltonians and
nonlinear algebras

In this sectuon we shall construct Hamilonians
which are wospectral with H+ and obtain the under-
Iying nonlinear algebra, AL this pomnt, howewer, 1L s
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necessary 1o specify the form of the mass mx). Here
we Lake the mass to be of the following form [6]

g 2 2
m{.r}l:(c:_i_jl) .

m{0) =a’,
mitoc)=1. (14}

With the above choice of the mass function the super-
potential can be oblained from Eq. (13) and is given
by

x a—1 x
Wix)=—4+ ——|tan' x4+ ——— . (15
= J2 |: (a +r}-] }
The specific form of the effective mass hamonic os-
cillator potential can now be obtained from Egs. (7)
and (#):

1 oy
Veix)= ;[.r + (o — 1) tan .r]
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(16)

Let us now consider a new superpotential Wpix)
given by

o

Wilx) = Wix)+ vix), (17

where the function vix) will be determined later.
The comresponding supersymmelric partner potential
U{x)as gven by

W, ) 2w
& 2
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We now require that the potentials Voix) and U (x)
are related by

Up(x) = Vi(x) +pt, (19}

where 015 a certain constant. The condition (19) 1m-
plics that the spectrum (and eigenfuncions) of the
potential U, {x) is the same as that of Vo{x) except
that the energy levels of Ui x) are shifted by the con-
stant g Now vsing Egs. (7), (17) and (18) we oblam
from (19) a differential equation for vix):

1 2
+|:2W_(ﬂ)]ll+u =pu. {20)

(=)=

It 15 now necessary o solve Eg. (200 o determine the
superpotential Wi(x). In order to do this we choose
the following ansatz for vix):

28 fix)

C 1+éf2x)
where 8 15 a constant (Lo be determined later) and the
function f{x) is given by

mix)

(21)

X

P f JIm() dt. (22)

It can now be shown that with vi{x) given by (21),
Eq. (20 will be satisfied if we choose § =1 and p = 2.
Thus in this case we have

Up(x) = Vol(x) +2 (23)
and if we denote the energy levels corresponding 1o

Uyix) by & then

Er=in43), a=0:12:: (24)

We now consider the supersymmelrc parner po-
tential I7_{x). This is given by

% Wy
U.{.r}l:Wl‘{_r}l—( ‘ ) £ V_(x). (25)

~2m
By supersymmetry IF_{x) has the same spectrum as
L7, (x) except for the zero energy state (see Eg. (9)).
So denoting the energy levels of U_(x) by £ we have

E =0, & =& =(n+3). (26)
The complete form of ['_(x) is given by
U_ix)=V_ix)+ .
[142(x + (& — Lptan—t )7
i +2.(27)

T+ 2(x+ (e — Dian~' )22

Let us now determine the symmety of the poten-

tal I7_{x). To do this we first have 1o oblain operators

which would connect different levels of U_{x). Thus

we define two operators BT and B in the following
Wiy

B =alaTa;, B=alaa, (28)

where the supercharges AI and Ay are given by

ol
W 2m dx e

A=
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Alger e f® Ny (29)
B dx (vzm e B
The operators in Eq. (29) connects the eigenfunctions
in the same way as in Eq. (10) with the eigenfunctions
¥ and energies E replaced by ¢ and £, respec-
tively.

We now examine the action of the operators B and
B on the eigenfunctions ¢ of the Hamiltonians H+:

I

1 4 15 d
=———— =] — +Usx),
s 2m dx? ( ) HU )
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1 d* 1N d
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1t may be noted that because of the condition (12) we
have

Ayt =y, ATyl =41y . (31)
Now using Egs. (10) and (31) we get
i
BY¢,, = ‘|,"|I£:+I (n+ 1)E 1830
=/ (n+2in+3in+4)
= [ & =
Bg, = Y Ei 1€y
=+/nin +2)n + 3, . (32)

n+2?

Thus the ground state of I7_(x) can be obtained from
the equation Al‘i'n_ (x) = 0 while the excited states can
be built up by repeated application of the creation op-
erator BT on "i'l_ (x):

¢ ()= (BT) p; ()

2131 a
K J:i!{n +2){n + 3}!¢l (x). (33)

From (32) it follows that H_, B and B satisfy the
following closed algebra:

[H-,B)=-8,
[H-, B"] =BT,
[B.B"]|=3H_— 51 (34)

Thus unlike Ly (x) or Vai(x) the symmetry algebm un-
dedying the potental U_ix) is a nonlinear (quadratic)
one and is given by (34). However, since the ground
state of H_ is annihilated by both B and B' the alge-
bra i (34) 1s realised over the excited states.

4. Conclusion

Here we have oblained a new potential U_{x) for
which the effective mass Schriddinger equation is ex-
actly solvable. It has also been shown that the un-
derdying symmetry algebra is a guadratic one. This 1s
similar 1o the situation in the constant mass case [ 10].
It may be noted that it is possible o proceed in a differ-
ent way Lo obtain 1sospectral Hamiltonians, For exam-
ple one could consider the equation —{ ;%; Y4+ W=
—(J5=) + W{ and solveit for Wy. Subsequently the
symmeltry behaviour of [F7{x) may be studied. In
this connection we note that exactly solvable effec-
tive mass Schriddinger equations (in particular the har-
monic oscillator system, see Eq. (16)) can also be ob-
tained using the point canonical transformations [13,
14]. We feel it would be interesting o analyse the sym-
metry of these exactly solvable models.
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