Stochastics and Statistics

Incomplete information and multiple machine
queueing problems

Manipushpak Mitra *

Abstract

In mechanism design problems under incomplete information, it is generally difficult to find decision problems that
are first best implementable. A decision problem under incomplete information is first best implementable if there exists
amechanism that extracts the private information and achieves efficiency with a transfer scheme that adds up to zero in
every state. One can find queueing problem with one machine that are first best implementable under certain cost
conditions. In this paper we identify the conditions on cost structure for which queueing problems with multiple
machines are first best implementable.

Kevwords: Queueing problems; First best implementability

1. Introduction

In a queueing problem with multiple machines, there is a server (for example, a computer server), with
more than one identical machines (computers) which has to process a finite number of jobs for a set of
individuals. The machines are identical in the sense that a given job takes the same length of time for
completion. We assume that it takes one unit of time to complete one job. Each individual has one job to be
processed. The server can serve one individual in one machine, that is, it takes one unit of time to process
one job in a machine. If the number of jobs, to be processed, is more than the number of machines then
individuals will have to wait in a queue. Waiting in a queue is costly for each individual. The server’s
objective is to order the individuals in a queue efficiently so as to minimize the aggregate waiting cost. If the
cost of waiting in the queue is private information then an individual, if asked, will announce her cost
strategically so as to get her job done as early as possible. Therefore, in the queueing scenario described
above, the server's role is that of a planner who has to solve an incentive problem under incomplete
information. More precisely, we have a mechanism design problem of a social planner (server in the

252 M. Mitra ! European Journal of Operational Research 165 (2005) 251266

queueing problem) whose objective is to extract the privately held information (true waiting cost) of each
individual and select the efficient decision (to order the individuals in a queue so as to minimize the
aggregate waiting cost) in each state.

One of the most significant achievements in the planner’s mechanism design problems under incomplete
information has been the existence of a class of mechanisms called Groves—Clarke mechanisms (see Clarke,
1971; Groves, 1973). These mechanisms achieve the twin objectives of truthful revelation of private
information and efficiency of decisions provided the agents have quasi-linear preferences. Moreover, for a
very broad class of preference structures, in a quasi-linear set up, Groves—Clarke mechanisms are the only
class of mechanisms that achieve these objectives (see Holmstrom, 1979). However, the drawback of such
mechanisms is that they are, in general, not Pareto-optimal. This means that there are preference real-
izations where the sum of Groves—Clarke transfers are non-zero. In the pure public goods problem,
Hurwicz (1975), Green and Laffont (1979) and Walker (1980) proved the budget imbalance of a Groves—
Clarke scheme. Hurwicz and Walker (1990) proved the impossibility result in the context of pure exchange
economies (economies in which there are no production, no public goods and other externalities). The
damaging nature of budget imbalance, in the public goods context, was pointed out by Groves and Ledyard
(1977). They proposed, using a very simple model, that an alternative procedure based on majority rule
voting may lead to an allocation of resources which is Pareto superior to the one produced by Groves
mechanism. However, there are certain decision problems where first best or Pareto optimality can be
achieved. In the public goods problem, Groves and Loeb (1975) have proved that if preferences are qua-
dratic then we can find balanced Groves transfer. This result was generalized by Tian (1996) and Liu and
Tian (1999). In a single server (one machine) queueing problem with linear cost, Mitra and Sen (1998)
showed the existence of first best mechanisms. A problem similar to the queueing problem with linear costs
in Mitra and Sen (1998) is the sequencing problem in Suijs (1996). Unlike the queueing problem, where it
takes one unit of time to serve one individual, in a sequencing problem the servicing time can differ from
one individual to another. Therefore, while the linear cost queueing problem is a discrete time problem, the
sequencing problem in Suijs (1996) is a continuous time problem. By assuming servicing time to be common
knowledge, Suijs proved the existence of first best mechanisms for the sequencing problem. The existence
result in Mitra and Sen (1998) was further generalized by Mitra (2001) for a broader class of cost structures.
It was proved that the class of cost structures under which a ‘one machine queueing problem’ is first best
implementable is ‘fairly’ large. In this paper, we deal with the question of first best implementability of
queueing problems with multiple machine. Therefore, this paper is a generalization of the one machine
queueing framework of Mitra (2001) to a multiple machine framework. A multiple machine queueing
problem is first best implementable if there exists a mechanism that can extract the private information with
a vector of transfers that add up to zero. This allows the server to order the jobs in a way that minimizes the
aggregate cost. The most important implication of first best implementability is that the server can extract
the private information costlessly. If a queueing problem is first best implementable then there is no welfare
loss as the transfers used to extract the private information adds up to zero in all states.

A multiple machine queueing problem resembles some of the sequencing problems that are analyzed in
the operations research literature. Papers relating to sequencing » jobs in m machines by Dudek and Teuton
Jr. (1964), low shop sequencing problems with ordered processing time by Dudek et al. (1975) and flow
shop problems with dominant machines by Krabbenborg et al. (1992) deal with finding algorithms to order
{or gqueue) the » jobs in m machines in a way that minimizes the total elapsed time. However, in all these
models, unlike multiple machine queueing problems, machines are not identical. The processing time for
the same job can be different in different machines. Moreover, unlike a multiple machine queueing problem
where cost parameter is private information, the cost structures in all the above mentioned sequencing
problems are common knowledge.

In the incomplete information set up, sequencing problems were analyzed by Hamers et al. (1999). They
analyzed a multiple identical machine sequencing (or scheduling) problem with linear time cost. Therefore,

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 253

their problem is a continuous time version of the multiple machine queuweing problem with linear cost.
Hamers et al. (1999) look at the » jobs and m identical machines sequencing situation both in a co-operative
and non-cooperative environments. In a co-operative set up, a sequencing problem is called a sequencing
game. Curiel et al. (1989) analyzed the sequencing game in a one machine framework. Hamers et al. { 1999),
by extending the sequencing game of Curiel et al. {1989) to a multiple identical machine framework, ad-
dressed the issues of balancedness and non-emptiness of core in m-sequencing games. In a non-cooperative
set up, they address the issue of first best implementability by assuming job processing time to be equal to
one. Thus, in the non-cooperative set up, the sequencing situation analyzed by Hamers et al. (1999) is
identical to the multiple machine queueing problem described in this paper with the restriction that the cost
is linear over time. The main objective of this paper is to achieve first best implementability in multiple machine
gueweing problems. Move precisely, this paper identifies the conditions on the cost structure that lead to first
best implementability. Therefore, in this paper, we also generalize the non-cooperative sequencing situation,
analyzed by Hamers et al. (1999), by allowing for a very general time cost. The results that we get suggest
that first best implementability depends critically on the number of machines and the number of jobs to be
processed on those machines. If the number of machines (that is m) is even or if the number of jobs to be
processed is strictly greater than the number of machines but less than or equal to twice the number of
machines, then a multiple machine queueing problem is not first best implementable. For all other multiple
machine queueing problems there exists a non-trivial cost structure under which it is first best imple-
mentable. Finding an algorithm to obtain the cost minimizing queue is not a very important issue since the
conditions on the cost structure under which a multiple machine queueing problem is first best imple-
mentable are such that the algorithm for finding the cost minimizing queue is transparent. Therefore,
obtaining a state contingent transfer scheme that extracts the private information while adding up to zero is
of prime importance.

The paper is organized in the following way: in Section 2 we develop the general class of problems, in
Section 3 we derive some characterization results, in Section 4 we deal with separable cost multiple machine
queueing problems and finally in the concluding remarks of Section 5 we summarize the results obtained in
this paper.

2, The general class of problems

Let N = {1,2,..., n} be the set of individuals and m(> 1) be the set of identical machines. Define [x], to
be the lowest integral value not less than x. For example, [2.005], = 3 and (3], = 3. Given n and m, the total
number of queue positions are M = [n/m| . Here the number of individuals (and hence the number of jobs)
n is strictly greater than the number of machines m in order to have a meaningful queueing problem. (k)
measures the cost of waiting & periods in the queue for individual f where £ € {1,... M} Let R, be the
non-negative orthant of the real line R. A cost vector or type of an individual j € N is a vector of the form
0, = (0,(1),...,0,(M)) € RY. An e-neighborhood around any vector 0, € RY is the set N.(f,) = {x e RY :
12; — x|l <e} ! A typical domain of cost vectors of an individual JENIs @ C R, Observe that the do-
main @ is assumed to be common for all individuals. For a domain @, we denote its imferior by 8. A cost
vector @, € @, if 3 ¢ = 0 such that N,(8,) C ©. We assume that the interior © (of the domain ©) is non-
empty. Let A, = (A {1),... A{M — 1)) represent the vector of first differences generated from the
vector 0. Here ADi(k) = 0(k + 1) — 0;(k) for all k € {1,... .M — 1}. We say that Af; < A’ if and only if
Al (k) < AB(k) for all ke {l,..., M —1} and there exists at least one k' € {1,..., M — 1} such that

"Here |8, — x| denotes the Euclidean distance between the two cost vectors I, = (1) ... 0(M)} andx = (x(1},... of M), that is
R P e A Y
(16, — x|l = o/ S0 (0;(K) — x(k)

254 M. Mitra ! European Journal of Operational Research 165 (2005) 251266

AlE) = &Lﬂ{k’j. The three main assumptions we make on the common domain of preference @ are as
follows.

Assumption 1. For all j € N and for all cost vector 0, = (#,(1),...,0,(M)) € 0,0 gi)=<02)--- <
(M). .

Assumption 2. © is convex, that is, if §; € @ and) € @, then A0, + (1 — J)¢/, € © for all i € [0, 1].

Assumption 3. @ is sufficiently open if for all 0, O, there exists (z ff) € © x @ such that Az < A, < Ap.

Moreover, A (k) < Af(k) for all k€ {1...., M—1}and Ax(k) =0 forall ke {1,..., M—1}.°

Assumption 1 simply says that the individuals are impatient. Assumption 2 is the standard convexity
requirement. Finally, Assumption 3 is an openness assumption on the cost domain which says that for any
type @, in the interior of the domain, there exists one type f§ in the domain that, in terms of difference,
strictly dominates), and there exists another type z with null first difference vector in the domain which is
dominated, in terms of difference, by .. -

Let @ be the class of domains satisfying Assumptions 1-3. Let @ be any domain belonging to @ sat-
isfying Assumptions 1-3. The utility of each individual j is assumed to be quasi-linear and is of the form:
Ujlk,t;:8,) = v; — 0,(k) + t; where v;(> 0] is the gross benefit derived by individual j from the service, 8,(k)
is the cost of individual j at the kth queue position and ¢; is the transfer that individual j receives.

The server’s aim is to achieve efficiency or minimize the aggregate cost. To define what we mean by
efficiency in a queueing problem with m machines, we need to develop the concept of a pudii-set. A multi-set
is a set where all elements may not be distinct. For example, X = {1,1,1,3,6,6,9] is a multi-set. Given a
queueing problem with n individuals, m machines and hence M = [n/m|, queue positions, consider the
multi-set X, of the form X, ={1.....1,2,.... 2. ... M—1,.... M— 1. M, ... M} Let P(X,,.) be the

e e

o

E : o . o H " n—[=1
set of all possible permutations of the multiset X, ,,. In this problem, a queue 7 is a one-to-one corre-

spondence between the set of jobs N={l,...,n} and the queue positions P(X,,), that is,
a=(dy,....,0,): N —= P(X,,). Thus, o; = k indicates that individual j has the kth position in the queue.
Given a queue ¢ = (7,...,7,)(€ P[{X,.)). the cost of an individual j € N is #;(m;). A state of the world is
0=(8,....,0,) € @ where), is a 1 x M vector.

Definition 2.1. Given a state 0 € @', a queue o P(X,,,) is said to be efficient if o € argming _py
2 jen 0i{a;).

An efficient queue o* is an assignment that gives each individual exactly one queue position and each of
the first M — | queue positions to exactly m individuals and the Mth queue position to the remaining
n— (M — 1)m individuals in such a way that the aggregate cost is minimized. Observe, that there can be
states with more than one efficient queue. So we have an efficiency correspondence. An efficient rule is a
single valued selection from the efficiency correspondence. Note that efficiency of a queue o* is a concept
independent of transfers and gross benefits of all individuals.

If the server knows the true state ! = (f1,..... {1) then she can calculate an efficient quene. However, if ,
is private information for individual j, the server’s problem then is to design a mechanism that will elicit this
information truthfully. We refer to such a problem as a nmudtiple machine gueweing problem under incom-
plete information and is written as I' = (N, m, ®) where ® £ ©. Note that we are assuming that the domain

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 255

© is common knowledge and that the cost vector of an individual is private information. Therefore, each
individual, if asked, will announce a cost vector from the domain @. Formally, a mechanism M is a pair
{o.t) where 0: 0" — P(X,,.) and t=(r,,...,1,) : @ — R". Thus, a mechanism M is a direct revelation
mechanism where each individual j € N announces a cost vector 0, = (f,(1),....0,(M)) and based on the
announcements of all individuals (thatis, 0 = ({,,...,0,7), the planner {or server) specifies a queue 7 and a
vector of transfers t = (f,....1,). Under M = (o, }, given all others’ announcement #_;, the utility of
individual j of type 0, when her announcement is is given by Uig@,0).4,(0,.0_):0;) =
v — i {Hjli.[r1 —_.l:I:I =+ I_i{f_'rjp Q—_,i:l'

Definition 2.2. A multiple machine queueing problem I' = (N, m, @) is implementable if there exists an
efficient rule o : ®" — P(X,.) and a mechanism M = {g*,t) such that for all j€ N, for all pairs of
announcement vectors (0,0)€® x @ and for all announced 0 ;€ 0. Uila;(0),4;(0); 8,) =
Uj(o}(8,,0.),1,(0,,0.,);,).
This definition says that I' = (N,m,®) is implementable if there exists a direct mechanism, with an
efficient queueing rule o* and a vector of transfers, that induces each individual to tell the truth independent
of others” report.

Definition 2.3. A multiple machine queueing problem I' = (N.m, @) is first best implementable, if there
exists a mﬁchanism M = {#* .t} such that (1) M implements " and (2) for all announcements (} £ o,

> en i) =

A multiple machine queueing problem I' = (N, m, ©) is first best implementable if it can be implemented
with a budget balancing transfer. Thus, if I' is first best implementable then incomplete information does
not impose any welfare loss.

3. Characterization resulis

Definition 3.4. A mechanism M = (o, t) is a Groves—Clarke mechanism if for all j € N and for all # € @', the
transfer is of the form

— 3" 0l 0)) +7,0_,)- (3.1)

17

In a Groves—Clarke mechanism, the transfer of any indi!.'i-:iual JENIn :alnjr state (7 is the negative of
aggregate cost plus the cost of individual j (that is — 3, th(a () + ;(a;(0 Zu A (), plus a
constant y,(_;). The utility of individual j with a Grm'e-a—{?larkﬁ transfer m her Bross beneﬁt v; less the
aggregate cost in state (f plus the constant. We now proceed to verify that given a mechanism M = {g* t}
where the queue «* is efficient and the transfer satisfies condition (3.1), truth-telling is a dominant strategy.
Suppose, it were not the case. Then there exists an individual j with true cost {1, and there existsa report 0,
such that individual j strictly benefits by misreporting her cost to be some #.(# f1;). That is,
Uila:(0),1,(8):8.) < Ujla; {EJ"f E_J:I {E." 0_,):0.). Simplifying this inequality after aub@mutmg theGrm'eq—

-
Clarke transfer, we get >\ 0 b ZF.‘ (@;(#,0_;)). This contradicts efficiency of decision (or
aggregate cost minimization) in @tate ﬂ Hence, the Groves—Clarke transfer leads to wruth-telling in dom-
inant strategies.
According to a well known result of Holmstrom (see Holmstrom, 1979), decision problems with
“convex” domains are implementable iff and only if the mechanism is a Groves—Clarke mechanism (see

Theorem (2) in Holmstrom (1979)). Since by Assumption 1, any domain @ € @ is convex, all multiple

256 M. Mitra ! European Journal of Operational Research 165 (2005) 251266

machine queueing problems I = (N, m, ©®) with ® € © are implementable if and only if the mechanism is a
Groves—Clarke mechanism. Therefore, the question of first best implementability of a multiple machine
queueing problem reduces to finding domain restrictions under which we can find a balanced Groves—
Clarke transfer.

Let C{a* () 01) = >N E!,-{r:;{ﬂj]l where, as stated earlier, o* (1) is an efficient queue for the announced
state f'. Thus, C{e*(f);0) is the minimum aggregate cost with respect to the announced state {f' when the
actual state is . For notational simplicity we define C{ (1) = Cl{e*((1);) to be the minimum aggregate cost
with respect to the actual state ! when the announced state is also (.

Remark 3.1. From the definition of efficiency of the queue o it follows that for all # and ¥,
C(0) < C(a*(£): 0).

When is a multiple machine queueing problem first best implementable? In our first theorem we show
that the General Combinatorial Property, defined below, is necessary for first best implementability of a
multiple machine queuweing problem.

Definition 3.5. A multiple machine queueing problem I' = (N, m, @) satisfies the General Combinatorial
Property (or GCP)if for all 0, € ©

M
> alkin,m)0;(k) =0, (3.2)
k=1

where a(n,m) = {a(k;n,m)};_, and

k—1m - { n—1)
alk:n,m) = (—1)' {Z{_”({A——ljm+fj} if ke ll,...,! M—1} and

1=l

o a— M —1jm-1 , e oy
2k m) = (—1)"" JM{ Z (- 1) ({M— 1]m+f)} if £=M.

1=l

The following example illustrates the GCP.

Example 3.1. Consider I' = (N={1,.... 10},m = 3,@). Here the number of queue positions is M =
[10/3], =4 and %(10,3) = («(1; 10,3) = 28, «(2;10,3) = —B4, 2(3; 10,3) = 57, 2(4; 10,3) = —1). Thus, I
satisfies GCP if ¥je{1,..., 10}, 8, = (0(1),0;(2), 0,(3),0,(4)) € ® is such that 288,(1) —840,(2)+
570,(3) — 0,(4) = 0. Note that the coefficient vector x(10,3) = (28, —84,57,—1) is such that Ef__:]ll-ﬂtl[.k:
10, 3) =0.

From Definition 3.5 it is 3uite obvious that for a multiple machine queueing problem I, the coefficient
vector a(n,m) = {aik:n,m)},_, is such that

im{.’f:n,m] =Z":{—1;|P“(;:i) = (3.3)

k=1 =1
The first-order difference at queue position & (that is, A{k) = 0{k+ 1) — 0;(k)) represents the increase
in queueing cost for individual j if he is moved from kth queue position to (k + 1)th queue position. By
simplifying Eq. (3.2) using Af,(k) we get
M-1

z(k;n,m)AD (k) =0, (3.4)
5 _

k=1

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 257

where the partial sum coefficient vector z{n, m) = {:I[J'r:n,m]l]-';‘:]1 is such that z{k;n,m) = Zf1 x{ryn,m) for

all ke {l1,.... M —1}. From the mathematical identity 3, (—1)* (;) = {—1)’(‘2; 1) it follows that
ooy
z(kin,m) = (—11""" (ﬂfn -) forall ke {1,..., M — 1} (see Tomescu., 1985).

Theorem 3.1. A multiple machine queueing problem I' = (N, m, @) i first best implementable only if it sat-
isfies the GCP.

Before proving Theorem 3.1, a lemma due to Walker (1980) is stated below. Consider two profiles
B=(0,..., 0)and & = (,..., (). Define for SC N, a type 0,(8) =0, if j &5 and 8,(5) = & if j € 8.
Thus for each § C N, we have a state I(8) = (#,(5),..., LS. '

Lemma 3.1. 4 :.'riuf!eph-' machine queweing problem I' = (N.m, @) is first best implementable only if for ail
pairs (0.0) €@ x @, ¥ (-1)"c@s)=0."?

By adding the Groves—Clarke transfer of all individuals and setting it to zero we get (n— 1]| 0) =
Y en¥i(0_ ;) (see Holmstrdm (1977) for a more general result). Thus, for all (0.0 eB®" x @,

3 ""'cmqu ==L 3 v Daen (=1 Ply(8_,(8)) = 0 (see Walker, 1980).

Proof of Theorem 3.1. Consider a multiple machine queueing problem I' = (N, m, ®). We start with a given
type 8, for individual 1 in the interior of the domain and construct #_, and . Then we apply Lemma 3.1
due to Walker (1980) to derive the result. Consider individual 1 and any announcement (0, = ((h{1),...,
Bk, (M) € ©. Given f);, we consider two states ! = (0,,0,,..., 0,) and 0 =(&,..., &) of the
following type: forallk = 1,.. ., M— 1, Athi{k) < AD(k) < A (k) forall j = {2,..., n—1}and D;{J'f]l =H,
for all j&€ N. Therefore, & = (n.1,..., n) for all j€N which implies that AT (k) =0 for all k€
il M — 1}. Note that this sort of construction is possible due to Assumptions 1 and 3. Consider any
two queue positions k and k + 1 and any two individuals j and j + 1 with types @, and 0, ,, respectively.
Mote that from the construction of 0, on the one hand, it follows that if individual j gets the kth position
and (f+ 1)th individual gets the (k + 1)th position, then the costs for these two positions add up to
{0:{k) + ;1 (k + 1)}. If, on the other hand, the positions of j and (j + 1) are interchanged then the costs
add up to {0;(k + 1) + 0:.1() }. The former cost strictl:,' exceeds the latter forall £ = 1,... . M — 1 since, by
construction, A (k) < Al (k) for all f = 1,...n — 1. Thus, the queue that minimizes the aggregate cost
requires that, ¢}, () < a?(f) forall j = 1,. .., n — 1. In other words, a}(fl) = [(n+1—4)/m], forall jeN.
MNow consider proﬁleq ﬂf 8 = ({5,..., 0,(8)) where 0,(S) = 0, if j ES and 0,(8) = fJ" if j €8, Observe
that from the arguments applied to find the efficient queue in ';l:ate il it follows that if j, ! g,}‘ Sand j < [, then
ai(0(5)) < a;(0(8)). Again, given any S C N and § # ¢, o;(((S)) < ;(8(5)) for all (s, j) € § x N — 5. This
is because, for any given queue position k< {1.... ., M — 1}, the incremental loss of any individual j & §
(that is, Ad(k)) is strictly more than that of any individual s € §. Note that for all queues o*(f#}{5)), sat-
isfying (1) a;(0(8)) <a:(0(S)) for all (s, /) €S xN—S and (2) a;(8(S)) <a;(0(S)) for all (j,I)eN-
8= N-—8, j< [are efficient since the cost of all individuals s € § are identical.

We now consider the sum 3o x (—1)°'C(0(5)). We break this sum in three parts in the follomng way: (i)

it Srenes (1DF0(700), () Syon Tsonges (—110,(3(0(3))) and (i) Sien_yy) (-1 01700,
__]{S:I:I:I. We consider each of these parts separately in the next three paragraphs.

*Here [X] denotes the cardinality of X,

258 M. Mitra ! European Journal of Operational Research 165 (2005) 251266

We first consider part (i). Consider an individual j e N with j# 1. Let F; = {p:p = j} be the set of
individuals with the higher ranking index than j. Consider all sets & such that; & § and there are x number
of individuals from the set P, and [S| —x numbﬁr of m-:iw:duals from the set N — {P; U }. The queue
position of individual j for all such § is a;(0(S)) = [(m + l—j—x ,-’m]+ By collecting all such sets 5, that is,
by considering the coefficient of the term {[{n +1—j—x fm] ,in the sum ¥ . (-1 1Ple(o(s)) we get

x n_l
("7) Sroxcinn (-1)". Note tha
=

(-1 = JZ{—H’(J"; 1) —(1+(=1)Y"'=0 sincej#1.

TCN—{PL) r=il

Therefore, themeﬂﬁcientofs term ! {[{n +1—j—x)/m|,) is zero for all j(5 1) and for all x{ < |P|). Thus,

Eia Lsenges (—1)" 0:(a3(0(8))) =
We now mnﬁnder part {u} Dbser'ue that by adding the cost of an individual j € N for all §(C N) such

that_.rES we get

> =31y (5) Ji= -+ =0

JESCN

Therefore, 3~ . Y gonjes | — 1)“'[}{ (0(8))) = 0.
Since the sums in (i) and (ii) are bﬂ[h zero, it follows that the sum Zs _— (—=1)"'C(0(S)) is equal to the
sum in (iii), that .qz.‘.,\ (-1 oS = Tscn-1n { (—1)¥10, (a}(8,,0_,(8))). For individual 1, with type 0,

we get o) (0,0, —[n—|.5'| fm|, forall § C N — 11}. Therefore,
S =00 (00,0, (3)) = Y [> (- 1)“(”; 1)} 0:(k). (3.5)
FCN-{1} k=1 | xfln—x)fm], =k

Simplifying condition (3.5) and then by applying Lemma 3.1 we get Zf_] alfrn m)l (k) =0
Since the selection of individual 1, for the above construction, was arbitrary, the result follows. O

_ Note that the GCP is an additional restriction on the class of domains © satisfying Assumptions 1-3. Let
0 ©) be the class of domains satisfying the GCP and Assumptions 1-3.

Proposition 3.1. If the monber of machines m is even or if the number of queue positions M = [n/m|,_ = 2, then

5.
there is no first best implementable nudtiple machine queucing problem I' = (N, m, ®) such that © € ©.

Proof. If the number of machines m is even then for all ke {1,...,M — 1}, (—11™' = —1 because km is
also even. From Assumption 1, it follows that for all #; = (0,(1),..., 0,(M)) € @, Al{k) =0 for all
kefl ... M —1}. By substituting (— 1™ ' = —1 and &U k) =0 in (3.4) we get A(k) =0 for all
ke{l,....i M —1}. Hence, the GCP implies that #,(1) =--- = 0;(M) for all §, = (#,(1),..., 0(M) O

and we have a violation of Assumption 3.

If M =2, then GCP implies 2(1;n,m)0;(1) + 2(2;n,m)0;(2) = 0 for all #;, = (0,(1),0,(2))
dition (3.3) implies «(1l;n,m)+ a(2;n,m) = (. Therefore, the GCP implies that ;1)
0, =(0,(1),0,(2)) € 0. This again is a violation of Assumption 3. [

II“—'

£ @ and con-
#:2) for all

So far we have imposed restrictions on individual preferences. The next property is a restriction on group
preferences.

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 259

Definition 3.6. A multiple machine queueing problem I' = {N,m. @) satisfies the General Independence
Property (or GIP)if for all pairs (7, 1) € N x N, j # [, all pairs of cost vectors (0, 8,) € © x O are such that
one of the following two conditions holds:

1. A0,(k) = AD,(k) for allk € {1,2,....M — 1}
2. A (k) < AO,(k) for all k € {1,2,... .M — 1}.

The GIP for a multiple machine queueing problem [implies that if for any pair of individuals
N eNxN, j#/, the respective cost 'LﬁC[DI‘*? 8; =(#(1),..., 0(M)e® and 0, =(M(1),...,
f,(M)) € © are such that there existsa k€ {1,....} = 1} such that Al {Jl]l = Al k), then A8 (k) = A, (k)
for all ke {1,...,! M — 1}. The relationship between the GCP and the GIP is captured in the next prop-
osition.

Proposition 32. For I' = (N.m.®) with M =3, GCP= GIP.

Proof. Consider any multiple machine queueing problem I' = (N, m, ®) such that M = 3 and © satisfies the
GCP. Consider 8, = (f,(1),0,(2),0,(3)) and 0, = (0,(1),8,(2),0,(3)) for individuals j and [respectively.
Since © satisfies the GCP, from condition (3.4) we know that ={1;n, m A1) 4+ 2(2; 0, m)AL(2) = 0 for all
i € {j,1}. Therefore, for all i € {7, I}, A#{1) = P. A0;{2) where P = — :dﬁj = 0. Thus, AD,(1) < (=)A0,(1)
if and only if AD;(2) < (=)AH,(2). O

Consider I' = (N ={1,..., 10},m = 3, @) of Example 3.1. Here the number of queue positions M = 4
and 2(10,3) = (28, -84, 57, —1). Consider individuals j and [with costs , = (1,3,4,4) € @ and @, =
(1,2,3,31) € ® respectively. Observe that for i€ {j. [}, Z: Ll 10, EJHQH 0. However, Af(1) =
2> A1) =1 and Af;3) =0 < Ath(3) = 28. Therefore, the GIP is not satisfied Hence jor T,
GCP =+ GIP.

Let I' represent the class of multiple machine queueing problems with odd number of machines and with
at least three queue positions and satisfying the GCP, the GIP and Assumptions 1-3. Therefore, a multiple
machine queueing problem T = (N, m, ®) belongs to I' if ©@(C ©) is a domain satisfying the GCP, the GIP
and Assumptions 1-3. We now derive the efficient rule for any multiple machine queueing problem
T = (N.m. Q) e I'. Before doing that we give qume more relevant notations and deﬁmmm Con-
sider I' = (N, m, Elj For a state 0 € @, deﬁne 0:(0) = [l € N —{j} such that either Ik {1,...,: -1}
and {Af(k) = AD{E)} or YhE {1,2,..., -1}, {&U,qﬂj Afi(k) and I < j}. Let R;() = 1+|Q,{L']I|{E
T n}) be the rank of individual j in -.:.:m:). Observe that the way we have specified the ranking, there is
no possibility of a tie in the ranking of different individuals in any given state. Therefore, £,(/) measures the
rank of individual jin state 0 = (0,,...,). Using this definition of ranking we state and prove an efficient
rule (that is, a single-valued selection from the efficiency correspondence) for I' = (N.m, @) € I'.

Proposition 3.3, Consider I' = (N,m, @) € . For all # € ©", let o*(0) be the quewe such that a;{f) =
[RA D) /m|, for all j € N. The quewe o* () = (a;(0), ..., (1)) is efficient.

For any state 0 = (i, ..., 0,) € @, the queue o*(f) = (1] (- R (0], defined in Proposition 3.3, is
obtained in the following way: the individuals having rank | to m get the first position, the individuals
having rank m+ 1 to 2m get the second position and this goes on till the individuals having rank
mM—214+1 tom{M —1) get the (M — 1)th position and finally the remaining individual(s) having rank
higher than m({M — 1) get the Mth position.

2ol M. Mitra ! European Journal of Operational Research 165 (2005) 251266

Proof of Proposition 3.3, Consider a state ! = (0,,..., e 0" and any queue 7. We define a sequence s(a)
as an ordering of the jobs obtained from o by placing the jobs in the first position up to first m slots, the jobs
in the second position in the following m slots and so on. * For a sequence s(a), let j,{ € N be neighbors
with [in front of j, that is s,{/) = s.(/)+ 1. If] and j switches their position (by keeping the position of all
other jobs in the sequence wunchanged), then the total cost changes by the amount
Dig g i =Cla:) — Cla; 1), We can have two types of switch-one that leaves the queue positions
unaltered and one where the queue position of only the neighbors in question (that is, f and j) change.
Therefore,

Dic. o') = 0 ifo=o(ie.o=m="kforsome ke {l,....M}),
(@,0'38) = AD;(k) — AD,(k) if o+ & (ie. ;= o, + | and o, = k for some k # M).

Given that the domain © satisfies the GIP, from D(g, ¢’; 1) it follows that switching / and j is weakly cost
reducing if and only if AD;(k) = AD(k) forall k € {1,..., M — 1}. Observe that the queue o*(f7) in state { is
such that if R;(() < RB,(f) then (a) Af;(k) = Ady(k) for all & = {1,..., .M — 1} and (b) &}(t)) < (). Hence
for s{e*(f)), it is not possible to find neighbors for whom switching is cost reducing. This means that a'()
is efficient in state (. Since the selection of ! € @ was arbitrary, the result follows. O

Proposition 3.3 shows that finding an efficient queue is quite transparent if I € I'. Observe that for
T €T, the relative ranking of any two individuals (7, [), for some given costs 0; and 0, respectively, is
independent of the costs announced by all other individuals. Formally, if in state 0= (6, sy
R;(0) > R,(0) for some (j,/) e Nx N, j# I, then Ri(0,0,0,) > R(0,0,00) forall 0 , e 0"
]]eno& what determines the efficient queue is the ranking that each individual gem in a given slsate We now
argue that if one individual is eliminated from the queue then the relative ranking of all other individuals
remain unchanged. Before doing that we introduce some more relevant notations and definitions that
captures the idea of elimination of an individual from the queue in any given state. Define M" = [*~1] to be
the number of queue positions that remains in a multiple machine queueing problem with » jobs and m
machines after one individual (and hence one job) is eliminated from the quewe. Observe that M = M — 1 if
n=rm+ | wherer =2,3, ... and M' = M otherwise. Using the idea of ranking of individuals for I" € I, we
define Q;(t_, _[rE[\r—{_; 1} such that either k€ {1,.... M —1} and {&ﬂ{ o= ADK)Y o Yk €
{L,2,....M — 1}, {AB{k) = A0;(k) and i < j}|. Let R;(D_,) = 1 +|Q{f.i_,:||':E {1,...,n— 1}). Therefore, in

a state {4, R;(0_,) measures the rank of individual j in state @ by eliminating the cost vector }; of individual

I{# f)-

Remark 3.2. Consider any multiple machine queueing problem [~ satisfying the GIP but not the GCP such
that M’ = M — 1. Consider a state 0 = (0,,...,0) such that Afy (k) = Ads(k) forallke {1,.... M — 2} and
A (M —1) < Alb{M —1). Moreover, assume that £,({)) =n and R:((') = n— 1. Hence R\((}) = R:(1).
Observe, that for all e N —{1,2}, R0 ;) =n -2 and R:(f ;) =n — 1 because Al(k) = Ath(£) for all
ke{l,....M -2} and 1< 2. Therefore, R (0)) > R:(1) and for all i e N—{1,2}, R0 ;) < R(0 ;).
Therefore, for any multipk machine queuweing problem [I' satisfying the GIP but not the GCP, if
M' =M — 1, then the above construction shows that there exist cost vectors for which the relative ranking
of a pair of individuals can change if an individual outside the pair under consideration is eliminated from
the queue. It is not hard to verify that the construction specified above is the only type of construction that
can lead to such a rank reversal in a multiple machine queueing problem [I" satisfying the GIP when an
individual is eliminated. Moreover, such a rank reversal can take place only if A" = M — | and [I" fails to

* For example il there are only 2 machines and 4 jobs and jobs | and 2 are in (ront of machine | and jobs 3 and 4 are in front of
machine 2 (ie. il o =(g; = l.os =2 7 = .3y = 2]}, then s{s) = (1.3.2.4).

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 261

satisfy the GCP. If, a multiple machine queueing problem I' satisfies the GIP and the GCP and if
Alk) = Ay(k) forallk € {1,.... M — 2} then the GCP implies that A0,(M — 1) = Afh(M — 1). Therefore,
the construction that led to rank reversal is not possible for a multiple machine queueing problem that
satisfies the GCP. Hence, if a multiple machine queueing problem [satisfies both the GCP and the GIP,
then the relative ranking of any pair of individuals with any given pair of cost vectors remain unchanged if
some other individual is eliminated from the queue. More formally, if T’ € T, then we obtain the following
relationship between R;(0) and R;{(0_,). For all(j,/) e N x N, j# [and for all § £ @°,

Ri(8) if £;(0) < R0,
RAQ-,) = {Rj{ﬂj — 1 if R(0) > RAD).

Using Remark 3.2 we derive the sufficiency condition under which a multiple machine queueing problem
I' e T is first best implementable.

Theorem 3.2. A multiple machine guewcing problem T € T s first best implementable.

We first state and prove a lemma that will be used in proving Theorem 3.2,

Lemma 3.2. A multiple machine queweing problem I' = (N, m, @) satisfies the GCP, if and only if for all
cost vector 0, € @, there exists a wnigue 1 % (n—1) vector Hy = {h;(1),... hi(n — 1) such that for all

pe{l..., nk,

Oi{lp/m],) = (n = p)hy(p) + (p — Dhj(p — 1). (3.6)
Proof. Consider a 0, ¢ @ for individual j € N that satisfies Rl al ks, m) (k) = (. Define a vector
H; = {hi(1),..., hi{n—1)} such that forall pe {1,..., n—1}

: - p—1ln—p-1) ;

Lin) = —1y7 Al . 3.7

1(p) Z{ it /m.) (3.7)
We prove Lemma 3.2 in two steps. In the first step it is proved, using (3.7), that for all pe {1,....n — 1},

condition (3.6) holds. In the next step we prove that for p = n, condition (3.6) holds only if’ I' satisfies the
GCP.

(n—p)hi(p) + (p — Dhy(p - 1)

P p=Da—p—1)
={n_P:|;';._1:| (r— 1 n—r) E.n";-[r-"fmhj

- —2n—p)!
+ (p— ljz {_1)!:-:—1%%{[!’,3!!‘!]4_)

=1
=1

oy e
=S {m v -y S B))+ 0,(p/)

r=]

= 0,([p/m],) (because (=17 + (1" = 0).

22 M. Mitra ! European Journal of Operational Research 165 (2005) 251266
For p= n,

5= + 6= Dho =1 = = D= = =) 1 D)

n—

o n—1)!
S e

=1 -
- {—H"““‘(’j:lljo{[rfmm

r=]

0lr/m],)

t "'.

M
V'S ks n,m)0,(k) + 0,(M) (from the GCP) = (M),

k=1

Therefore, the last step not only proves the necessity of the GCP but also guarantees that for 1, the
1 % (n—1) vector H; is unique.
We now prove the other part of Lemma 32, Observe that the sum Zf_1 alfern m)ihi(k) =

ZMLJ{—IIIP_I(;:I) ([p/m].). Therefore,
>t (071 Joim)

=1

=2{—13”"() (6= ph(p) + (p— D= 1)
={n—1j{f{—1)r1(;:f)hj{ﬂj+Z:{—1:IP_I(;:§)P!_,{F—1]}=ﬂ'. ul

=1

Lemma 3.2 gives rise to a particular type of separability (as given by con-:iition (3.6)) that will be used in
deriving the explicit form of the transfer that first best implements any I' = {N, m, EI} el

Proof of Theorem 3.2. Consider the sum }_ . h;(R;(0_;)) in state 0 € @" for individual j € N. From the
GIP and Remark 3.2 we get '

D h(R(8)) = (n = R(O)h(R,(0)) + (R,(8) — 1)hy(R,(0) — 1)

| = 0{[R(0)/m].) (from condition (3.6) in Lemma 3.2).

Wo conai-:ior a Grouoq—{‘larke mechanism M = {7, 1) where the term independent of /s announcement

LU 13 h(Ry(0_;)). Then it follows that
Z;‘gwo =(n-1) Z SR8 =(n-1Y { PR } (n—1) 3 0,(1R;(0)/m].)
JEN JEN JEN 1#7 JEN
= (n—1)C(8).
Observe that the last step follows from the olﬁ:ionc:} ruke of Proposition 3.3, The last step implies that for all
e ©@", the sum of transfers ZJENFJ{ -1+ 3, Hi(0_)=0 0

Observe that from Theorems 3.1 and 3.2 and from Proposition 3.2 it follows that a sudtiple machine

gueweing problem satisfving A1-A3 and with three machines is first best implementable i and only i it savisfies
the GCP.

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 263
4. Separable cost multiple machine queneing problems

In this section we first define a class of multiple machine queueing problems with separable cost and then
verify under what conditions these problems are first best implementable. The following conditions describe
a typical separable cost multiple machine queueing problem.

1. Define a real number # > 0. Given 0 > 0, the cost parameter or type of an individual belongs to the inter-
val [0,0]. Moreover, there exists a function f: {1 ..., M} — R such that f(k) = f{k—1) for all
ke {2M} and f(k*) = f(k* —ljforatleaqtuneﬂ €{2,....M}.

2. 0(k) = j'{ ()i for all je N, forallk e {1,2,... 2 M} and for all EJ‘ € [0,1].

For a separable cost multiple machine queueing problem, the cost of each individual for each position is
multiplicatively separated into two parts. The first part is a function f that depends on the queue position.
Observe that the functional form [is assumed to be identical for all individuals j € N. Moreover, we as-
sume that f is common knowledge. The second part which is a non-negative number); represents the type
(or cost parameter) of an individual that belong to the interval [0, #]. In this set up a type vector of indi-

vidual j € N is given by 0; = (#,{1) = f(1)0;,..., M) = FiM)0;). Therefore, from now on we will write (7,
as the cost parameter or type of an individual. The cost parameter #; € [0,0] for all j € N is private
information. Finally, & = (), ..., fl,) € [0, 0" represents a state of the world or a profile. It is important to

observe that the domain @ = (f, [0, #]) of any separable cost multiple machine queueing problem satisfies
Assumptions 1-3.

In this framework the set of individuals N, m(> 1) number of machines and @ = (. [0.1]]) define the
multiple machine separable cost queveing problem I = (N, m, @), We will completely characterize the class
of first best implementable multiple machine separable cost queueing problems. We start by showing that
these problems satisfy the GIP.

Proposition 44. A multiple machine separable cost guencing problem I' = (N, m, ©) satisfies the GIP.

Proof. Consider any pair (7. /) € N x N, j # [, with cost parameters f; and), respectively. It is obvious that

either t; = 0, arf f,{[!, Since fik+ 1) } f'{ o) forall ke 1.4 — 1}, it is also obvmuq that if 0; = t,,
then {f(k+ 1) —f(£)}0; = {}"Jl+1 }Drforallﬂe{l ,,,,,, —1} Therefore, A0;(k) = {f{k+1)—
iV, = &ﬂ,{ﬂj = {jqﬂ +1) }ﬂr ﬁ}r allk g {1,...,] — 1}. Similarly, if 0; < 8, then ﬂﬂ (k) < Aby(k)
for allk € {1,....: -1} Thuq it follows that I’ {I.\.m,@} satisfies the G]P. [

The next two remarks follow trivially from the discussion of the GCP in the previous section.

Remark 4.3. A multipke machine separable cost queueing problem I' = (N, m, ©) satisfies the GCP if

M
> alkin m)f (k) = 0. (4.8)
k=1
Using Af{k) = ik + 1) — fk) and simplifying equation (4.8) we get
M-1
> zlksn,m)Af (k) =0, (4.9)

k=1

where z(k;n,m) = 3, alrin,m) = (—1)"" (km —1)

Remark 4.4. From condition (3.6) it follows that I' = {N, m. @) satisfies the GCP, if and only if there exists
a unique vector H = {h(1),..., fin—1)} such that for all p e {1,..., n},

204 M. Mitra ! European Journal of Operational Research 165 (2005) 251266

flp/m),) = (n—p)h(p)+ (p— h(p - 1), (4.10)

where hip) = Yo, (-1 Egns £ (lr/ml,)
The next result completely characterizes the class of first best implementable multiple machine separable
cost queueing prohlems.

Proposition 4.5. A nudtiple machine separable cost queucing problem T' = (N, m,©) ix first best imple-
mentable i and only if the cost function satisfies the GCP.

The necessity part of Proposition 3.1 is similar to that of Theorem 3.1 and the sufficiency part is similar
to Theorem 3.2. Therefore, we omit the proof of this proposition.

It is easy to verify that Proposition 3.1 is also true for separable cost queueing problems. Therefore, all
mudtiple machine separable cost gueweing problems with either (1) even number of machines or (2) two gueue
positions are not first best implemeniable. Let U(8)(C ') be the class of multiple machine separable cost
queueing problems where m is odd and n > 2m and let I''{C I'(8)) be the class of first best implementable
multiple machine separable cost queueing problems. The next proposition proves the existence of I™.

Proposition 4.6. There exivis I e T[S such that I e T,

Proof. Consider 19 = (N,m,0° = (*,[0,0])) € I'(S) with odd number of queue positions M and with f* of

3
the following form: (1) =¢c 20 and AfME) = Mk+1)— Mk =1 ;ﬂ _'1) for all k€ {1,...,
— 1}. We will prove that T = {N,m,{f",[{},ﬁlj} eI by shuwing that /" satisfies condition (4.9). Ob-
serve first that z(ka,mAfYK) = (=17 for all ke {l,...,. -1} Therefure by substituting

Dk n,mIALK) = (=1 ‘in:he Ieft hand side of condition (4.9) weget Ty —1 1 Since both m and

M are odd, it is obvious that, (=1 = 0. Thus, ' = (N, m, (%, [0,8))}
Similarly, consider I'* = (N, m, & = (f*,[0,0])) € I'(S) with even number of queue positions M and

with f* of the following form: (1) = c 2 0 and AfS(K) = f(k+ 1) —/™{k) = 1/(.{ 1) for all £ £
o — M — 2} and_;‘“{M— 1) = (M) (that is, ﬂ_]‘"{: 1) = 0). Observe that z(k; n, m)AF(K) = (—1)™"
forallke {1,.... — 2} and z(M — 1 n,m)Af (M]l 0. Therefore, by substituting z{&; n, m)A () for
all ke{l,...,: —1} in the left hand side of condition (49) we get S (—1)""'. Here

e (=1 = nbmmem is odd and M is even. Thus, I* e I*. O

Observe that given I C I'(8) C T, it follows from Proposition 4.6 that there exist first best imple-
mentable multiple machine gueweing problems in I'. We conclude this section with an important observation.

Observation 1. Given the co-efficient vector x(n,m), it follows that if m is odd, M =25+ 1 and
n=mx (2g+1) (where g € {1,2,...}) then sllinm) =a2g+2—knm) for all ke {1,..., g}. Using
this result and by substituting «{g + l;n,m) = —2%]_, a(k:n,m) in Eq. (3.2) we get

o
> alkin,m){0,(k) + 0;(2q + 2 — k) — 20,(q + 1)} = 0. (4.11)
k=1

Observe that if #,(k) = kB, forallk € {1,....! M}, then condition (4. 11] hold-; Thus, if m is odd, n = mM, M

is also odd and £'(k) = J'L_,I’m all k, then I = (N,m,®' = (,[0,0)))

M. Mitra ! Eurapean Journal of Operational Research {65 (2005) 251266 265
5. Concluding remarks

We have obiained the following results regarding the first best implementability of the class of multiple
machine queueing problems with domains satisfying Assumptions 1-3.

sk

. A multiple machine queueing problem is first best implementable only if it satisfies the GCP.
. If the number of machines is even or if there are only two queue positions, then a non-trivial multiple
machine queueing problem fails to satisfy the GCP and hence is not first best implementable.

3. If the number of machines m is odd and M = [n/m|, = 3 then a multiple machine queueing problem is
first best implementable if and only if it satisfies the GCP.

4. If the number of machines m is odd and M = [n/m|,_ = 4 then a multiple machine queueing problem is
first best implementable if it satisfies the GCP and the GIP.

5. For all n > 2m such that m is odd, there exists a non-trivial cost function for which a multiple machine
queueing problem is first best implementable.

6. Finally, if m is odd, the number of queue positions M = [n/m|, > 2 is also odd and n =m - M then a

multiple machine queueing problem with linear cost function is first best implementable.

[

Thus, first best implementability of a multiple machine gueueing problem depends heavily on the
number of machines and on the number of johs.

Acknowledgemenis

The author is grateful to Arunava Sen, Jeroen Suijs and two anonymous referees for their invaluable
advice. The author is thankful to Parikshit Ghosh and Suryapratim Banerjee for helpful discussions. The
author is also thankful to the seminar participants at the European Summer Symposium in Economic
Theory 2003 (held in Gerzensee, Switzerland). The author gratefully acknowledges the financial support
from the Indian Statistical Institute and from the Deutsche Forschungsgemeinschaft Graduiertenkolleg 629
at the University of Bonn. The author is solely responsible for the errors that may still remain.

References

Clarke, E.H., 1971, Multi-part pricing of public goods. Public Choice [, 17-33

Curiel, L, Pederzoli, G, Tijs, 5. 1989, Sequendng games. European Journal of Operational Research 40, 344351

Dudek, B.AL Panwalkar, 5., Smith, M., 973 Flow-shop sequendng problem with ordered processing time matrices. Management
Science 21, M4-549.

Dudek, B.AL Teuton Jr., O.F, 1964, Development of M -stapge decision rule for scheduling v jobs through 4 machines. Operations
Research 12, 471-497.

Green, 1., Laffont, L1, 1979 Incentives in Public Decision Making. North Holland Publication, Amsterdam.

Groves, T., 1973, Incentives in teams, Econometrica 41, 617-631.

Groves, T., Ledvard, 1.0, 1977, Some limitations of demand revealing processes. Public Choice 29, 107-124.

Groves, T., Loeb, M., 1975, Incentives and public inputs. Journal of Public Economics 4, 211-226.

Hamers, H., Klijn, F.. Suijs, 1, 1999, On the balancedness of multiple machine sequencing games. European Journal of Operational
Research 119, 678-691.

Helmstrom, B, 1977, On ineentives and control in organisation. Ph.D. Dissertation, Stanford Graduate School of Business,

Holmsirom, B., 1979, Groves' schemes on restricted domains, Econometrica 47, 1137-1 14,

Hurwice, L., 1975, On the Existence of Allocation Syvstems Whose Manipulative Nash Equilibria are Pareto Optimal, Mimeo.,
University of Minnesola.

Hurwice, L., Walker, M., 1990, On the peneric non-optimality of dominant strategy allocation mechanisms: A peneral theorem that
includes pure exchange economies. Econometrica 58, 683-T04.

266 M. Mitra ! European Journad of Operational Research 165 (2005 | 251266

Krabbenborg, M., Potters, J., van den Nowweland, A, 1992 Flow-shops with a dominant machine. European Journal of Operational
Research 62, 3846,

Liu, L.. Tian, G., 1999, A characterization of the existence of optimal dominant strategy mechanisms, Review of Economic Design 4,
H5-218.

Mitra, M., 2001, Mechanism design in queveing problems. Economic Theory 17, 277-305.

Mitra, M., Sen, A, 198 Dominant Strategy Implementation of First Best Public Decisions, Mimee., Indian Statstcal Institute, Mew
[Drelhi.

Suijs, 1., 1996, On incentive compaltibility and budget balancedness in public decision making. Economic Design 2, 193208,

Tian, G., 1996, On the existence of optimal truth-dominant mechanisms, Economics Letters 53, [7-24.

Tomescu, 1., 1985, Problems in Combinatorics and Graph Theory {Melter, BLA L, Trans) Wilev-Interscience, Mew York.

Walker, M., 1980, On the non-existence of dominant strategy mechanisms for making optimal public decisions. Fconometrica 48,
15211540

	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg

