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Abstract. We study the abstract geometric notion of unitaries in a Banach space charac-
terized in terms of the equivalence of the norm determined by the state space.

1. Introduction

Motivated by the recent work of Akemann and Weaver [2] we introduce and study an abstract
geometric notion of a unitary in a Banach space defined as those unit vectors whose state space
spans the dual. Because of the important role unitaries play in C∗-algebras, it is natural to
study the properties of unitaries in general Banach spaces and to decide to what extent they
determine the geometry and structure of such spaces.

We first compare unitaries with the well-studied notion of a vertex; the notions coincide for
C∗-algebras. For Banach spaces we show that a vertex is a unitary if and only if the norm
determined by the state space is an equivalent norm. As a consequence we conclude that in a
complex Banach algebra the unit is a unitary and, just as in the case of C∗-algebras, unitaries
remain unitaries in the bidual. We study the behavior of unitaries and the related notions of
strongly extreme points and of weak*-unitaries in various setting including C∗-algebras, von
Neumann algebras and L1-preduals.

In Section 4 we consider unitaries in the space C(X, E) of vector-valued continuous functions
on a compact set X. If E is a function algebra then f ∈ C(X, E) is a unitary if and only if f(x)
is a unitary for all x ∈ X. However, in general, a unitary-valued function need not be a unitary.
This seems to be the first non-trivial example where a continuous function is point-wise in an
extremal class but does not globally belong to that class.

In the last section of the paper we consider, for a Banach space E and T ∈ L(E), the relation
between T ∗ being a unitary in L(E∗) and T being a unitary in L(E).

2. Definitions and notations

Our notation and terminology is standard as found in [3] or [6]. For a Banach space E we
denote by E1 its closed unit ball and by ∂eE1 the set of extreme points of E1. A point e0 ∈ E1

is called strongly extreme (or a point of local uniform convexity [3]) if for all sequences {xn}n≥1,
{yn}n≥1 in E1 such that (xn + yn)/2 → e0 we have xn − yn → 0. With each norm one element

e0 ∈ E1 we associate its state space Se0

def= {e∗ ∈ E∗
1 : e∗(e0) = 1}; we call e0 a vertex [3] if

spanSe0 is weak*-dense in E∗ and a unitary if spanSe0 = E∗. We will denote by U(E) the set
of unitaries of E.

2000 Mathematics Subject Classification. Primary 46B20. Version : September 29, 2003.
Key words and phrases. Unitaries, Banach algebras, extreme points.
Research of the authors was partially supported by grant NO : DST/INT/US(NSF-RP041)/2000 from the

DST and grant NO : 1102386 from the NSF.

1



2 BANDYOPADHYAY, JAROSZ, AND RAO

Definition 2.1. For a norm one element e0 ∈ E1 we define a seminorm pe0 on E by

pe0(e) = sup{|e∗(e)| : e∗ ∈ Se0}.

It is clear that pe0 ≤ ‖ · ‖ and that pe0 is a norm if and only if e0 is a vertex. In some cases
it may be useful to restrict the set of functionals to a norming subspace W of E∗. A closed
subspace W of E∗ is a norming subspace if ‖e‖ = sup{e∗(e) : e∗ ∈ W1} for all e ∈ E. We put
SW

e0

def= {e∗ ∈ W1 : e∗(e0) = 1} and write pW
e0

in place of pe0 , assuming that pW
e0

= 0 if SW
e0

= ∅.
We call a norm one element e0 ∈ E1 a W -unitary if SW

e0
spans W . In particular, if E = F ∗, we

call an F -unitary a weak*-unitary.
We denote by T the unit circle in C, by L(E, F ) the spaces of all linear continuous maps

between Banach spaces E and F and by K(E, F ) the subspace consisting of compact maps;
we write L(E) in place of L(E, E). C(X, E) stands for the spaces of all continuous E-valued
functions defined on a compact Hausdorff space X. The constant function f(x) ≡ 1 on X
will be denoted by 1. By a uniform algebra A on X we mean a closed subalgebra of C(X)
which separates the points of X and contains the constant functions; ChA denotes the Choquet
boundary of A [4]. A Banach space E such that E∗ is isometric to L1(µ) for some measure µ
is called an L1-predual space. We refer to [7, Chapter 7] for examples and properties of such
spaces.

3. The geometry of unitaries

A norm one element e0 of a Banach space E is a unitary if and only if any element e∗ of E∗

is a linear combination of finitely many elements of Se0 :

e∗ = α1e
∗
1 + . . . + αne∗n, for some e∗j ∈ Se0 .

It is an obvious but useful observation that the number of elements of Se0 taken in these linear
combinations can always be limited to two in the real case and to four in the complex case.
Indeed, since Se0 is a convex set, we can group together all of the terms with the same sign. If
e0 is a unitary (and only in this case) we can define another norm on the dual space:

p∗e0
(e∗)

def
= inf

{∑
|αj| : e∗ = α1e

∗
1 + . . . + αne∗n, for some e∗j ∈ Se0

}
, for e∗ ∈ E∗.

A close look at the proof of Theorem 2 in [2] shows that in a C∗-algebra the notions of unitary
and vertex coincide.

Theorem 3.1. For a norm one element e0 of a Banach space E the following conditions are
equivalent :

(1) e0 ∈ E is a unitary,
(2) pe0 is a complete norm on E,
(3) pe0 is equivalent with the original norm of E,
(4) p∗e0

is a complete norm on E∗,
(5) p∗e0

is equivalent with the original norm of E∗,

Proof. The equivalences 2 ⇐⇒ 3 and 4 ⇐⇒ 5 are obvious by the Open Mapping Theorem.
1 =⇒ 5. Assume e0 is a unitary and put S def= conv(Se0 ∪ −Se0 ∪ iSe0 ∪ −iSe0 ). Since

spanSe0 = E∗ we have E∗ =
⋃∞

n=1 nS, as the set S is weak*-compact and hence norm closed, it
follows from the Baire Category Theorem that there is a constant K > 0 such that E∗

1 ⊆ KS.
Hence

p∗e0
(e∗) ≤ K for any e∗ ∈ E∗

1 .
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5 =⇒ 3. For any e∗ ∈ E∗ and e ∈ E,

|e∗(e)| ≤ p∗e0
(e∗)pe0(e)

and hence, if p∗e0
(e∗) ≤ K for any e∗ ∈ E∗

1 , then pe0(e) ≥ 1
K
‖e‖.

3 =⇒ 1. Assume that the norms pe0 and ‖ · ‖ are equivalent and define J : E → C(Se0)
by J(e)(e∗) = e∗(e). Notice that J is an isomorphism from E onto a Banach space J(E) and
J(e0) = 1. Fix e∗ ∈ E∗ and define a continuous linear functional Λ on J(E) by Λ = e∗ ◦ J−1.
Let µ be a regular Borel measure on Se0 representing a norm preserving extension of Λ to
C(Se0) and let µ = µ1 − µ2 + iµ3 − iµ4, where µj’s are non-negative measures. Observe that
the normalized measures µj/‖µj‖ are probability measures, and hence, are in the state space of
1 ∈ C(Se0). Let Λj be the functional on J(E) represented by µj/‖µj‖. Since Se0 is convex and
weak*-closed, it follows that Λj ◦ J ∈ Se0 , so e∗ ∈ spanSe0 . �

Corollary 3.2. Let W be a norming subspace of E∗. Then any W -unitary e0 of E is a unitary.
In particular, any weak*-unitary e∗0 of E∗ is a unitary.

Proof. Exactly as in the proof of Theorem 3.1, putting S = conv(SW
e0

∪−SW
e0

∪iSW
e0

∪−iSW
e0

) and
using the Category argument, it follows that if e0 ∈ E is a W -unitary then there is a constant
K > 0 such that W1 ⊆ KS. Since W is a norming subspace, pW

e0
is thus an equivalent norm on

E. Since pW
e0

≤ pe0 , by Theorem 3.1, e0 is a unitary. �

It should be noticed that in the case of a von Neumann algebra A weak*-unitaries and
unitaries coincide [2, Theorem 3] and, as the following proposition shows, for any unitary u,
pA∗

u = pu, where A∗ is the predual of A. For this result we use the notations of [2] and write Su

for SA∗
u .

Proposition 3.3. Let A be a von Neumann algebra with e as the identity and let u ∈ A be a
unitary. Then Su is weak*-dense in Su.

Proof. Since the isometry a → u∗a is also a weak*-homeomorphism it is enough to prove the
statement for u = e. Furthermore, using the Gelfand-Naimark representation of A as a weak*-
closed subalgebra of L(H) we may assume that u = I ∈ L(H).

SI is the weak*-closed convex hull of the functionals of the form x ⊗ y, where x, y are unit
vectors in H satisfying 〈x, y〉 = 1 (see e.g., [8]). Since any such functional is in SI , the later
space is weak*-dense in SI . �

Notice that the concept of the unitary refers not only to a particular point but also to a
specific space containing that point—if e0 ∈ E ⊆ F then e0 may be a unitary in E and at the
same time may not even be an extreme point in F . For example if E is a proper M -summand
in F none of the points of E remain extreme in F . On the other hand it is easy to see that if
e0 is a unitary in F it must be a unitary in E. The next corollary shows that in the case of
F = E∗∗ we have both implications.

Corollary 3.4. Let e0 be a norm one element of a Banach space E. Then e0 is a unitary in E
if and only if it is a unitary in E∗∗.

Proof. If e0 ∈ E is a unitary in E∗∗ then by the above remark it is a unitary in E. Conversely,
if e0 is a unitary in E, then by the definition it is a weak*-unitary in E∗∗. By Corollary 3.2 it
is a unitary in E∗∗. �

Corollary 3.5. Let A be a complex Banach algebra with identity e0. Then e0, as well as any
invertible element x such that ‖x‖ = 1 = ‖x−1‖ are unitaries.
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Proof. As pe0 coincides with the numerical radius function V of [3], by [3, page 34, Theorem 1],
we get that for a complex Banach algebra epe0(·) ≥ ‖ ·‖. Thus e0 is a unitary. Since a 7−→ ax−1

is a surjective isometry of A that maps x to e0 the other conclusion follows. �

By Theorem 3.1 pe0 and ‖ · ‖ are equivalent if and only if e0 is a unitary. It is easy to notice
that these norms are equal if and only if E∗

1 = acow∗
(Se0 ), where aco denotes the absolutely

convex hull. By Milman’s Theorem this happens if and only if |e∗(e0)| = 1 for any e∗ ∈ ∂eE
∗
1 .

This is indeed the case for E = C(X), or more generally if E is an L1-predual space—see
Theorem 3.12. Such situation is however rather rare; for example, it happens for a C∗-algebra
A if and only if A is commutative [9, page 277].

Corollary 3.6. Any unitary is a strongly extreme point.

Proof. Assume x, y, e0 ∈ E1 are such that ‖(x + y)/2 − e0‖ ≤ ε and let e∗ ∈ Se0 . We have

|(e∗(x) − 1) + (e∗(y) − 1)|
2

=
∣∣∣∣e∗

(
x + y

2
− e0

)∣∣∣∣ ≤ ε,

and
|e∗(x)| ≤ 1, |e∗(y)| ≤ 1.

Hence
−2ε ≤ Re (e∗(x) − 1) ≤ 0, −2ε ≤ Re (e∗(y) − 1) ≤ 0,

and
max{|Im(e∗(x) − 1)| , |Im (e∗(y) − 1)|} ≤

√
2 |Re (e∗(x) − 1)| ≤ 2

√
ε,

so
|e∗(x) − e∗(y)| ≤ 2

√
ε,

and consequently
pe0(x − y) ≤ 2

√
ε.

Hence, if e0 is a unitary and (xn + yn)/2 → e0 we get xn − yn → 0. �

The next example shows that a vertex need not be strongly extreme and hence need not be
a unitary.

Example 3.7. Let E be the space of all convergent sequences with the norm defined by

‖(an)∞n=1‖ = sup
{

1
n
‖(a1, an)‖1 +

(
1 − 1

n

)
‖(a1, an)‖∞ : n = 2, 3, . . .

}
,

where
‖(x, y)‖1 = |x|+ |y| and ‖(x, y)‖∞ = max{|x|, |y|}.

Notice that
1
2

sup {|an| : n = 2, 3, . . .} ≤ ‖(an)∞n=1‖ ≤ |a1|+ 2 sup{|an| : n = 2, 3, . . .}

so, E is isomorphic with c0 and E∗ is isomorphic with `1. Let {en} be the standard Schauder
basis of E and {e∗n} the standard Schauder basis of E∗, that is e∗n((an)∞n=1) = an. It is easy to
check that the following functionals are in Se1 :

(3.1) e∗1, e
∗
1 +

1
2
e∗2, . . . , e

∗
1 +

1
n

e∗n, . . . ,

and the span of these functionals is weak*-dense in E∗, so e1 is a vertex. The point e1 is however
not strongly extreme since

‖e1 ± en‖ =
2
n

+
(

1 − 1
n

)
→ 1 while ‖en‖ = 1.
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The next easy example shows that the set of unitaries may not be closed even in a finite
dimensional Banach space.

Example 3.8. Put

K =
{(

cos
π

n
, η sin

π

n

)
∈ R2 : n = 2, 3, . . . ; η ∈ {−1, 1}

}

and let E be the two dimensional real Banach space whose unit ball is B = aco(K). Notice that
B has an “edge” at each point of K so all these points are unitaries. On the other hand the
limit point (1, 0) has only a single supporting functional and consequently is not a unitary.

We now consider the notion of a strongly vertex point and examine its relation to a unitary.
We say that e0 ∈ E1 is a strongly vertex point [1] if there exists D ⊆ E1 such that

E1 = aco(D ∪ {e0}) and e0 /∈ aco(D).

Lemma 3.9. If e0 ∈ E1 is a strongly vertex point then e0 is a unitary as well as a strongly
exposed point of E1.

Proof. Assume e∗ ∈ ∂E∗
1 separates e0 from aco(D), that is

‖e∗‖ = 1 = e∗(e0) > sup{|e∗(e)| : e ∈ D} def= ρ

Let 0 < r < (1−ρ)/2. If ‖x∗−e∗‖ ≤ r then |x∗(e0)| = ‖x∗‖ [1] and consequently x∗/‖x∗‖ ∈ Se0 .
That is, e0 is a unitary.

Claim : e∗ strongly exposes e0.
Let ε > 0. We will show that there exists η > 0 such that if x ∈ E1 and Re(e∗)(x) > 1 − η,

then ‖x− e0‖ ≤ ε. Since E1 = aco(D ∪ {e0}), x = λte0 + (1− λ)z for some λ ∈ [0, 1], t ∈ T and
z ∈ aco(D). Then Re(e∗)(x) = λ Re(t) + (1 − λ) Re(e∗)(z) > 1 − η. If 0 < η < (1 − ρ), then
Re(e∗)(z) < 1 − η, and hence, Re(t) > 1 − η. Since |t| = 1, |1 − t|2 = 2 − 2 Re(t)2 < 2η(2 − η).
It also follows that

1 − η < λ Re(t) + (1 − λ) Re(e∗)(z) < λ + (1 − λ)ρ

and hence (1 − λ) < η/((1 − ρ). Therefore

‖x − e0‖ ≤ ‖x − te0‖ + |1 − t| = ‖(1 − λ)(z − te0)‖ + |1 − t| <
2η

1 − ρ
+

√
2η(2 − η) < ε

for sufficiently small η. �

Remark 3.10. Let E be a Banach space and e ∈ E be a nonzero element. For any 0 < r < ‖e‖,
if we define B = aco(rE1 ∪ {e0}), then B is the unit ball of an equivalent norm on E in which
e becomes a strongly vertex point.

This shows in particular that in any Banach space E, given any nonzero element e, E has
an equivalent renorming in which e becomes a unitary.

Even though the notions of vertex and unitary coincide in the case of a C∗-algebra, we show
that a C∗-algebra has no strongly vertex points.

Theorem 3.11. Let A be a unital complex C∗-algebra such that A 6= C. Then A has no strongly
vertex points.

Proof. Let A be a C∗-algebra with identity e. Suppose u ∈ A is a strongly vertex point. By
Lemma 3.9, u is a unitary. From [2, Theorem 2], we get that uu∗ = u∗u = e. By passing
through the isometry a → au∗ of A, if necessary, we may assume that u = e.

By spectral theory, there exists a nontrivial commutative C∗-subalgebra B of A containing
e. By the Gelfand-Naimark Theorem [3], B is C∗-algebra isomorphic to C(X) for a compact
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set X with at least two distinct points. Let us identify B with C(X). Then e corresponds to
the function 1. Let p, q ∈ X be distinct and fix f ∈ C(X) such that 0 ≤ f ≤ 1, f(p) = 1 and
f(q) = 0. Suppose e = 1 is a strongly vertex point. Let D ⊆ A1 be a closed absolutely convex
set such that e /∈ D and A1 = aco(D ∪ {e}). Since e /∈ D, there exists s ∈ T, s 6= 1, such that
f + s(e − f) /∈ D. But f + s(e − f) ∈ A1, so

(3.2) f + s(e − f) = λte + (1 − λ)z

for some λ ∈ (0, 1], t ∈ T and z ∈ D as in Lemma 3.9. Note this implies z ∈ B. Evaluating
(3.2) at p, we get 1 = λt + (1 − λ)z(p), so that, t = 1. Now, evaluating (3.2) at q, we get
s = λ + (1 − λ)z(q). Since s 6= 1 and |z(q)| ≤ 1, this is impossible. �

We thank the referee for this version of the above theorem.
We now show that if an L1-predual space E satisfies the analogue of the Russo-Dye theorem

[3], that is, if E1 is the closed convex hull of unitaries, then E is a C(X) space. Note that
by Corollary 3.6, the hypothesis implies in particular that E1 is the closed convex hull of its
strongly extreme points.

Theorem 3.12. Let E be an L1-predual space. If E = span(U), then E is isometric to C(X)
for some compact Hausdorff space X.

Proof. Let e0 ∈ ∂eE1. Let Se0 be equipped with the weak*-topology. It follows from [9, Theorem
1.5] that the map Ψ : E → A(Se0 ) defined by Ψ(e)(e∗) = e∗(e) is an onto isometry such that
Ψ(e0) = 1. Thus by Theorem 3.1 every extreme point of E1 is a unitary. Moreover, since
∂eA(Se0 )∗1 = T∂eSe0 [7, Section 20] (Se0 is embedded in A(Se0)∗1 by the canonical evaluation
map), we get |e∗(e0)| = 1 for any e∗ ∈ ∂eE

∗
1 .

We show that ∂eSe0 is a weak*-closed set. Let {e∗α} ⊆ ∂eSe0 be a net such that e∗α → e∗ in
the weak*-topology. Suppose e∗ = (e∗1 + e∗2)/2 for e∗i ∈ Se0 . For any e ∈ ∂eE1, by the previous
paragraph, |e∗(e)| = 1. Thus e∗(e) = e∗1(e) = e∗2(e). Since E = span(U), we get e∗ = e∗1 = e∗2.
Therefore ∂eSe0 is a closed set.

Since E is a L1-predual, when considered over the real scalar field, the space A(Se0 )∗ is a
lattice. Thus Se0 is a Choquet simplex [7]. Since ∂eSe0 is closed, a → a|∂eSe0

is an onto isometry
between A(Se0 ) and C(∂eSe0 ). Thus E is isometric to C(∂eSe0 ). �

We now give an example of a Banach algebra E with involution which is not a C∗-algebra in
which an analogue of the Russo-Dye Theorem holds.

Example 3.13. Let E = `1(Z) with convolution as multiplication and e0 = δ(0) as the identity.
For n ≥ 1, by taking D

def= {δ(m) : m 6= n}, it is easy to see that δ(n) is a strongly vertex point.
Since any point of ∂eE1 is of the form tδ(n) for some n ∈ Z and t ∈ T, we get that any extreme
point is a strongly vertex point, and hence a unitary. Clearly E1 = conv(U), and E = span(U).

4. Unitaries in C(X, E) spaces

Theorem 4.1. Let E be a Banach space and X a compact Hausdorff space. If f ∈ C(X, E)
is a unitary, then for all x ∈ X, f(x) is a unitary. Furthemore if p∗f (F ) ≤ K ‖F‖ for all
F ∈ C(X, E)∗ then p∗f(x) (e∗) ≤ K ‖e∗‖ for all x ∈ X and e∗ ∈ E∗.

Proof. Fix x ∈ X. Since the space C(X, E)∗ can be identified with the space of E∗-valued
regular Borel measures equipped with the total variation norm, P (F ) = F |{x} = δ(x)⊗ F ({x})
is a well-defined norm one projection. As in the case of scalar-valued measures, it is easy to
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check that

‖F‖ = ‖F |{x}‖ + ‖F − F |{x}‖, F ∈ C(X, E)∗,

‖Λ‖ = max{‖P ∗(Λ)‖, ‖Λ − P ∗(Λ)‖}, Λ ∈ C(X, E)∗∗.

If F ∈ Sf we get

1 = F (f) = F ({x})(f(x)) + (F − P (F ))(f)

≤ ‖P (F )‖‖f(x)‖+ ‖F − F |{x}‖ ≤ ‖P (F )‖+ ‖F − F |{x}‖ = 1,

so ‖F |{x}‖ = F ({x})(f(x)) 6= 0 whenever P (F ) 6= 0. Consequently

F ({x})
‖F ({x})‖

∈ Sf(x) if F ∈ Sf and F ({x}) 6= 0.

Let 0 6= e∗ ∈ E∗ and let δ(x) ⊗ e∗ ∈ C(X, E)∗ be defined by (δ(x) ⊗ e∗)(g) = e∗(g(x)). By
our hypothesis, δ(x) ⊗ e∗ =

∑
αiFi, where Fi ∈ Sf . Hence by evaluating at {x} we have

e∗ = P (δ(x) ⊗ e∗)({x}) =
∑

αiFi({x})

and all of αiFi({x}) are multiples of elements from Sf(x). Thus at least one of the terms
αiFi({x}) is nonzero and f(x) is a unitary in E. Furthermore ‖e∗‖ = ‖δ(x) ⊗ e∗‖ and∑

‖αiFi({x})‖ ≤
∑

‖αiFi‖ so the second part of the theorem follows. �

The crucial part of the above proof was the `1-decomposition of an arbitrary functional F
in C(X, E)∗ and the corresponding `∞ decomposition in the second dual. By Theorem 2.4.7
and Theorem 2.3.4 of [4], it can be seen that the same is true for the injective tensor product
A⊗ε E ⊆ C(X)⊗ε E ' C(X, E) of a uniform algebra A ⊆ C(X) and any point x in the Choquet
boundary ChA of that algebra. Thus we have a natural generalization of the last result.

Theorem 4.2. Let E be a Banach space and A a uniform algebra. If f ∈ (A⊗ε E) is a unitary
then for any x ∈ ChA, f(x) is a unitary.

We now obtain a converse to the previous theorem.

Theorem 4.3. Let E be a Banach space and A a uniform algebra on its Shilov boundary X. If
f ∈ A ⊗ε E is such that there exists K > 0 with pf(x)(e) ≥ 1

K ‖e‖ for all e ∈ E and all x in X,
then f is a unitary.

In particular, in each of the following cases f ∈ A ⊗ε E is a unitary if and only if f(x) is
a unitary for all x ∈ X : (i) f(X) is finite, in particular, (a) X is finite or (b) f is constant;
(ii) E is a C∗-algebra; (iii) E is a function algebra; (iv) E is a L1-predual; or (v) E is a L1(µ)
space.

Proof. Since Sf is a w*-closed face of (A ⊗ε E)∗1, Sf = cow∗
∂eSf and ∂eSf ⊆ ∂eC(X, E)∗1. It

follows that
∂eSf = {e∗ ⊗ δ(x) : x ∈ X, e∗ ∈ Sf(x)}

Therefore, for any g ∈ A ⊗ε E,

pf (g) = sup{|(e∗ ⊗ δ(x))(g)| : x ∈ X, e∗ ∈ Sf(x)}
= sup{|e∗(g(x))| : x ∈ X, e∗ ∈ Sf(x)}
= sup{pf(x)(g(x)) : x ∈ X} ≥ K‖g‖∞.

Hence, f is a unitary.
It follows from our remarks in Section 3 and from Theorem 4.2 that if E is as in cases (ii)–(iv),

then there exists K > 0 such that pu(e) ≥ 1
K ‖e‖ for all e ∈ E and u ∈ U(E). Note that even
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in the case of E = L1(µ), since extreme points of E1 are given by atoms of µ and as extreme
points of E∗

1 are of absolute value 1 a.e, any extreme point is a unitary and K = 1 works. �

We may notice that the above theorem would not be valid if we replaced unitary with vertex,
even in the scalar case. For example, a norm one element f of the disc algebra such that {x ∈ T :
|f(x)| = 1} has nonempty interior is a vertex but |f(x)| may not be equal to 1 on all of T, which
is the Choquet boundary of A.

The next example shows that in general a unitary-valued function need not be a unitary even
when E is finite dimensional.

Example 4.4. Put

L =
{(

cos
π

n
, sin

π

n

)
∈ R2 : n = 2, 3, . . .

}

and let E be the two dimensional real Banach space whose unit ball is W
def= aco(L). Our

Banach space is similar to that considered in Example 3.8—the unit ball W is identical with B
in the first and the third quadrants but in the second and the fourth one W coincides with the
`1-ball. So this time (1, 0) is a unitary; W still has an “edge” at each point of L and all these
points are unitaries. However the angles of W at the points (cos π

n , sin π
n ), n = 2, 3, . . . increase

and tend to π
2
, consequently these points are “less and less unitaries”, that is p∗(cos π

n ,sin π
n ) and

‖ · ‖ are “less and less equivalent”. More precisely

lim
n

sup
{
|e∗(0, 1)| : e∗ ∈ S(cos π

n
,sin π

n
)

}
= 0,

and hence

(4.1)
p∗(cos π

n ,sin π
n ) ((0, 1))

‖(0, 1)‖ = p∗(cos π
n ,sin π

n ) ((0, 1)) → ∞ as n → ∞.

Let X = N ∪ {∞} be one point compactification of the discrete set N, and put

f(n) =
{

(cos π
n
, sin π

n
) for n ∈ N

(1, 0) for n = ∞ .

For all n, including n = ∞, f(n) is a unitary; however, by (4.1) and Theorem 4.1, f ∈
C(X, E) = c(E) is not a unitary.

Arguments similar to Theorem 4.3 shows that if E1, E2, . . . , En are Banach spaces and E =
⊕∞Ek, then e = (ek) ∈ E with ‖e‖∞ = 1 is a unitary if and only if for all k, ek is a unitary in
Ek. While the necessity still holds for arbitrary `∞ sums, the above example shows that in `∞

sum of even a single E, there may be a vector that is not a unitary but each of its coordinates
is a unitary.

In the following proposition we show that any vertex-valued continuous function is a vertex.
Thus the above is yet another example of a vertex that is not a unitary.

Proposition 4.5. Let f ∈ C(X, E) be such that for all x in a dense subset X ′ of X, f(x) is a
vertex. Then f is a vertex.

Proof. It suffices to show that Sf separates points of C(X, E). Suppose g ∈ C(X, E) and g 6= 0.
Then, for some x ∈ X ′, g(x) 6= 0. Since f(x) is a vertex, there exists e∗ ∈ Sf(x) such that
e∗(g(x)) 6= 0. Note that δ(x) ⊗ e∗ ∈ Sf and (δ(x) ⊗ e∗)(g) = e∗(g(x)) 6= 0. �

We use this opportunity to present a short C∗-algebra proof of the following result of Grza̧ślewicz
[5, Theorem 1].
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Theorem 4.6. Let H be a Hilbert space and let f ∈ ∂eC(X,L(H))1. Then for all x ∈ X,
f(x) ∈ ∂eL(H)1.

Proof. In a unital C∗-algebra A

(4.2) f ∈ ∂eA1 ⇐⇒ (1 − ff∗)A(1 − f∗f) = 0

[10, Proposition 1.4.7]. Since, with the point-wise multiplication, C(X,L(H)) is a C∗-algebra,
we have (1 − ff∗)C(X,L(H))(1 − f∗f) = 0. Evaluating at 1 ⊗ L(H), we have for any x ∈ X,
(1 − f(x)f(x)∗)L(H)(1 − f(x)∗f(x)) = 0; using (4.2) again, we get f(x) ∈ ∂eL(H)1. �

5. Unitaries in spaces of operators

For a Banach space E, the map T 7−→ T ∗ is an isometry of L(E) onto the space Lw∗(E∗) of
weak*-continuous operators. Since surjective isometries preserve unitaries and, as noted before,
a unitary in a Banach space is automatically a unitary in a subspace that contains it we have

[T ∗ ∈ L(E∗) is a unitary] =⇒ [T ∗ ∈ Lw∗(E∗) is a unitary] ⇐⇒ [T ∈ L(E) is a unitary].

It is natural to ask whether the converse of the first implication is also true. The following
propositions provide a partial answer. We recall that a unitary is an extreme point.

Proposition 5.1. If T ∈ ∂eL(`1)1 then T ∗ is a unitary. If T ∈ ∂eL(`∞)1 then T is a unitary.

Proof. Assume T ∈ ∂eL(`1)1. Since the space L(`1) may be identified with ⊕∞`1, via R 7−→
(R(en))∞n=1, T (en) is an extreme point of `11 for any n ∈ N. Hence

(5.1) T (en) = αnej(n), for n ∈ N,

where |αn| = 1 and j : N → N. Notice that L(`∞) can be linearly embedded into the space of
bounded functions on ∂e`

∞
1 × N :

Φ(S)(u, n) = S(u)(en), for S ∈ L(`∞), u ∈ ∂e`
∞
1 , n ∈ N.

Since `∞1 = conv∂e`
∞
1 , Φ is an isometry. For S = T ∗, by (5.1) we get

|Φ(T ∗)(u, n)| = |T ∗(u)(en)| = |u(T (en))| = 1, for (u, n) ∈ ∂e`
∞
1 × N.

Thus Φ(T ∗) is a function of absolute value one and hence a unitary; consequently T ∗ is a
unitary.

If T ∈ ∂eL(`∞)1, using the identification of L(`∞) as ⊕∞(`∞)∗, we again get that T ∗(en) is an
extreme point of (`∞)∗1, so T ∗(en) = tδ(x) for some x ∈ β(N) and |t| = 1. Thus |Φ(T )(u, n)| =
|T ∗(en)(u)| = 1 as |u| = 1 on β(N). Hence T is a unitary. �

Since L(c0) can be isometrically embedded into L(`1) via the adjoint map, we get that for
every T ∈ ∂eL(c0)1, T ∗ is a unitary.

In general, it is not clear whether T ∗ is always a unitary even if T is compact. The following
proposition addresses a special case.

Proposition 5.2. Let E be a Banach space such that the set U(E∗) of unitaries on E∗ is closed.
For any unitary T ∈ K(E, C(X)), T ∗ is a vertex of K(C(X)∗, E∗).

Proof. Since K(E, C(X)) can be identified with C(X, E∗) via the map T → T ∗|X , we can
assume that T ' f ∈ C(X, E∗). Since T is a compact operator, T ∗ can also be identified with
a f̃ ∈ C(K, E∗) = C(K)⊗ε E∗ = C(X)∗∗ ⊗ε E∗ = K(C(X)∗, E∗) where K is the Stone space of
C(X)∗∗.

It is well-known that K is extremally disconnected and that X can be embedded as a discrete
set in K [7, Section 11] and there exists a retract φ : K → β(X) such that f̃ = f ◦φ (as f(X) is
a compact subset of E, f has a natural extension to β(X) still denoted by f). For any k ∈ K,
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f̃ (k) = f(φ(k)). Arguments similar to the ones given during the proof of Theorem 4.1 show
that f(X) ⊆ U . Since X is dense in β(X) and U is closed, f̃ (k) is a unitary and hence by
Proposition 4.5, f̃ is a vertex. �
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