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Abstract: The class of density based minimum distance estimators provide attractive

alternatives to the maximum likelihood estimator because several members of this class

have nice robustness properties while being �rst order eÆcient under the assumed model.

A helpful computational technique { similar to the iteratively reweighted least squares

used in robust regression { is introduced which makes these estimators computationally

much more feasible. This technique is much simpler than the Newton-Raphson (NR)

method to implement. The loss su�ered in the rate of convergence compared to the

NR method can be made to vanish in some exponential family situations by a little

modi�cation in the weight function { in which case the performance is comparable to the

NR method. For a large number of parameters the performance of this modi�ed version is

actually expected to be better than the NR method. In view of the widespread interest in

density based robust procedures, this modi�cation appears to be of great practical value.
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1 Introduction

Minimum distance estimation forms an important subclass of statistical methodol-

ogy. Originally, minimum distance functions were developed for goodness of �t purposes.

The popular distances in the early literature were the Kolmogorov-Smirnov distance, the

Cram�er-von Mises distance, as well as weighted versions and other variants of these. The

basic ingredient in this approach is the measurement of a distance between the data,

summarized by the empirical distribution function, and the hypothesized probability dis-

tribution. During the last few decades statisticians have become increasingly aware of

the potential of this approach in robust estimation. Much of the work in the minimum

distance area was pioneered by Wolfowitz (1953, 1954, 1957) in the mid �fties. There was

a revival of this line of research in the early eighties as evidenced by the works of Parr and

Schucany (1980), Boos (1981), Parr and DeWet (1981), Heathcote and Silvapulle (1981),

and others. Parr (1981) also provides an extensive bibliography of minimum distance es-

timation up to that point of time. Works of Wiens (1987), Hettmansperger et al. (1994),

�Ozturk (1994), �Ozturk and Hettmansperger (1997), and �Ozturk et al. (1999) have further

extended this line of research.

Many of the estimators proposed in the above papers have strong robustness properties

under model misspeci�cation. However their robustness is usually achieved at the cost

of �rst order eÆciency at the model. On the other hand, a second and a relatively more

modern branch of minimum distance estimation, that based on density based distances

(or divergences in general) has been shown to produce a large class of estimators which

combine attractive robustness properties will full asymptotic eÆciency. Beran (1977)

appears to be the �rst to use a density based distance for the purpose of robust inference.

He demonstrated that the minimum Hellinger distance estimators are simultaneously

robust and �rst order eÆcient. Other authors, such as Stather (1981), Tamura and

Boos (1986), Simpson (1987, 1989) Donoho and Liu (1988a,b), Eslinger and Woodward

(1991), Basu and Harris (1994), Cao, Cuevas and Fraiman (1995), Markatou (1996), Basu,

Sarkar and Vidyashankar (1997), and Basu and Basu (1998) have further investigated



related estimators. Lindsay (1994) introduced a class of minimum disparity estimators

and illustrated the geometry behind their robustness. These ideas were extended to

continuous models by Basu and Lindsay (1994). Also see Basu, Harris and Basu (1997)

for a comprehensive review of minimum disparity inference.

The density based minimum distance estimators (or minimum disparity estimators in

particular) provide attractive alternatives to the maximum likelihood estimator. However,

the de�ning equations of the minimum disparity estimators are usually nonlinear and

numerical methods have to be applied to solve them. The numerical diÆculty increases

greatly with the number of parameters. For example, to carry out the estimation of (�;�)

in a multidimensional normal model in d dimensions, there are p = d + d(d + 1)=2 =

d(d+ 3)=2 unknown parameters. Each step of Newton-Raphson requires (p+1)(p+ 2)=2

numerical integrations and the inversion of a p dimensional Hessian matrix.

In this paper we consider a method closely related to iteratively reweighted least

squares with the aim to reduce the numerical diÆculty described in the previous para-

graph. Our initial motivation came from the fact that the new method is vastly simpler to

program and, in the d dimensional normal, requires (p+2) numerical integrations and no

matrix inversion per step. Even for the case d = 3, the number of parameters is 9 and so

each Newton-Raphson step requires 55 numerical integrations and the inversion of a 9�9

matrix, while the new method requires only 11 numerical integrations per step. While the

price one might expect to pay for this is a decrease from quadratic to linear convergence,

our most striking �nding was that by a careful (but very simple) selection of weights, we

could make the method competitive in speed with Newton-Raphson even in the univariate

model, where p = 2. (A simple scalar adjustment makes the method quadratically conver-

gent when the data exactly �t the model.) Our theoretical calculations are substantiated

by several numerical investigations. We believe this paper demonstrates generally appli-

cable techniques for applying iterative reweighting algorithms in new problems and for

making them more eÆcient. In particular we expect the algorithm described here to be of

great practical use in view of the widespread interest in the minimum Hellinger distance

and related methods.



The rest of the paper is organized as follows: In Section 2, we provide a brief review

of minimum disparity estimation. The main contributions of the paper are presented in

Section 3, where we �rst develop the iteratively reweighted estimating equation (IREE)

algorithm in the spirit of iteratively reweighted least squares (IRLS) used in robust re-

gression, and then demonstrate that a simple re�nement can make the method comparable

in performance to the Newton-Raphson algorithm, while keeping the implementation sub-

stantially simpler. Some further issues including a second order analysis, some discussion

on the range of applicability of the method in small samples, and a weighted likelihood

modi�cation resulting from the IREE idea are discussed in Section 4. A small appendix

presents a step by step implementation of the algorithm.

2. Minimum Disparity Estimation

Let us briey review minimum disparity estimation leading up to the estimating equa-

tion that we will be concerned with. We start with the discrete model. Letm�(x) represent

the model density function indexed by an unknown � 2 
; without loss of generality let

the sample space be X = f0; 1; : : : ; g. Let d(x) represent the proportion of observations

in a sample of size n that have the value x. De�ne Æ(x) = d(x)=m�(x) � 1 to be the

Pearson residual at x. Then a general disparity measure � can be expressed in the form

�G(d;m�) =
X
x

G(Æ(x))m�(x) (2:1)

where G is a strictly convex, thrice di�erentiable function, with G(0) = 0. Minimization

of a disparity measure over the parameter space 
 generates the corresponding minimum

disparity estimator (MDE). For example G(Æ) = 2(
p
Æ + 1� 1)2 generates twice squared

Hellinger distance HD(d;m�) = 2
P
(d1=2(x)�m

1=2
� (x))2, G(Æ) = (e�Æ + Æ � 1) generates

the negative exponential disparity (Lindsay 1994; Basu, Sarkar and Vidyashankar 1997)

NED(d;m�) =
P
(e�Æ(x) + Æ(x) � 1)m�(x), and G(Æ) = (Æ + 1) log(Æ + 1) generates the

likelihood disparity

LD(d;m�) =
X

d(x) log[d(x)=m�(x)]: (2:2)

The last disparity is minimized by the maximum likelihood estimator of �.



For continuous models, one constructs a nonparametric density estimator and mini-

mizes its distance from the model density. Beran (1977) used a kernel density estimator.

Given the empirical distribution function F̂ (t) and a smooth kernel function k(x; t; h),

the kernel density estimate f � is given by

f �(x) =
Z
k(x; t; h)dF̂ (t):

The parameter h controls the smoothness of the corresponding density estimate. One

can then minimize an appropriate disparity
R
G(Æ�(x))m�(x)dx between f � and m�; the

smoothing parameter must tend to zero at the appropriate rate for the density estimator

f � to converge to m� in the limit. Beran (1977) used this approach to �nd the minimum

Hellinger distance estimate of � in continuous models. In this case Æ�(x) = f �(x)=m�(x)�
1, and we will refer to this approach as the \Beran approach"; a similar approach was

used by Basu, Sarkar and Vidyashankar (1997) for the negative exponential disparity.

In a departure from this approach, Basu and Lindsay (1994) integrated the model

with the same kernel to obtain a smoothed version of m�(x): Thus,

m�
�(x) =

Z
k(x; t; h)dM�(t);

where M� represents the distribution function corresponding to m�. In this case the

Pearson residual is de�ned as Æ�(x) = f �(x)=m�
�(x)�1. The minimum disparity estimators

are then obtained by minimizing �G(f
�; m�

�) =
R
G(Æ�(x))m�

�(x)dx: We will refer to this

approach as the \Basu-Lindsay" approach. In this case, one gets consistent estimates even

when the smoothing parameter h is kept �xed. (A more detailed discussion on the role

of the smoothing parameter is provided at the end of Section 3). In addition, Basu and

Lindsay have shown that in some cases, the kernel can be appropriately chosen so that

the minimum disparity estimators are asymptotically fully eÆcient, the most prominent

example being the normal kernel in the normal model.

To keep a clear focus here, we will concentrate on the Basu-Lindsay approach in

this paper, and present our development and illustrations with this approach in mind.

Our speci�c motivation in doing so is to demonstrate that the implementation of the



robust minimum disparity estimation scheme can be carried out eliminating the rate

of convergence concerns related to bandwidth selection. The results apply equally to

the Beran approach also; in the latter case, however, the experimenter has to take on

the additional issue of choosing the bandwidth properly from the point of view of the

convergence of densities, as discussed later in Section 3.

Under di�erentiability of the model, let r represent the gradient with respect to �.

Then, minimizing the disparity (2.1) is equivalent to solving the equation

X
A(Æ(x))rm�(x) = 0 (2:3)

where the function A(Æ) equals (1 + Æ)G0(Æ)� G(Æ). (For continuous models (2.3) has a

similar form involving integrals.) The properties of the function G allow us to center and

scale A so that A(0) = 0 and A0(0) = 1, without changing the estimating properties of the

disparity. This centered and scaled function A is called the residual adjustment function

(RAF ) of the disparity �G. Lindsay (1994) has shown how the theoretical properties of

the minimum disparity estimators are determined by the form of the RAF . The strict

convexity of G(�) guarantees that A(�) is strictly increasing on [�1;1).

For the likelihood disparity, in particular, A(Æ) = Æ and the estimating equation

becomes X
d(x)

rm�(x)

m�(x)
=
X

Æ(x)rm�(x) = 0: (2:4)

An analogous analysis is possible in continuous models for either of the two approaches.

3 A New Algorithm: Iteratively Reweighted Estimating Equa-

tion (IREE)

3.1 The Iteratively Reweighted Least Squares (IRLS)

We �rst discuss the IRLS and then develop the IREE along those lines. The IRLS

is an algorithm often used in determining the parameter estimates in robust regression.

It is generally attributed to Beaton and Tukey (1974), and is far simpler to apply than

the Newton-Raphson method. Holland and Welsch (1977), McCullagh and Nelder (1989)



and Green (1984) are good general references. Byrd and Pyne (1979) and Birch (1980)

discuss convergence results and Del Pino (1989) provides an extensive bibliography.

Consider the standard regression model

Yn�1 = Xn�p�p�1 + �n�1:

A robust estimate �̂ of � is found by minimizing

nX
i=1

�

 
Yi �Xi�

�

!
;

where � is a known or previously estimated scale parameter and Xi is the i-th row of X.

Let  represent the �rst derivative of �. Then �̂ satis�es the estimating equation

nX
i=1

xij 

 
Yi �Xi�̂

�

!
= 0; (3:1)

for j = 1; 2; : : : ; p: Here xij is the j-th component of Xi. Solving this set of equations

directly typically requires application of numerical methods.

De�ne the weight function w(r) as  (r)=r; the equation (3.1) can be written as

nX
i=1

 
Yi �Xi�̂

�

!
w

 
Yi �Xi�̂

�

!
xij = 0: (3:2)

One can solve (3.2) iteratively using a weighted least squares algorithm. Let W� be the

n�n diagonal matrix whose i-th diagonal element is w
�
Yi�Xi�

�

�
. Then for a given starting

value �0, the �rst iteration yields

�1 = (XTW�0X)�1XTW�0Y: (3:3)

This iteration scheme is continued till convergence is achieved. Note that if Y exactly �ts

the model, in the sense Y = X�̂, then (3.2) converges in one step.

In numerical analysis terms, the IRLS is using a �xed point method to solve (3.2).

This is a simple algorithm to determine the roots of the equation f(x) = 0 in some interval

(a; b). The conditions leading to its convergence are well known results of numerical

analysis; among others, Ralston and Rabinowitz (1978), and Ortega (1990) are sources of

detailed discussions on this subject.



However, since our development of the method described in this paper depends criti-

cally on the convergence mechanism of the �xed point algorithm, we briey describe the

same in the following. Consider a target value �, a starting value x(0), and a sequence

fx(i) : i = 1; 2; : : :g in IRp. We will say that x(i) converges linearly to � if for a starting

value suÆciently close to the target value there exists a constant c 2 (0; 1) such that

jjx(i+1) � �jj � cjjx(i) � �jj;

where jj � jj denotes the Euclidean norm. The sequence converges quadratically if for a

suÆciently close starting value there exists a constant c such that

jjx(i+1) � �jj � cjjx(i) � �jj2:

The �xed point iteration method can be used to determine the root of an equation f(x) =

0, when the equation has been written in the alternative form x = F (x). First consider the

univariate case, i.e. f is a real valued function of a single real variable x. Let x = F (x) be

the �xed point formulation of the equation f(x) = 0. In this case we start with an initial

approximation x(0) and at the i-th stage perform the next iteration as x(i+1) = F (x(i)).

Given that x(i) is the value at the i-th stage, we assume that F (x) has a continuous

derivative in the closed interval bounded by x(i) and the true solution �. Since � = F (�),

it follows that

x(i+1) � � = F (x(i))� F (�) = (x(i) � �)F 0(�(i));

where �(i) lies between x(i) and �. When the iteration converges x(i) ! � and F 0(�(i))!
F 0(�). Thus we get x(i+1) � � � (x(i) � �)F 0(�), and hence also

x(i) � � � A[F 0(�)]i;

for a constant A. Thus jF 0(�)j < 1 is a necessary condition for the iteration to be

asymptotically stable. When jF 0(�)j < 1, and the initial value is suÆciently close to

�, the sequence x(i) will converge to �. Since x(i+1) � � = (x(i) � �)F 0(�(i)); suÆcient

closeness of x(i) to � and the continuity of F 0(x) at � will mean that

jx(i+1) � �j � jF 0(�)j jx(i) � �j;



and so x(i) converges to � at a linear rate.

It is well known that if F 0(�) = 0, then it leads to quadratic convergence for the �xed

point method; in this case

(x(i+1) � �) = F (x(i))� F (�)

= (x(i) � �)F 0(�) + 1

2
(x(i) � �)2F 00(�(i))

= 1

2
(x(i) � �)2F 00(�(i))

where �(i) is between x(i+1) and �. So if the method converges, the error in x(i+1) tends

to be proportional to the square of the error in x(i).

The �xed point formulation xi = Fi(x1; x2; : : : ; xp); i = 1; : : : ; p, has to be solved

in the case where there are p unknowns. Let � be the true solution and let x(j) =

(x
(j)
1 ; : : : ; x(j)p ) be the value at the j-th stage. For a suitably close starting value x(0),

x(j)� � � Djz where D = F 0(�), F 0 being the Jacobian matrix, and z a constant vector.

Let �1; �2; : : : ; �p be the eigenvalues of D. The necessary condition for convergence now is

that the spectral radius of D given by �(D) = maxi j�ij is less than 1. When the method

converges, the rate of convergence is linear. However, as in the scalar case, the rate of

convergence becomes quadratic when the matrix D is a null matrix or a nilpotent matrix

(a matrix is nilpotent if some power of it is the null matrix).

3.2 The Standard IREE

Let us now examine how ideas similar to those in Section 3.1 can be used to solve for

the roots of the minimum disparity estimating equations. Assume that 
 2 IRp. We are

solving (in the Basu-Lindsay approach, for instance) the estimating equation

Z
A(Æ�(x))rm�

�(x)dx = 0:

Assuming that
R
m�

�(x)dx can be di�erentiated under the integral sign, we can write

Z
(A(Æ�(x))� �)m�

�(x)
rm�

�(x)

m�
�(x)

dx = 0

for any constant �, or Z
w(x)

rm�
�(x)

m�
�(x)

dx = 0; (3:4)



where

w(x) = (A(Æ�(x))� �)m�
�(x): (3:5)

This is a weighted version of the estimating equation of the likelihood disparity (see

equation 2.4), just as (3.2) is a weighted version of the ordinary least squares.

Let � = (�1; �2; : : : ; �p), and ri be the gradient with respect to �i. If m
�
�(x) is in the

exponential family, a relationship of the form

rim
�
�(x)

m�
�(x)

= K(�)[Si(x; �)� �i]; (3:6)

is often found to be true. It is always true if � represents the set of natural parameters.

The function Si may depend on �. Assuming that we have a relationship of the form

(3.6), we can write the i-th equation of (3.4) asZ
w(x)[Si(x; �)� �i]dx = 0;

or

�i =

R
w(x)Si(x; �)dxR

w(x)dx
; (3:7)

and hence we arrive at the �xed point equation � = F (�), where F is a function from IRp

to IRp. The iteration will be carried on till convergence to a speci�c level of tolerance is

reached. We will refer to this algorithm as the iteratively reweighted estimating equation

(IREE) algorithm.

This IREE method does not require the evaluation of the second partial derivatives,

and the inversion of the Hessian matrix. The discrete case is similar with integrals replaced

with summations. In Theorems 3.1 and 3.2, we will show how to improve the rate of

convergence of the algorithm when the functions Si are independent of �.

Since the RAF A(Æ) is increasing on [�1;1), the weights w(x) in (3.5) will be non-

negative if we use � = A(�1). We will refer to this case as the standard IREE (or IREE

with standard weights).

For the purpose of illustration, if m�
�(x) is the N(�; �2) density, then letting � =

(�1; �2) = (�; �2), the �xed point equations for solving �1 and �2 are

�i =

R
w(x)Si(x; �)dxR

w(x)dx
; i = 1; 2 (3:8)



where S1(x; �) = x, S2(x; �) = (x��1)2; this is easily veri�ed by di�erentiating log(m�
�(x)) =

constant� (log �2)=2�0:5(x��1)2=�2. Clearly, this simple technique can also be used to

solve for the parameter estimates in the Beran approach, in which case Æ�(x) (and hence

w(x)) is now a function of m�(x).

In the discrete case, the simplicity of the method is even more apparent. To illustrate

this point let us look at the one parameter exponential family. Let � = � be the mean

and V be the variance for the model m�. Then

rm�(x)

m�(x)
=

(x� �)

V

where r represents the gradient with respect to the mean value parameter. The IREE

will solve the equation X
w(x)

(
(x� �)

V

)
= 0

for �. This gives us the �xed point equation for � as

� = F (�) =

P
xw(x)P
w(x)

: (3:9)

In general, for a univariate parameter �,

F (�) =

P
S(x; �)w(x)P

w(x)
; (3:10)

if rm�=m� = K(�)[S(x; �)� �] for some functions K and S.

3.3 Comparison of the Standard IREE and the Newton-Raphson Method

We now apply the IREE (with standard weights) to the data set introduced in Beran

(1977) to �nd the minimum Hellinger distance estimates (MHDEs) of the parameters for

the Basu-Lindsay approach and repeat the calculations with the Newton-Raphson (NR)

method to compare the rate of convergence of the methods. All the computations in this

paper are performed using Splus on a SUN ULTRA 5 workstation at the Department of

Statistics, Pennsylvania State University; for all the examples convergence was declared

when the decrease in the disparity was less than 10�7.



The data set in Beran is a pseudo random sample of size 40 generated from N(0; 1).

Assuming the N(�; �2) model, we compute the MHDEs of � and �2 using the two

methods. We use a normal kernel with bandwidth h = 0:5. We do this for the orig-

inal sample as well as after replacing the 22nd observation (the value closest to 0)

by several contaminating values. The initial estimates were �̂(0) = medianfXig and

�̂(0) = (0:674)�1medianfjXi � �̂(0)jg, and the �nal results are given in Table 1. (Table

1 also has the corresponding numbers for another version of the IREE which we will

introduce later.)

As expected, the quadratically convergent NR algorithm converges substantially faster

than the IREE. However it is fair to say that the convergence of the standard IREE

is moderately quick. Note that while the IREE requires about 2.5 to 3.5 times the

number of steps needed for the Newton-Raphson method to converge, overall it only

requires just about double the number of numerical integrations or less compared to what

is necessary for the NR. This is because at each step the IREE requires only four

numerical integrations whereas the NR method requires six integrations involving much

more complex functions. In terms of convergence, each iteration of an NR step took

approximately 2.5 times the amount of time necessary for each iteration of the IREE

algorithm considered here (as well as the optimal IREE discussed in the next section) as

determined by the user time component of the proc.time() function of Splus.

As noted earlier, as the number of parameters grow, the number of extra numerical

integrations necessary for the NR method will grow rapidly. For the bivariate normal with

p = 5 parameters, the NR will require three times as many numerical integrations as the

IREE at every step. Even discounting programming diÆculty and matrix inversion, this

makes the standard IREE method competitive even at three times the number of steps.

Note also that the second derivative functions being integrated in the Newton-Raphson

case are far more complicated. In our bivariate normal example (reported later in Section

3.4), we observed that each Newton-Raphson iteration took about six times as much time

as taken by a single iteration of the optimal IREE.



3.4 Optimally Weighted IREE

It may be possible to have some amount of control over the convergence of the IREE.

For instance, being a linearly convergent algorithm, one could improve its rate of con-

vergence using the Aitken acceleration (eg. Ralston and Rabinowitz, 1978). However

a simpler and more e�ective modi�cation to the IREE is often possible in exponential

family models.

Consider a scalar parameter �, and let the weight function w of the IREE be as

de�ned in equation (3.5). The standard IREE is obtained by replacing � with A(�1).
This keeps the weights nonnegative. A nice improvement is possible if we allow negative

weights. As discussed in Section 3.1 the convergence of the �xed point algorithm applied

to the �xed point formulation (3.10) depends on the derivative of F (�) at the solution,

and the rate of convergence is quadratic if this derivative is zero. If S(x; �) = S(x) is

independent of �, direct di�erentiation of (3.10), combined with the result that at the

solution � = F (�) =
P
w(x)S(x)=

P
w(x), gives

F 0(�) =

P
w0(x)(S(x)� �)P

w(x)
(3:11)

at the solution, where w0(x) = @w(x)=@�. Thus the form of the data will determine

convergence properties. An important special case occurs when the data �t the model

well.

Theorem 3.1 Suppose that d(x) = m�(x), and rm�(x)=m�(x) = K(�)[S(x)��] where
S(x) is independent of �. Then for � = �1, we get F 0(�) = 0 at the solution and thus

the IREE converges at a quadratic rate.

Proof: In this case the derivative F 0(�) at the solution is as in equation (3.11). By

direct di�erentiation,

w0(x) =
@A(Æ(x))

@Æ(x)

@Æ(x)

@�
m�(x) + (A(Æ(x))� �)rm�(x);

and when d(x) = m�(x) we get Æ(x) = 0, A(Æ(x)) = 0, @A(Æ(x))=@Æ(x) = 1, and

@Æ(x)=@� = �rm�=m�, so that w0(x) = �(1 + �)rm�, which vanishes for � = �1.



As a result, the right hand side of equation (3.11) vanishes as well, implying F 0(�) = 0 at

the solution if � = �1. Thus, under the conditions of the theorem, the IREE converges

quadratically. 2

In particular for the mean value parameter � = � we get, at the solution,

F 0(�) =

P
w0(x)(x� �)P

w(x)
: (3:12)

For the conditions of the above theorem we get w(x) = ��m�(x) and

w0(x) = �f(x� �)

V
gm�(x)� �f(x� �)

V
gm�(x);

and replacing these values in (3.12) we obtain F 0(�) = 1 + 1=�. At � = �1, F 0(�) = 0.

We will refer to the case where � = �1 is used in the weight function w(x) as the

optimal IREE (or the IREE with optimal weights). We illustrate the performance of

the optimal IREE with an example. Taking m� to be the Poisson model with mean

parameter � and letting d(x) be the model vector for the Poisson(2) distribution we

minimize HD(d;m�) over �. By Fisher consistency, the �nal solution is � = 2, but we

are interested in checking how many steps the methods require to converge to the true

value when the iteration starts at some other starting value; in particular we used initial

� = 3. Table 2 gives the performance of the NR and the IREE (with standard as well as

optimal weights). The optimally weighted IREE is clearly far superior than the standard

IREE and comparable to the NR method (in fact it converges in 4 steps compared to

5 for the NR). Using the user time component of the proc.time() function of Splus, we

observed that the Newton-Raphson Algorithm and the optimal IREE algorithm took

50% and 36% of the time taken by the ordinary IREE to converge.

The same modi�cation to the IREE can be made in the continuous case in the Basu-

Lindsay approach if the smoothed modelm�
� is a one parameter exponential family model.

We will now replace d by f �, m� by m
�
�, and the summations by integrals. It can be easily

seen that it works for the Beran approach as well.

It will be most helpful if we can use the optimally weighted IREE in multiparameter

situations, as it is really more useful in such cases. The error in the i-th stage tends to



be described by Diz, where D is the Jacobian matrix at the solution and z is a �xed

vector. As described in Section 3.1, an enhancement in the rate of convergence of the

IREE similar to that in Theorem 3.1 can be obtained in this case if the weights can be

chosen so that the Jacobian matrix at the solution is a null matrix or a nilpotent matrix.

The following result is proved in the context of the Basu-Lindsay approach in continuous

models, but holds for discrete models and the Beran approach as well.

Theorem 3.2 Suppose that � is p-dimensional. Assume that the quantities Si(x; �)

used in equation (3.6) are independent of � for each i, i = 1; : : : ; p. In such cases the

IREE will converge quadratically at the model (f �(x) = m�
�(x)) if we use � = �1.

Proof: Equation (3.7) can now be represented as

�i =

R
w(x)Si(x)dxR
w(x)dx

;

where Si(x) depends on depend on x only. The ij-th element of the Jacobian matrix D

at the solution is R rjw(x)(Si(x)� �i)dxR
w(x)dx

;

where rj represents the gradient with respect to �j. As in the unidimensional case, the

above expression is 0 at the model when � = �1, and this is true for all i and j, making

the Jacobian matrix at the solution a null matrix. In this case, therefore, the optimally

weighted IREE will converge quadratically. 2

In the univariate normal model, for example, if we use the parameterization �1 =

E(X) and �2 = E(X2) (instead of the (�; �2) parameterization), we get S1(x) = x and

S2(x) = x2, so that the above Jacobian matrix is a null matrix at the model. However we

note that actual calculation shows that the Jacobian matrix is a null matrix at the model

for � = �1 in the (�; �2) parameterization also { in fact this is true for the multivariate

normal density for any dimension, showing that the condition Si(x; �) be independent of

� is not necessary, although suÆcient. We then employ the optimal IREE to determine

the MHDEs of the parameters (using the Basu-Lindsay approach) for Beran's data set,

already analyzed by the NR method and the standard IREE in Section 3.3. The results



are available in Table 1, which now gives a comprehensive picture of the comparison of

the three methods. The performance of the optimal IREE is superior or comparable to

the NR in terms of the number of numerical integrations necessary for each of these cases.

Some comments are necessary here about the small decrease in eÆciency of the optimal

IREE when X22 is in the range 3 to 5. Notice that the optimal IREE is a quadratically

convergent algorithm only at the model. In terms of real data examples this means that

the algorithm will perform best when the data roughly follow the pattern dictated by

the model. Thus for small positive values of X22 the algorithm performs well as this

observation, together with the rest of the data, is not inconsistent with a normal model. As

X22 starts getting larger the observation looks more and more like an outlier inconsistent

with the rest of the data and the normal model, and the optimal IREE requires more

steps to converge. In fact the actual minimum Hellinger distance estimators (not reported

here) also are a�ected most by the mid sized outlier like 3, 4 and 5. However when the

outlier becomes unacceptably large (say 6 or larger in this case) most robust minimum

disparity estimators would be able to clearly distinguish it as such and downweight it

almost entirely, and the performance of the estimator (as well as the IREE algorithm)

would now be governed primarily by the majority of the data (excluding the outlier) which

follow the model closely. For large outliers and robust initial estimates, the weights for

values of X around the outlier are practically equal to zero (either for optimal or standard

IREE), so that in extreme cases the algorithm works as if the outlier was simply not

there, and the algorithm converges quickly. Basu and Lindsay (1994, Figure 4) provide an

example which demonstrates that the e�ect of an outlier on theMHDE quickly dissipates

as the outlier becomes unusually large.

Next we present an example where the data were generated from a bivariate normal,

and compare the rates of convergence of the optimally weighted IREE and the Newton-

Raphson method. The pseudo random sample generated from the BV N(0; 0; 1; 1; 0) dis-

tribution is presented in Basu (1991). TheMHDEs of the �ve parameters of the bivariate

normal (two means, two variances and the covariance) were calculated using the Basu-

Lindsay approach, and the bivariate normal kernel.



The results are presented in Table 3. Two sets of starting values were used, the true

parameter values 0, 0, 1, 1, 0, and the UMV UEs of the parameters. It is quite apparent

that the optimal IREE is very competitive in terms of the number of steps necessary and

far superior in terms of the number of numerical integrations required. Roughly speaking,

the amount of code that had to be generated for the NR method was more than double

the amount necessary for the IREE.

However, the authors feel that even that does not accurately quantify the amount of

simplicity the IREE brings in to this optimization problem. It is not easy for the reader

to get a full idea of the comparison of the two methods without actually programming the

two methods for the same problem, but it is the view of the authors that in the bivariate

normal problem the NR is far worse than \twice as diÆcult" to program as the IREE,

given the coding, debugging and convergence obstacles. In particular the use of the user

time component of the proc.time() function in Splus showed that one iteration for the

Newton-Raphson algorithm in the bivariate normal example requires approximately six

times the computer processing time necessary for one iteration of the the optimal IREE

algorithm.

At this stage we must address the very important issue of selecting the bandwidth

h. The choice of the bandwidth is, by itself, an important problem in kernel density

estimation. This is because the smoothing introduces a bias in the density estimate, and

the bandwidth h must go to zero at the appropriate rate as a function of the sample size so

that this bias is asymptotically zero. In addition, there are other eÆciency considerations

which have to be addressed to generate an optimal rate for choosing the bandwidth.

However in the Basu-Lindsay approach { on which we have focused in this paper {

the proper rate of bandwidth selection for the convergence of the density estimate to the

true density is not a critical issue for the following reason: since here the model is also

smoothed, the bias that is introduced in the data due to smoothing, is also introduced

in the model through the same smoothing. Thus it is no longer necessary to let the

bandwidth go to zero. For any �xed bandwidth, the density estimate converges to a

biased version of the true density. However, because the model has been smoothed, it is



this biased version of the true density (assuming it is in the model) that is our target,

and not the true density itself. Thus, instead of adjusting the bandwidth to make the

density estimate converge to the true model density, we shift the model density to the

biased version to which the kernel density estimate converges for that �xed value of h.

This of course would lead to a problem if our aim was density estimation per se. But

our real aim is the estimation of the unknown parameter, and density estimation is just an

intermediate tool that we have to use. The smoothed version of the model is the function of

the same set of parameters as was the original model density. Thus parameter estimates

obtained by minimizing distances between the kernel density estimate and smoothed

versions of the model are consistent for �xed values of the smoothing parameter. Basu

and Lindsay (1994) provide details of this method of estimation. Avoiding the problem

of bandwidth selection was, in fact, one of the main motivations of their work.

Therefore, the choice of the smoothing parameter in the Basu-Lindsay approach does

not have to be dictated by the consideration that the density estimate must converge to

the true data generating density. The density estimate converges to the biased version

of the model density in any case. Instead, the choice of the smoothing parameter is

governed by the considerations of robustness and numerical stability of the algorithm.

In this connection note that as the value of h increases, the smoothing begins to have

a bigger impact over the resulting densities, and for very big values of the smoothing

parameter the resulting smoothed empirical and the smoothed model density begin to

look alike. As a result the A(Æ) values tend to get closer to 0, and the estimating equation

in (3.4) begins to look more and more like that of the likelihood disparity. Notice that if

Æ�(x) = 0 for all x, the estimating equation coincides with that of the likelihood disparity

and the IREE algorithm converges in one step.

Thus our expectation is that the estimators will get closer to the MLEs for larger h,

and the convergence will also become faster (which is also our observation in numerical

studies). In Table 3 one can see that the methods converge faster for larger h. What has

not been reported (but is true) is that the estimators also tend towards the MLE as h

increases. However with increasing h the robustness will get weaker. We take the view



that the choice of h should primarily be guided by robustness considerations. Algorithmic

considerations such as faster convergence are also important but should not be achieved

by compromising the robustness aspect. Choosing small values of h, however, should also

be done with caution. Extremely small values of h can make the smoothed empirical very

spiky unless the sample size is very large, possibly making the objective function a badly

behaved one. In general the choice of h should be related to the scale of the data, and

choosing h to be a constant multiple of an equivariant estimate of scale makes the method

location scale equivariant (Basu and Lindsay, 1994, Section 7.1). Typically one should

choose a robust initial estimate of scale when applying the above idea.

For the Beran approach, there is no equivalent smoothing in the model to compensate

for the extra smoothing in the data when the smoothing parameter increases. As a result

the estimates of the scale get inated when there is an increase in the smoothing parameter

(see Beran 1977, Table 1). In this case one could still choose the smoothing parameter

as cnsn, where sn is a robust estimate of scale, and cn is a sequence of real numbers

satisfying condition (v), Theorem 4 (Beran 1977). From the point of view of convergence

of densities, the optimal bandwith for univariate data is proportional to n�1=5 in the

sense of minimizing the mean integrated square error (see, for example, Silverman, 1986).

The books by Devroye and Gyor� (1985) and Devroye (1987) also provide many details

of these methods. Also see H�ardle et al. (1988), Marron (1989) and Hall and Marron

(1991), as well as Schimek (2000) for the most recent developments in this �eld. Cao and

Devroye (1996) provides another interesting approach. However, the guidelines provided

by the above authors must be combined with the robustness issue in these problems, and

precise recommendations of bandwidth selections in this respect will require an extensive

study beyond the scope of this paper.

4. Some Additional Issues

4.1 Second Order Analysis for the Optimally Weighted IREE

Let A2 = A00(0) represent the second derivative of the residual adjustment function



of the disparity evaluated at zero. Lindsay (1994) and Basu and Lindsay (1994) have

shown that this plays an important role in determining the theoretical properties of the

estimator. In this section we will show that the right hand side of equation (3.12) can be

expressed as a function of A2 when the residuals are small.

Direct di�erentiation of w(x) gives

w0(x) = �[A0(Æ(x))d(x)�m(x)(A(Æ(x))� �)]u(x)

where u(x) = rm(x)=m(x) is the score function. Replacing this in the numerator of the

right hand side of (3.12) gives us

X
w0(x)(x� �) = �f

X
A0(Æ(x))d(x)u(x)(x� �)

�
X

m(x)u(x)(x� �)[A(Æ(x))� �]g:

If the Æs are small, so that we can write A(Æ) �= Æ + A2Æ
2=2 and A0(Æ) �= 1 + A2Æ, the

above equation reduces to

X
w0(x)(x� �) = �fA2[

X
Æ2(x)u(x)(x� �)m(x)=2

+
X

Æ(x)u(x)(x� �)m(x)]g � (1 + �):

Similarly, X
w(x) =

X
m(x)A(Æ(x))� �

=
X

m(x)[Æ(x) + A2Æ
2(x)=2]� �

= A2[
X

m(x)Æ2(x)=2]� �:

Thus at � = �1, we have, by replacing the above expressions in (3.12)

F 0(�) =
A2

P
m(x)[Æ2(x)=2 + Æ(x)](x� �)2=V

A2

P
m(x)Æ2(x)=2 + 1

: (4:1)

For disparities which have A2 = 0, the optimally weighted IREE will behave like a

quadratically convergent algorithm for small residuals Æ. Even when A2 6= 0, as n!1,

the numerator of (4.1) converges to 0 and the denominator converges to 1, so that for

large n, the rate F 0(�) converges to the optimal value 0.



4.2 A Note of Caution in Using the IREE when the Sample Size is Small

In this section we will investigate the convergence of the IREE (as a function of �)

when the sample size is 1, and show that small samples may require conservative choice

of �. Letting Xobs represent the single observation, the discrete model version of equation

(3.4) equals

X
x6=Xobs

[A(�1)� �]rm(x) + [A(1=m(Xobs)� 1)� �]rm(Xobs) = 0: (4:2)

If � = A(�1), the above equation simpli�es to rm(Xobs) = 0 and convergence is obtained

in one step. Thus in this case, the standard weights � = A(�1) are optimal. Note that

the choice of the standard weights reduces the estimating equation in (4.2) to a sum of

over a single point.

Equation (3.9) can now be rewritten as

� = F (�) =

P
x[A(Æ(x))� �]m(x)P
[A(Æ(x))� �]m(x)

=
N

D
(4:3)

where

N = A(�1)[��Xobsm(Xobs)]� ��+Xobsm(Xobs)A(1=m(Xobs)� 1)

and

D = A(�1)[1�m(Xobs)]� �+m(Xobs)A(1=m(Xobs)� 1):

Direct di�erentiation of (4.3) gives us, at the true solution,

F 0(�) =
A(�1)� �

A(�1)� �+m(Xobs)[A(1=m(Xobs)� 1)� A(�1)] :

Since the quantity within square brackets in the denominator is necessarily positive, �

must satisfy

� < A(�1) + fm(X(obs))[A(1=m(Xobs)� 1)� A(�1)]g=2

to achieve convergence. The upper bound of the acceptable values of � may be smaller

than �1, and in such cases the IREE will not converge for � = �1. For small samples,



therefore, it may be safer to choose values of � closer to A(�1) to guarantee convergence.
This presents no diÆculty for disparity measures such as the Pearson's chi-square and the

negative exponential disparity where A(�1) > �1, so that � = �1 is in the safe range.

4.3 Weighted Likelihood Estimation

An investigation of this reweighting scheme leads to the development of an attrac-

tive estimation procedure in continuous models. The method has been studied in de-

tail by Markatou et al. (1998). Here we briey describe how it follows from the idea

of the iterative reweighting algorithm. In continuous models, solving the estimating

equation (3.4) requires numerical evaluation of integrals. Assume that the density es-

timate f �(x) > 0 over the whole sample space, as is the case when using a kernel like

the normal. Equation (3.4) then looks like
R
v(x)(rm�

�(x)=m
�
�(x))f

�(x)d(x) = 0 where

v(x) = (A(Æ(x)) � �)m�
�(x)=f

�(x): If we keep the v(�) part intact in the above equation

and replace the smoothed quantities elsewhere with their unsmoothed versions, we get

Z
v(x)

rm�(x)

m�(x)
dFn(x) =

1

n

nX
i=1

v(Xi)u�(Xi) = 0;

where Fn is the empirical distribution function, and u� is the likelihood score function.

Thus we have a sum over the observed data, rather than an integral over the entire

support. At the model the v(Xi)'s all converge to a constant as the sample size increases;

asymptotically the estimating equation behaves like the likelihood equation. However,

when the v(Xi)'s arise from robust disparities like the Hellinger distance, A(Æ) � Æ for

large positive Æ, and the v(�) function can severely downweight large outliers.

The same technique works for the Beran approach as well, although in this case one

has to let the bandwidth go to zero as n!1 to get consistency.

Appendix

Here we provide a step by guideline for the implementation of the algorithm in the con-

tinuous case with the Basu-Lindsay approach. The discrete case can be handled similarly.

The Beran approach will require additional considerations.



1. Decide on the parametric model. Although the method will work in other cases as

well, the biggest bene�t of the method will come when the likelihood score function

of the smoothed model admits of relationships of the form (3.6).

2. Create the smoothed empirical density by choosing an appropriate kernel function.

For the multivariate normal model, choose the multivariate normal kernel. Choose

the bandwidth to be a multiple of a robust equivariant scale estimator.

3. Choose a robust starting value �(0). For the univariate normal model one can choose

�̂(0) = medianfXig and �̂(0) = (0:674)�1medianfjXi � �̂(0)jg as the starting values.

4. Create the smoothed model density and construct the Pearson residuals Æ. Use the

same kernel applied to item 2 above to construct the smoothed model density.

5. Choose an appropriate RAF to create the weight functions. In this paper we have

based all our calculations on the Hellinger distance, but in practice any of several

robust disparities may be reasonable choices (see Lindsay 1994).

6. Choose the tuning parameter �. Notice that � = �1 is algorithmically optimal, but

conservative choices of � closer to A(�1) may be preferable for small sample sizes.

7. Create weights w(x) as in (3.5) and solve the corresponding weighted likelihood

estimating equation assuming the weights to be �xed constants to get the next

iterate.

8. Repeat steps 4-7 with the current iterate until an appropriate convergence criterion

has been satis�ed. The form of the RAF used and the tuning parameter � does not

change from iteration to iteration.
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Table 1: Comparison of the NR method and the IREE for Beran's data. The MHDEs
have been obtained by replacing X22 with several contaminating values

Original

sample
X22 = 2 X22 = 3 X22 = 4 X22 = 5 X22 = 10

No: of steps

in which the

NR converged

3 4 4 4 4 3

No: of steps

in which the

standard IREE

converged

10 10 12 14 13 9

No: of steps

in which the

opt: IREE

converged

4 4 5 6 5 3

Total no: of

num: int:

for the NR

19 25 25 25 25 19

Total no: of

num: int:

for the

standard IREE

41 41 49 57 53 37

Total no: of

num: int:

for the

opt: IREE

17 17 21 25 21 13



Table 2: Comparison of the NR method and the IREE at the Poisson model

Iteration # �: NR method �: standard IREE �: optimal IREE
0 3.000000 3.000000 3.000000
1 1.461136 2.449490 1.838822
2 1.901533 2.213364 1.996883
3 1.996449 2.103979 1.999999
4 1.999995 2.051331 2.000000
5 2.000000 2.025503 .
. . . .
10 . 2.000792 .
11 . 2.000396 .
12 . 2.000179 .



Table 3: Comparison of the NR method and the IREE for bivariate normal data.

Starting

values
h = 0:5 h = 0:6 h = 0:7 h = 0:8

True

Parameters

No: of steps

in which the

NR converged

6 5 5 5

True

Parameters

No: of steps

in which the

opt: IREE

converged

6 5 5 5

True

Parameters

Total no: of

num: int:

for the NR

127 106 106 106

True

Parameters

Total no: of

num: int:

for the

opt: IREE

43 36 36 36

UMV UEs

No: of steps

in which the

NR converged

3 3 3 3

UMV UEs

No: of steps

in which the

opt: IREE

converged

4 4 3 3

UMV UEs

Total no: of

num: int:

for the NR

64 64 64 64

UMV UEs

Total no: of

num: int:

for the

opt: IREE

29 29 22 22


