Largest empty rectangle among a point set

Jeet Chaudhuri,* Subhas C. Nandy,"* and Sandip Das"

A Alunnus Saftware Limited, INFINITY, Salt Lake GP. Calowtta W6 09, India
b Advanced Computing and Micmelectronics Unit, fndian Statistical fnstitute, 203 BT Road,
Caletta 700 108, frdia

Abstract

This work generalizes the classical problem of finding the largest empty rectangle among obstacles
in 2. Given a set P of n points, here a maximal empty rectangle (MER) is defined as a rectangle
of arbitrary orientation such that each of its four boundaries contain at least one member of P
and the interior of the rectangle is empty. We propose a very simple algorithm based on standard
data structure to locate a MER of largest area in the plane. The worst-case time complexity of our
algorithm is 0(n). Though the worst-case space complexity is O(n2), it reserves Gin log ) space
on an average to maintain the required data structure during the execution of the algorithm.

1. Introduction

The problem of recognizing all maximal empty axes-parallel (isothetic) rectangles,
commonly known as MER problem, was first introduced in [7]. Given a set P of n
points arbitranly distributed on a 2D plane, & MER 5 an isothetic empty reclangle
which 15 nol contaimed inside another suwch rectangle. The objective 15 o locate all
possible MERs. In [7], an algorithm for this problem is proposed with time complexity
G{min{nz, Rlogn)), where R denotng the number of reported MERs, may be f}{nz}l in
the worst case. Later, the tme complexity was improved to (MR + nlogn) [1,10]. The
algorithms in [2.3] locate the largest empty isothetic rectangle among a point set without
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inspecting all MERs, in ime € (n log” n) and @ (n log” n). respectively. The MER problem
i later generalized among a set of isothetic obstacles [8], and among a set of non-isothetic
obstacles [5.9].

In the context of our present work, we need to refer the followng problem. Given
a set of points P, the location of alllargest emply r-gon whose vertices coincide with
the members in P, 1 studied in [4]. Let p (P) denote the number of empty convex r-gons
whose vertices comeide with the members in P, The algorithm proposed in [4] runs in
Oy Py 4+ rye( P time if r 2 5; for r =3 and r =4, it requires O(p (P)) tme. It s
also shown that p(P) 2y Py — "«__.I}, which provides a lower bound on the number of
cmpty convex quadrilateral in terms of number of empty triangles. They have also shown
that the empty convex polygon having maximum number of sides and vertices coinciding
with the points in P can be obtained in @(p3(FP)) time. The expected valoe of y(P) s
shown to be G{nl}l.

This paper outlines a natural generalization of the classical MER problem. Given n
points on a 2D plane, a long standing open problem 1s o locate an emply mectangle
of maximum area. Thus the earlier restriction of isotheticity of the MERs is relaxed.
This type of problem often anses in different industrial applications where one needs
w cut a largest defect-free rectangular piece from a given metal sheet. We adopt a new
algorithmic paradigm, called grid rotation, o solve this problem. The worst-case time and
space complexities of our algorithm are O (n?) and O (n?), respectively. But, using 4 linked
list representation of sparse matrices, the space complexity can be reduced o Oinlogn)
O AN avVerage.

The paper 15 organized as follows. In Section 2, we describe some important propertics
of the point set which are helpful for finding the largest MER in arbitrary orientation.
We define the concept of prime MER (PMER), which mestnets our search space; we will
also give a tight combinatonal bound on the number of PMERS. In Sections 3 and 4, we
deseribe our grid rotation technigue for identifying the PMERs, and the complexity of our
proposed algorithm for this problem. The conclusions on this work and some related open
problems are discussed in Section 5.

2. Basic concepls

Let P ={p1, P2, Prt be a set of p arbitranly distributed points on a 2D region.
Without loss of generality, we may assume that all the points in P lie in the first guadrant
of the coordinate system. The coordinate of a point g 1s denoted by (x5, wi).

Definition 1. A rectangle (of arbitrary orientation) in the plane is called a MER if it is
emply, L.e., not containing any member of P, and no other empty rectangle can enclose iL
Thus, each of the four boundaries of 1 MER must contain at least one point of P.

If any of the boundanes of an empty rectangle does not contain a member of P, then
cither it 15 enclosed inside a MER or it is unbounded on that side. In the former case, it
is nota MER. In the latter case, such a MER is called unbounded on that particular side.
We are interested in locating the largest MER whose each of the four sides is bounded by
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Fig. |. Defimtion of 2 MER.

some pomt(s)in P, In omder to assign some order among the ponts in four sides of a MER,
consider a comer of the MER having maximum y-coordinate. The side (boundary) of the
MER incident to that corner and baving non-negative slope will be referred as its north
boundary. The other side adjacent to this corner is the east boundary. The south and west
boundaries are defined in an analogous manner. In Fig. 1, p;. p;. pe. and py appear on
north, west, south and east boundanes, respectively. Actually, this type of nomenclature
s misnomer in the context of non-axis-parallel rectangles, but it will help to explain our
me thod.

Lemma 1. Given a set of four poings in P, if they form a convex guadrilateral, it
may generate mfinite number of MERs having those four points on its four boundaries,
mwespectively

Prool. Let R be an emply convex quadrilateral whose vertices are p;, p;. pp. pe € P In
Fig. 2{a), an example is cited where it can not generate any MER at all. In Fig. 2(b),
we demonstrate a situation where MER is possible with those four points on its four
boundaries. Let B be such a MER. Now, if we rotate R (as shown in Fig. 20c)). it will
remain emply until we amive a sitsation where one of the edges of R contain at keast two
points of P ILis easy to understand that an infinite number of distinet MERs have been
generatled during this motation. [

Lemma 1 otells that, there may exist an infinite number of possible MERs with a set
of four points on its four boundaries, respectively. In order to reduce the search space

Fig. 2. Proof of Lemma .
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for locating the largest empty rectangle, we shall introduce the concept of prime MER

(PMER).

Lemma 2. Given a fived angle 8 and a pair of pointsy p;, pr € P, the MER whose north
and south boundaries contain p; and pg, respectively, and whose south boundary makes
an angle 8 with the x-axis, is unigue.

Let us consider a quadruple of four points {p;. p;. pe. pe} (€ P) such that they form
an empty convex quadrilateral. It s also observed that the rectangle with {p;. p;. pe. pi}
on its four boundaries, respectvely, and the south boundary making an angle 8 18
a MER. We motate the rectangle in both clockwise and anti-clockwise directions keeping
{pi.pj. pr. pet onits four boundaries until two points appear on any of the boundaries
of the mectangle. Let at those instances, the south boundary of the mectangle makes an
angle ¢ and v with the x-axis. Thos, if we rotate the rectangle beyond the angle &
(respectively 1 ) in elockwise (respectively anti-clockwise) direction, the rectangle will not
remain emply. We define the closed interval [¢h. | as the maximal interval with respect 1o
{pi.pi. Pk, pe}-

Lemma 3. For a given guadriple of four points {p;. p;. pi. pe} forming an empty convex
guadrilateral, the number of macimal intervals attached with this guadmple may be
greater than or equal to (),

Proof (by construction). In Fig. 2{a), an example is shown where a gquadrople of four
points is attached with no maximal interval. In order o show that a guadruple of four
points is attached with more than one maximal intervals, let us consider Fig. 2(d).
Here, a rectungle (marked as By ) s shown with p;, pi. g pe onits four boundaries,
respectively, and its south boundary makes an angle ¢ with the positive direction of the
x-axis. Note that, its west side also wuches another point p'. So, the rectangle defined
by {pi. pj.pe. pe} is emply if is south boundary makes an angle greater than ¢ with
the x-axis. MNow, we start rotating the rectangle until its north boundary touches a new
point p*. It is marked as K2 in the same figure; its south boundary makes an angle 1)
with the v-axis. If it is further rotated, it will not remain empty (ie., will contain p*). Thus
[gh . 1y | 15 a maximum interval with respect W {p;. p;. pe. pel. We continoe mtating, and
at some ime its west boundary will touch p* (see the rectangle marked as Ba). If we rotate
the rectangle further, it will start to form empty rectangles, Thus it starts creating another
maximal interval. [0

Definition 2. Consider a set of four points {pi, p;, pe. pet and a maximal interval [¢, ]
with mespect W this set of four pomts. A prime MER (PMER) 15 a MER whose area
is maximum among the set of MERs whose four boundaries are defined by pi. pi. o
and pe, mespectively, and whose south boundary makes an angle @ with the positive
direction of x-axis, where 8 € [¢h 1], We shall refer this PMER using the six wple
ipi.pj. pr.pe. @, ¥}
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Note. Given a set of four points {p. pj. pe. pel oand a maximal interval [gb, o],
the cormesponding PMER {p;. pj. pi. pe.¢, ¥} can be obtained in 1) ume (sce
Appendix A).

In [4]. it is shown that the number of empty convex quadrilateral p4( P) in a 2D plane
containing n points is 2(n%). But we do not have any knowledge about the worst-case
upper bound of py( P). Again, each convex quadnlateral may not always produce a PMER,
and some times it may produce more than one PMER (see Lemma 3). 50, y(P) does
not give any estimate on the number of PMERs. In the following section, we obtain the
worst-case number of PMERs.

2.1, Combinatorial bounds on the number of PMERs

Consider a pair of points p;, pp € P Let L; and L be a pair of paralle]l lines passing
through p; and pg, respectively. In order to give an estimate of the worst-case number of
PMERs present in the plane, we shall discuss o scheme of generating all possible PMER s
with p; and pg at their north and south boundanes, respectively, by motating L; and L
around py and g, respectively, in anti-clockwise direction, and both at same speed. From
now onwards, we shall refer the region bounded by Li and Ly as corvidorg. The rolation
of L; and L, as mentioned above, will be referred as rotation of corvidor, .

Observation 1. The initial orientation of corridor;p, and the schedule of its rotation i
decided as follows:

o [fx(pi) = x(p)and vip) = vipe), then initially corvidoryy is taken to be horizontal.
Ity rovation continues until it coincides with the line joining p; and py.

o [fx(pi) < x(p)and vip )= vipe), then initially corvidory is taken to be horizontal.
It rotation continues until it becomes vertical.

o [fx(pi) < x(pe)and vip )= vipe), ther initially corvidor; is the line joining p; and
Pr (Le, a corridor of width zevo). The rotation continues until it becomes vertical.

o [fxipi)= x{pp) and v(pi) = v{pe), then no MER with L; and Li at its north and
south boundaries, respectively, is possible.

At each positionof L; and Lg . we draw a rectangle whose two parallel sides are aligned
with L; and Li, respectively, and its diagonal 1s the Ime segment gy g This rectangle s
defined as the core rectangle inside corvidor;g. Now, if the core is non-empty, no MER is
possible with L; and Ly in their present onentation; otherwise a unique MER 15 possible
with its north and south boundaries defined by L; and Ly, respectively.

We now describe a scheme of generating PMERs by motating the comidor defined by gy
and pp. As an inital step, if the core s non-emptly, we rotale the corridor until it becomes
empty. Let the angle of L; and Ly with the x-axis be ¢, and the points bounding the west
and east sides of the MER be p; and pe . respectively. We rotate corridor;; until any of the
following situations happen. In Fig. 3, the dotted lines (respectively solid lines) indicate L;
and Ly before (respectively after) the rotation.
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Fig. 3. Botmtion of corridor;y, and genemtion of PMER.

(a) A new point appears in the core (see Fig, 3(a)).

(b} A new point p:,- appears inside corridor;g, and it bounds the west side of a new MER
(see Fig. 3ih)), which in turn, will generate another PMER.

ic) The point p; (which bounds the west side of the current set of MERs) leaves corridory
(see Fig. 3(c)). Here a new MER emerges. [ts west boundary is defined by a point pj-
(# p ;) inside the corridor.

(d} The set of points inside corridor; remains same, but 4 new MER emerges with its west
boundary defined by a different point pj (# p;) inside the corridor (see Fig. 3(d)).

(e) A new point g, appears inside corvidorg. and it bounds the east side of a new MER
as in case (h).

(f) The point pe (which bounds the cast side of the current set of MERS ) leaves corridorg.
Here a new MER emerges. Its east boundary is defined by a point p; (# p¢) inside the
corndor.

(2} The setof points inside corridor;; remains same, but a new MER emerges withits east
boundary defined by a different point p, (# pe) inside the corridor.

If, after this rotation, the angle of L; (L) with the x-axis is o, we report PMER( p;, Pi+ Pk,
Peoif ). Inocase (a), we continue the rotation of L; and L untl core becomes emply
(similar to the mitial step). In all other cases, we continue rotating L; and Ly with an aim
o generate another PMER; here the angle o plays the role of ¢ for the next PMER. The
process lerminates according to Observation 1.

Let mﬂ, m:.i, m:.'tt, mf‘, m;.r&, and m;?'l be the number of PMERs which have generated
due to cases (h)=(g), respectively, during the rotation of corridor;. Now, considering all
pairs of points p; and pg (i # k), we have the following lemma.

Lemma 4. (a) Z‘. Z.{;EI{’“?.{ +m$, +mé, +m:_'£} = 0{”3}_
() 2 2 nm U?’!:-'l +J'Hf£}l = O(n?).

Proof. Pan (1) follows from the fact that, during rotation of the corridor, a point enters
andfor leaves the corridor only once.

In order to prove pant (b), we need o consider cases (d) and (g). In case (d) no new
point enters or leaves corridor;, dunng rotation, but the point defining the west boundary
of 1 PMER changes from p; to p;._ Note that, the instant of time when such an event is
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Fig. 4. Pmof of Lemma 2{b).

noticed, both p ;o p:, appedared on the west boundary of a MER. A similar event (1. two
points py and p, appear on the east boundary of 4« MER) is observed when case (g) occurs.

We consider all pairs of points (p;, pp) € P defining the north and south boundanes of
the PMERs, and observe the set of PMERs whose west (respectively east) boundary passes
through a pair of points (in P). The number of MERs having two distinet points of F on
ong specific boundary (of those MERS) 15 @{n) in the worst case. In Fig. 4, aset of MERs
15 shown with two distinet points p and g (£ F) oon their east boundary. This amortized
analysis shows that the number of tmes cases (d) and (g) anses during the whole process
of generating the PMERSs (i.e., considering all pairs of points) may be Q{n?) in the worst

case. O

We demonstrate an instance with a total of n '1’,.-'2? PMER . Consider three subsets of P,
namely A, B and C, each containing n/3 points. The distribution of points in cach setis as

Fig. 5. lustification of the worst-case lower bound on the mimber of PMER =,
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shown in Fig. 5. For each pair of points, one from set B and the other from set O, we may
form n/3 PMERs with the points in A, as shown in Fig. 5.
Hence we have the following theorem stating the worst-case number of PMERs.

Theorem 1. The number of PMERs among a set of n points in the plane is 2(n?) in the
WOrst case.

3. ldentification of PMERs

In this section, we explain the recognition of all PMERs using a very simple algorithmic
technique, called grid rotation. Initially, we draw n horizontal lines and novertical lines
through all the members in P The resulting diagram is a geid, but the separation among
each pair of horizontal (vertical) lines 15 not same. For a given point set P, the inibal gnd
diagram is shown in Fig. 6(a). During execution of the algorithm these lines will be rotated,
and will no longer remain horezontal/vertical. We shall refer the lines which are initially
hornzontal, as red lines; the lines which are imitially vertical, will be referred as Blue lines.
Al any instant of time dunng the execution of algorithm, the angle 8 made by each of the
red lines with the x-axis, will be referred as the grid angle (see Fig. 6(b)).

As mentioned in the proof of Lemma 1, at a particular gid angle, say &, if a set of
four points {p;. p;. pe. pe} defines a MER, it will remain valid for some tme during
the grid rotation, say for an interval [#, ¢ ] of the gnd angle. The corresponding entry
ipi.pj. pi.pe. B %) s created at grid angle 8. We compute the PMER when the grid angle
becomes equal Lo g,

Consider the set of MERs which are embedded in the gnd, i.c.. the set of MERs whose
sides are incident to the grid lines. We maintain these MERs in a data strocture, called gid
diagram.

I.01. Dara structure

The gnd diagram can be maimtaimed using an = n matrix, where n = | P[0 We use two
such matrices, called M and A during the execution of the algorithm. At any instant of
time, cach of these matrices stores the set of MERs present on the plane at that particular
gnd angle. During the gnd rotation, when a pair of adjacent red (respectively blue) lines

g

Iak

Fig. 6. Demonstration of grid rotation technique using grid diagrmm.
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swap, we use matrix M (respectively A o recognize the set of existing MERs that
vanishes and the set of MERS that newly emerges.

We sort the points in P an increasing order of their x- and y-coordinates, respectively.
Let Py = {p], Phs---s py} and Py ={pl.p5, ..., Pyt denote the same set of points P
omdered with respect o their x- and y-coomdinates, respectively. Each mow (respectively
column) of the matrix M corresponds to an entry in Py (respectively Py ). Similarly, each
row (respectively column) of the matrix A" corresponds o an entry in Py (respectively Py ).
For all points pe P, if p = p, and p = p_;.' then M j, k) and N'(k, j) are set with the
value 1. The other entries in M and A are initialized to 0.

We now explain the method of representing the embedded MERs in the matrix M. The
same method will be followed to represent the MERs in the matrix A7, As each MER will
be present in both the matrices, a pointer, called self_indicator attached to cach MER in
M paints o its own presence in A, and vice versa,

Consider the MER in the grid as shown in Fig. 6(a). It 15 defined by the points
{b.a. g.d} € P atits north, west, south and east sides, respectively. Let b= p, = p;éf.
In other words, the point b comesponds w0 the ayth column and the f,th row of the
matrix M. Similarly, the column (row) indices corresponding to a, g and 4 are oy, o
and @, (fy. Gy, and f), respectively. Since the objective of our algonthm i 1o find the
largest MER which 1s bounded by the points of P o its four sides, we store only those
MERs in the matrix M which are bounded by a pair of points (in P) at its north and
south boundaries. Each of these MERs is attached with a pair of points which appear on
its east and west boundanes, respectively. If such a MER 15 unbounded w cither east or
west or both, the comresponding attached point is set to NULL. The reason for storing
such an unbounded MER s that, it may eventually be bounded during the rotation. The
matrix A stores the set of MERs whose cach member is bounded by a pair of points
(in F) at its east and west boundaries; the points in the pair attached o each of these
MERs appear on its north and south boundaries, respectively. The MER (b, a. g, d ). shown
in Fig. 6(a), is represented by the pomt-pair (b, g) (appearing on its north and south
boundaries, respectively) in the matrix M; and it is stored in the (f;, o,)-th entry of
matrix A, The same MER is represented by the point-pair (a, d) (appearing on its cast
and west boundaries, respectively) in the matrix N:and is stored in the (o, B.)-th entry
of the matrix A

Mote that, a MER unbounded in either or both of cast and west, is stored in matrix M,
but is not stored in matrix A Similarly, a MER unbounded in either or both of north and
south, is stored in matrix A7, but is not stored in matrix M.

Observation 2. (i) Given a fixed grid angle, and a pair of points p; and py, if there exives
a MER whose novth and south boundaries contain p; and py, respectively, then the points
appearing on ity east and west boundaries are unigne.

(1) Given a fived grid angle, and a pair of points pj and py, if there exists a MER whose
west and east boundaries contain p; and py, respectively, then the points appearing on iis
novth and south boundaries are unigue.

The matrix A is initialized with the set of all axis-parallel MERs which are present at
the grid angle equal to 0. These are obtained by invoking the algonthm presented in [10],
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and it requires (R + nlogn) time, where T is the total number of MERs present at that
particular gnd angle with sides parallel to the coordinate axes.
MNote that, for a particular grid angle, the matrix A is such that

(1) exactly one entry in each row has value 1 and exactly one entry in each column has
value 1;

(1) exactly R entries have value 2;

(iii) all the entries having value 2 in a row i correspond to the set of MERs with point p’
at their south boundaries;

(iv) all the entries having value 2 in a column, say §, correspond to the set of MERSs with
point p_; at their north boundaries;

(v} among the non-zero enties in cach column, the value 1 appears at the maximum row-
index position.

See Fig. 7 for a clear understanding about the matrix. A at a particular grid angle. Similar
properties hold for the matrix A also.

[P ' i
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- : -
v i | 1
= +——=
! 1
2 1 1 A
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Fig. 7. Spurse matrix representation of matrix A,
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Lemma 5 [7]. At any particular ovientation of the grid, the worst- and expected-case
number of MERs are ('(n*) and O(n logn), respectively.

Thus, we can reduce the space complexity of storing the MERs in the matrices A and
AN by using a suitable linked list representation of sparse matrices [6]. Here, the O-valued
entries in a matrix are absent. Duning rotation of the grid diagram, the indices of a pair
of adjacent rows/columns may be interchanged. The corresponding changes in the matnx
entries can be done very easily in our sparse malnx representation.

We use three linear arrays P, Py and Py, where P contains the set of points with respect
o their input order. Al any instant of time, Py (respectively Py ) contains the members of
P in bottom to top (respectively left o aght) order with respect to their comesponding
blue and red lines. Initially, when the lines i the two sets are parallel w the y- and x-
axis, respectively, the blue ines are ordered from left to right and the red lines are ordered
from top Lo bottom. It is already mentioned that, each element of P, (respectively £y )
corresponds to a column {respectively row) of the matrix M. Below we explain the linked
list representation of matrix M. The matrix A is represented in the same manner.

Sparse matrix representation of M. Each (non-zero) element of M consists of the
following fields.

(1) A wvalue field containing 1 or 2 depending on whether the comesponding entry
represents a point in P, or a MER.

(1) Two pomnters P1 and P2. They indicate two different points in the amay P which
define the red and blue lines (i.e., the row and column) corresponding to that grid
point. If the value ficld of this entry containg 1, then P1 and P2 point to the same
member of P.IF il contains 2, then the points indicated by P11 and P2 appear al the
south and north boundaries of the corresponding MER.

(i1} Two more pointers P3 and P4, They indicate two different points in P owhich appear
on the east and west boundaries of the MER represented by that element. Again, if
the MER represented by an element is unbounded at either east or west or both, the
corresponding pointer(s) 1s (are) set to NULL.

{iv) The grid angle 8 where this MER is generated (i.e., inserted in the matrix M) during
the grid mtation.

(v) Two pairs of pointers [le. and Q‘f}l and [Qﬁ' and Q}}l. They establish bidirectional
links among the neighbors of 4 matnx element appeaning in the same row and in the
same column, respectvely, as deseribed below.

The (non-zero) matrix elements appeaning ina row are connected in a doubly linked list
using ther Ql and Q% poinlers.

It is already mentoned that the 1 entry in g column, say §. appears at the maximum
row-indexed position. The other non-zero members in that column represent the MERs
with point pj at their north boundary. These elements are stored in two doubly linked lists
using the pointers Qﬁ' and QE as follows:
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e [eft list: the elements such that the MER corresponding to each of them has point on
its south boundary o the left of column § in the current orientation of grid diagram,
and

e right_list: the elements such that the MER comesponding to cach of them has point on
its south boundaries to the right of column § in the current orientation of grid diagram.

. Q" and Q} attached to the element containing “17 in a column, indicate the first
clement of lefi_list and right_fist, respectively, in that column.

As mentioned eadier, each element of both the matrices A and A is attached with another
pointer field, called self_indicater. This s used W point 115 own occurrence in the other
malrix, if it 15 present there.

The sparse matrix data structure (A4) for storing the MERs at a patticular grid angle
is shown in Fig. 7. It needs to mention that, the lefi_{ist and right_fist attached to each
column are easily understood from the figure.

Each element of P, and P, stores the address of the corresponding element in the
array P Apart from that, cach entry of P, and Py 15 attached with two sets of three
pomnters (MO MO M) and (NQ | N Oz, NO3). M O pointer of an element in Py
( Py ) points to the | entry in the column (row) of the matrixz M corresponding to that point.
The M5 and M Q1 pointers of an entry in P, (representing a row of A ), point to the
address of the lefl-maost and nght-most elements in that row. The M7 and M (2 pointers
of an entry in Py {representing a column of M), point to the last elements in both the
fefi_fist and right_{ist, respectively. In Fig. 7(b), M O pointers of each element in Py and
Py are shown using dotted lines, but in order o avoid the clumsiness, the M2 and M 05
pointers are not shown, The NQ, N @2, and N O3 pointers are set to pomnt the relevant
elements in matrix A" in a similar manner,

3.2, Grid rotation

In this subsection, we demonstrate how the grid dingram changes due 1o the rolaton
of the grid. During grid rotation a pair of mutually perpendicular lines, passing through
cach point, are rotated gradually in anti-clockwise direction, and all at the same speed. Lel
us imagine the MERs embedded in the grid to be motating with the rotation of the grid as
shown in Fig. 2(b). As mentioned in the proof of Lemma 1, for a very small rotation of
the gnd, although the rectangles change in size, their boundary points nevertheless remain
same. However, when a pair of adjacent (red/blue) grid lines swap, some rectangles might
degenerate, some rectangles might be formed anew, whike some may have its bounding
vertices changed. These instants are referred as event points. AL each event point we need
o do the following:

e Update the data structure to account for the new set of MER s,

e The rectangles (defined by a specified set of points) which were present in the data
structure as MERs prior to the current rotation, and remain MER afier the rotation
also, do not need any computation.
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e For the MERs (defined by a specified set of points) which were present in the data
structure, but will not remain present from now onwards, we may need Lo compute the
PMERS as described in Appendix AL

If we gradually rotate the gnd by an angle 7 /2, we can enumerate all the PMERS that exist
in the plane. OQur aim s o find the one having maximuom area.

3201 Selection of event points

To perform the grid mtation, so that M and A are updated properly at each relevant
tme instant, we need o know the order in which a pair of grid lines of same color swaps.
This requires a sorting of the absolute gradients of the lines obtained by joining each pair
of points. During gnd rotation, we need o stop 0 (n*) times when either the red lines or
the blue fines become parallel w any one of those lines. We consider two different sets
contaming all the lines having positive and negative slopes, respectively. The lines in the
first {second) set are sorted in increasmg order of the angle & with the x-axis (y-axis) in
anti-clockwise direction. Finally, these two sets are merged to get the ordered set of event
points. This needs @(n?) space for storing the angles of all the lines, and (}(n” logn)
tme for the sorting. Bul note that, we do not need to store the gradient of all the lines
permanently; rather we are satisfied if we get the event points (the angles) in proper order
dunng grid rotation. Below, we descobe a method which can generate the event points
using (M {n) space.

3.2.1L1. A better approach. Let P* ={p}. g3, ..., Fi} be the set of dual lines corre-
sponding Lo the points in P, Consider a line Lyg: ¥ = mgpx + cpp in the primal plane,
obtained by joining two points pe and pe. In the dual plane. it corresponds o the point
T = (M. Cup). which is the point of intersection of the lines pEand p;.. Thus in order to
get the lines Leg (with myg = ) in increasing order of their gradients, we need to sweep
a vertical line £ from x = 0 towards right in the dual plane and to report the intersection
points among the members of P* in increasing order of their abscissa. Similarly, the lines
Lag (with mgg < () are also generated in increasing order of their gradients, by sweeping
avertical line & from lefl o right (starting from X = —o¢) in the dual plane and reporting
the intersection points among the members of P* in order of their appearance. The sweeps
of £ and £ are done concurrently. We need 1o maintain two heaps to obtain the two event
points m (= 0) and m" (= 0) {the next point of intersection) to be faced by £ and £,
mespectively. Now,

o 1fm = |m’], then the grid is rotated such that its red lines form an angle tan~! m with

the x-axis of the coordinate system.
o Otherwise, if m = |m'|, then we rotate the grid such that its blue lines form an angle

{tan~' m" — 7 /2) with the y-axis of the coordinate system.

The selection of each event point needs O{logn) tme, and the space required for stornng
the heapsis On).



S Chaedhurd ex al. F fowmal of Algorithms 46 {2003) 54-78 a7

Fig. #. Empty region—obhserved while swapping mws i and i + 1.

3.2.2 Some important properties of grid rotation

MNext, we come o the most crucial part of determining the generation of a new set of
MERs and consequently updating M as a pair of grd lines of the same color swap. We
need to consider two distinet cases which are cansed by the swap of (1) two red lines, and
(11) two blue ines.

We first consider the case when a pair of adjacent rows in M, say § and i + 1, get
swapped due to the swap of a pair of red lines. Let the points attached o these two rows
be po (= p)and pg (= p, ), respectively. After the swap of these two rows in the grid
diagram, pg and p, will correspond to rows § and i + 1, respectively. In Fig, 8, the shaded
area indicates the region where no point can appear as the line joning the pair of points pg
and pg has the least gradient among the lines with the unprocessed pairs of points.

Lemma 6. While processing an event point corresponding to the line Lyg joining a pair af
Points (pe. pgl, pe to the left af pg,

(1) if the gradient of the line Lyg is positive then

(a) the MERs whose north or south boundaries coniain neither pg nor pg, will not be
changed with wespect to their definition;

(b) the MERs whose south bounding point is po, but pg does not appear on any of its
sides, and MERs whose north bounding point is pg, but p, does not appear on
any of its sides, will not be changed with we spect to their definition.

(i) ifthe gradient of the line Lyg is negative then

(a) the MERs whose east or west boundaries contain neither pge nor pg, will not be
changed with respect to their definition:

(b} the MERs whose west bounding point is pe, but pg does not appear on any of its
sides, and MERs whose east bounding point is pg, but py does not appear on any
afits sides, will not be changed with respect to their de fmition.

In view of this kemma, we state the following exhauvstive set of MERs which may emerge
or vanish due to the swap of a pair of rows comesponding Lo a pair of points p, and pg
(where pg is o the left of pg). A similar set of situations may also arise when a pair of
columns swap: we will not mention them explicitly.

All the MERs that vanish due w the swap of two red lines corresponding 1o pe and pg
can be classified into one of the following classes.

A: a MER with p, and pg on its south and north boundaries, respectively;
B: asctof MERs with p and pg on their south and east boundanes, respectively;
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C: asetof MERs with pg on their south boundary;
D: asetof MERs with p, and pg on their west and north boundaries, respectively;
E: asetof MERs with p, on thewr north boundary.

The sets of MERs that are generated due to the swap of two red lines corresponding 1o pg,
and pg can be classified mto one of the following classes,

A"t a MER with p, and pg onits north and south boundaries, respectively;

B': aset of MERs with pg and py on their south and west boundaries, respectively;

C': aset of MERs with p, on their south boundary. The other boundaries will be newly
defined;

DV: a set of MERS with pg and pg on north and east boundaries, respectively;

E': aset of MERs with pg on their north boundary. The other boundaries will be newly
defined.

MNole that, the MER in set A modifies into the MER in set A”.

Allthe MERs in set B collapse 1o form members in set C'; in addition, some new MERs
may be generated as members in set C7) which can be derived by observing few specific
members i the set B, Similarly, the members in set O that collapse, result in members
of set B if at all they remain, and conversely every member in set B results from some
member in set C. To be a bit more explicit about the set C of collapsing MERs, ones
having their north bounding point to the right of p, only would still exist and degenerate
into members of the set B'. Rest are all destroyed.

Again, the MERs in set D degenerate into MERs in set E'; in addition, some new
members in the set £ may also be generated which can be derved by observing few
specific membersin set D, Similary, the members in set E that collapse, resultin members
in set O af at all they remam, and every member in D7 s denved from some member in
set £, These observations will guide our actions due to a row swap.

We now highlight the necessary actions when a pair of red lines comesponding o pg
and pg swap; we also indicate how the creation and deletion of all the MERs are taken
care of,

3.3, Updating the grid diagram

Suppose that the line joining (pe. pg) s under process. 10s having the smallest absolute
gradient among the set of unprocessed lines, and its gradient is positive. We now study the
effect of rotating the grid so that all red lines become parallel to the line joining { py. pg).
Let 7oand i 4 1 be the rows in M corresponding o the points p, and pg before the
rotation; the columns corresponding W pe and pg be k and £, respectvely. Withoul loss
of generulity, assume that p s to the left of pg. Le., k< £ Alter the motation, pe and pg
will correspond o rows @ 4+ 1 and 7, respectively. But at this stage we like to mention that,
the swapping of rows will be done at the end of all other updates on M which have caused
due to the swap of rows i and i + 1.

During grid rotation, when a new MER emerges it is entered in M, and when an
existing MER vanishes, the comesponding PMER is evaluated using the method deseribed
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in Appendix A, and the corresponding entry is removed from M. Appropriate updates in
the matrix A are also Lo be done. From Lemma 6 and succeeding discussions, we have the
following results.

Lemma 7. (a) All the MERs which disappear afier processing the line joining p. and pg
(i.e., due to the swap of two rows corresponding to p, and pg) are present in either of the
mwa rows i and | + 1, and either of the two columns k and L.

(b) Similarly, all the MERs that newly emerge after processing the line joining pg
and pg. will alse be inserted in either of the two rows § and § + 1 and in either of the
two columns k& and £

Below we state the five major steps of processing the line segment (pq. pg) with
positive gradient. Note that, we do not explicitly create two sets, one for the vanishing
MERs (from which PMERs need to be reported), and the other one for the newly emerging
MERs (1o be inserted in the data structure). The approprate actions are taken as and when
these MERS are encountered.

Step A. The only MER in the set A is the one with p, and pg at its south and north
boundaries, respectively, before the swap; it is unbounded at its east and west sides. After
the rotatiwon, this MER will not exist further. S0, M6, €) 15 0 be deleted. But a new
MER emerges with pg and pe at its south and north boundanes, respectively, which is
unbounded in both east and west. This is the only MER in set A So, M{i + 1. &) is sel
w2 (as the rows 7 and 7 + 1 are not yet swapped). Note that, before the deletion of M (i, £),
it was the first entry in the left list of fthcolumn. So, in the ftheolumn, it s easily reachable
in (1) time. Similarly, after the rotation, M{i 4 1. &) will be the first entry in the rmight_list
of kth column. 50, in the £th column, it can also be added in G 1) tme. Since this MER s
unbounded in cast and west sides, the P3 and P4 pointers attached o it, are set w NULL.
No update is necessary in A, since the entry corresponding to M (i, £) was not present in
N as it is unbounded in east and west sides, and M7 + 1, k) will not be stored in A due
Lo the same reason.

Step B. The set B of MER(s) with py and pg on their south and east boundaries,
respectively, before the swap (see Fig. 9a)), will eventoally collapse. So, for cach of them
the corresponding PMER needs to be computed. This set of MERs are obtained in M as
follows:

B.1 Scan the ith row (comesponding Lo pg ) from its keft end until:
(1) arectangle is reached whose east side 15 not bounded by pg, or
(i) the cell M{i k) (= 1) is reached.
Euach of these entries, excepting the last one, represents a MER inset B,

B.2 Scan the ith row fromits right end. The first (non-zermo) entry corresponds o the MER
in the set A. The second element, if it 15 not equal to 1 (e, the point g, itself), it
corresponds to a MER in set 8. In Fig. 90a), such an entry appears in the column
corresponding to the point py..
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Fig. 9. Hlustrmtion of Step B:{a) before rotation, and {b) after rotation.

Thus, location of all elements in set B can be done in G| B|) tme. As mentioned earher,
all the members in set B will contribute a member in the new set of MERs C7. In Step B3,
we explain the necessary modifications that need to be done (in the matrix M) o conver
the members in set B o the members inoset CF, as and when they are encountered. In
addition, few more new MERs may appear with pe at its south boundary after the present
erid rotation. In Step B4, we explain their addition in the matrix A (as members of C7).
The required changes in matrix A are done in Steps BS and B.6.

B.3 Notethat, in the (i + 1)-th row of the matrix M, there exists 1 MER R with Py and
pg atits north and south boundaries, respectively, before the rotation. In Fig. 9(a),
K is shown vsing dotted boundary. If p, bounds the cast side of R then after the
rotation py, will bound the east side of all the members in €7 (see the changed MERs in
Fig. 9(b)). In order o obtain R, one needs to scan the (i + 1)-th row of the matrix M.
Thus, p, can be obtained in O(r) time, and all the MERs in C' that are contributed
by the elements of B, are generated in O B]) time.

B4 In additon, few new MERs are generated with p, at its south boundary. Let py,
corresponds w the column m prior to the present grid rotation. We scan the (1 4 1)-th
row (corresponding to pg ) of the matrix M from the mth column towards right, and
zenerate this new set of MERs as follows:

Let B = M{(i + 1.m) denote a MER with P and peoat s north and south
boundaries, respectively (see Fig. 9(a)). After the rotation, a new MER R* will
be generated with p, and p, at its north and south boundanes, respectively (see
Fig. 9(b)). The east side of B* may be unbounded or bounded by a point (say pg)
depending on whether B is unbounded or bounded (by the point ps) o its cast
side. The west side of B* is either unbounded or is bounded by the point same as
that of its preceding entry in C°; this can be settled by observing the rightmost eniry
in O, Finally, it 15 added as the nghtmost element in the list attached to the ith row
off M its position in the column of p, is just before the element corresponding o
the MER R'.
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This process of generating new MER 15 continued by scanning towards the right of
the (i 4+ 1)-th row until a newly generated MER s obtained which s unbounded to
its east side. The total time required in this step is Qin + [C" B|). Here, the On)
extr time 1% required for identifying the MER in the (i + 1)-th row which has p, at
iLts north boundary.
The MERs in set B which are bounded in both sides, are reached in A using
self_indicator attached 1o them. The row index of each MER in C', generated in
Step B3, will remain same as that of the comesponding member in set B; its column
index will be changed from € (comesponding to pg) to m (corresponding Lo pg, ) after
rotation. So, the QJ and Q} pointers need to be adjusted to delete this set of MERs
from the £th column, and to add them in the mth column. Deletion of an entry from
a column can easily be done in (1) time. Regarding the insertion, the members in
" are closer to the 17 entry in the left_fist of py, than its existing elements. So, they
can be added in the feff list of the *17 entry in the mth column in the reverse order of
their generation in O] Bl) tme.
The MERs generated in Step B.4 are considered for insertion in the matrix A in the
reverse order of their generation. If 4 MER is unbounded in either or both sides, is not
inserted in A Otherwise, let peand py bounds the cast and west sides of a MER, say
R*. As, R* is closest to the *17 entry in the row (respectively column) coresponding
Lo py (respectively pg) in A, it can be inserted:
{1) in the left or the right side of the *17 entry in the row corresponding oy, and
(i) as the first element of either feft_fist or right_list of the *17 entry in the column
comesponding Lo .
Thus, an €2{1) time 1s spent for cach MER consider in this step.

Note that, if there exists any MER with g, atits south boundary but pg notappearing in
any of its sides, it remains unchanged in the data strocture during the execution of Swep B,

Step C. Next we consider the set of MERs C, each having south boundary containing pg,
but pg does not appear on any of its boundaries. Due to the mtation, some of them will be
truncated by e at their west side. The comesponding PMERs are reported and the matnx
entries are updated to generate a new set of MERs, referred o as B'. In Fig. 10(a), the
possible cases prior to the rotation are shown; the necessary changes after the rotation are
demonstrated in Fig. 100b).

C.1

c2

The entries in row i + 1 {corresponding Lo pg) are considered from extreme right one
by one. If the west boundary of such a MER is observed 1o be to the left of pg. it
will no longer exist after the rotation (in Fig. 10(a), see the MER with p, at its north
boundary); so the corresponding PMER s reported. Note that, here a new MER is
generated (as o member in set B') (see Fig. 10(b)) from the old one by truncating its
west side at pg ; the necessary change in the matrix A4 is done immediately. The scan
continues until 4 MER s encountered whose west boundary 1s to the night of pg. or
the cell M (i 4+ 1, £) (= 1) 1 reached,

Next, we check the entries of row § 4+ 1 from extreme left. All the MERs which appear
to the left of M(i 41, k), i.e, whose north boundaries are defined by points to the



rimw i

1
-

c3

C4

L Chandhuri er al. # Tonmal of Algorishms 46 {2003 ) 54-78

Lais XelzJi o UL cvian o, ezl

o _,_,.,-o-"""-f i
+ Vi MFH g0 L g FN ‘;I"-ﬁl

|
|
|
| : e
I by -
= Toin ¥R w1

I -
| a4
| 1
| - I"': e el
i - ' -
' TE' 1 i
| | [H | | '_|
R e = B P SR S adiihy =

slezn tl — 'l:' e -

aa ik

Fig. 1. [Hustmtion of Step C: (a) before rotation and (b) afier rotation.

left of pg . will not remain valid after the corrent rotation (in Fig. 1004}, see the MER
with pr at its north boundary ). These entnes are deleted from the data structure after
reporting the comresponding PMERs.

The search contmues along that row past the kth column, to detect the MERs having
their west bounding point to the kft of py. This set of MERs will be truncated by p,
Lo the west (in Fig. 100a), see the MER with p, at its north boundary) to contribute
o the set B'. Bul prior to the updating of these entries in the data structure, the
corresponding PMERS need to be reported. We stop when a MER 15 encountered
whose west boundary is defined by a point to the right of pe (in Fig. 100a), see the
MER with pg at the north boundary ), or the cell M+ 1, £) (= 1) 1s reached. Thus
OO tme 15 needed to report all the PMERS corresponding to the membersin set C,
and O{)|B']) ime is needed to generate all the MERs in the set B'.

The elements in set € are reached using self indicator and are deleted from A The
members in B are added in the kth row of the matrix A", These newly added entries
are closer to the *17 entry in the £th row than all the existing entries in that row.
So, they can be added in order of ther generation, and in time proportional o their
number The positon of these entries in their respective columns will remain same.

Step D. This step is similar o Step B. Here, the set of MERs D having p, and pg at their
west and north boundaries, respectively, are reached in the matrix A as follows:

D.1 Traverse the right_list of pg from its beginning untl a MER is oblained which is

not bounded by p,e at its west side. All these MERs excepting the last one, are the
members of the set D, Afler the carent gnd rotation, this set of MERs will no longer
be bounded by pg at their west boundaries.

2 In addition, the MER comresponding o the second element of the lefi_{ist of pg (i1t

exists) is also bounded by pe at its west side (as in Step B2). It s also a member of
set I sinee it will no longer exist after the rotation.
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For all these members in D, the corresponding PMERS are reponted in Q) D) time.

D3 The updated set of MERs E are obtained by changing the west boundary of each

D4

clementin 2 by following the method similar to Step B3 as deseribed below.

Consider a MER R in the set D, Let its south and east sides are bounded by g
and py, respectively (see Fig. 11). After rotation, it will not be bounded atl the west
by pe. Bul observe that before the rotation, there exists another MER bounded
by pe on the north and pe on the south, and it would also have p, on its east
boundary (in Fig. 11, it is marked as B'). If this MER is bounded by p; in the
wiest, then surely the MER B we started with, will have ps on its west boundary
after the rotation.

The point pj s obtained by checking the MERs present in the right_fist of M (i, k)
(= 1. which corresponds o the point pg); and it needs Q{n) tme in the worst case.
After the rotation, each element of E” will be bounded at its west by the point ps.
Surely, a new set of MERs will be generated with north side bounded by pg. For
example, see the MER in Fig. 11 whose north and south sides are bounded by pg
and ps, respectvely. Its west and east bounding points are obtained by scanning the
feft_fist and right_fist of p,. All such MERs are oblained in 8 manner similar to
Step B4, and in O(n 4 |E™ D) time.

5 Each element in set D can be reached in the matrix A using the self indicator

attached to i, and can be deleted m (1) time. All the MERs in set £ are added
in the row coresponding to p; of the matix A The MERs generuted in Step D3
(i.c.. corresponding o the members in D) are closer to the 17 entry in its row (of A7)
than the existing elements in that row. The position of these entries in their respective
columns are obtained as follows:

Consider a member R in E' with py and ps at its east and west boundaries,
respectively, which will be added in the column comresponding to the point py,.
Note that, pe 15 above py, both before and afler the rotation. 1F ps 15 also above py
then the position of R i the lefi_list of py, s same as that of the MER with p; and

MER R
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Fig. 11, HNustration of Step I
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P at east and west boundary (as a member of D). Otherwise, it will be added as
the first clement in the right_list of py,.

Thus, each of these MERs can be added in the respective row and column of A in
1) time.

Step E. Some of the MERs in set E (ie., with p, on their north boundaries), might loose
cmptiness (as pg will enter inside those MERs) due to the current motation. These will
cither be truncated on the east side by pg. or simply be destroyed. The new set of MERs
D is obtained using the following procedure which is similar to Step C.

E.1 As in Step C.1, we raverse the lefi-fist and right-lise of the clement M{i &) (the *1°
entry comesponding W gy ) separately cach from its beginning until:

(1) a MER is encountered whose cast side is bounded by a point to the left of pg, or
(1) end of the list is reached.

E.2 For cach of these MERs, if the point appearing on its south boundary s to the right
of pe. itwill no longer exist, and will be deleted from the data structure after reporting
the PMER.

E.3 Otherwise, if pg is o the lefl of the point bounding the east side of that MER. then the
corresponding MER in the set D is obtained by truncating its cast side al the point pg.
So, necessary updates are made in the matdces A after reporting the PMER. The
search continues further downwards in the list w detect MERs having pont on their
south boundary to the ket of pg.

E4 The insertion of these MERs in A are done as in Step C.4,

Thus Step E can be completed in 0 E| + | D¥]) time.

Step F. After the computation of the PMERs, and the necessary updates in M and A, the
final step of our algorithm is swapping of rows i and § + 1 in the matrix A, Surely, this
implies the swapping of column i and { + 1 in the matrix A" also. It can be shown that this
task can be completedin @ () time executing the following substeps.

El p; (= pe) and p/ | (= pg) are swapped in the array Fy.

E2 The row-id of p, and pg in matrixc M are set o § 4+ 1 and 7, respectively.

E3 Thelists attached o pi" and p? | inmatrix M are swapped. Inother words, we traverse
row @ oand @ 4+ 1 simultancously. I at a particular column, both ith and (i 4 1)-th
rowy has non-zero entnes, their Q‘J and Q? pointers are to be adjusted. To be precise,
this involves the changing of Qtl and Q} pointers of two more elements of the same
column, one appearing just above (i 4 1)-throw and the other one appeanng just below
ith row, respectively.

F4 The column-id of p, and pg in matrix A" are setto 7 + | and i, respectively.

F.5 Thelists attached to p;’ and p}’, | in matrix A are swapped. In other words, we traverse
feft-fist (and then right-fist) of column § and i 4 1 simultaneoosly. If ata partcular row,
both ith and (i 4+ 1)-th column has non-zero entries, their le. and Q:" pointers are o
be adjusted as i Step F3.
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One crucial point 15 to be kept in mind while making this update. The steps have w be
executed exactly in this order This is because one step abead of another may corrupt the
values being used by the other. As an example, the updates in row @ in Step B depend on
the existing entries in row § + 1. If we execute Step C ahead of B, it is evident that the
entries m mow [ 4 1 get corrupted.

The processing of a line Lgg (joining p, and pg) with negative gradient causes the
swap of a pair of rows in the matrix A", The dentification of PMERs from matrix A, and
updating of M and A are done exactly in the same manner as described for swap of a pair
of rows in matrix M.

J4. Correctness of the algorithm
The comrectness of our proposed algonthm follows from the following facts:

e We are rotating the gnd in one (anti-clockwise) direction.

o Our grid motation halis at each instance where either a pair of adjacent red grd lines or
a pair of blue grid lines swap. These events happen when either red gnd lines or blue
gnd lines are observed to be parallel w the line joining a pair of points in P, and we
are considering all the {‘;}l pairs of points in P

e For all the intermediate gnd angles between two consecutive halts of the grid rotation,
the identity of each MER (i.e.. the quadruple of points defining its boundary ) remains
same.

e Finally, when a pair of adjcent grid lines swap, we have comectly recognieed (1) all
the MERs that will no longer exist, and (i1} all the MERs that are newly generated.

The first two facts follow from our processing sequence. The third one follows from
Definition 2. In order to prove the fourth one, we consider the swap of a pair of adjacent
red gnd lines, say § and i + 1, corresponding to a pair of points, say pe and pg, where
Pa = p = p; and pg = p’,| = pj. By Lemma7,

e all the MERs which will no longer exists doe o the aforesaid swap, are available in
rows §and i + 1 and columns k and £ of the matnix A, and

e all the MERs which are newly generated due to the aforesaid swap, will find their
positions in rows §{ and i + | and columns & and £ of the matrix M.

Note that, while swapping of a pair of blue grid lines, the set of MERs which will no
longer exist, are tobe recognized from matrix A7 So, we also need to assure that for all the
changes in matrix M, the corresponding changes in matrix A are done correctly.

In Sweps A-E, we have inspected the relevant elements in the aforesaid two mows and
two columns to locate the MERs which will no longer exist after the rotation. For cach of
them, the area of the corresponding PMERs 1s calealated.

The MERs which emerges after the present rotation, are classified into five catlegories.
In Step A, we have placed the only MER in set A" in its right position in matrix M. Some
of the MERs in the other classes are obtained by truncating one of the sides of an already
existing MERs (see Steps B3, C3, D3, and E 3). After the necessary modifications, their
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positions in matrix. A are adjusted. In addition, some MERs will be formed anew (see
Steps B4 and D.4), which are also identified with reference w0 some existing MER in
(i + 1)-th row of M. They are also properdy positioned in matrix M. The MERs which
are present prior o the rotation, and will no longer exist after the rotation, are reached in
matrix A using self_indicator, and are deleted. Lemma 7 essentially tells that all the newly
generated MERs will be added in the &th and £th rows, and ith and (f 4 1)-th column of
matrix A", For cach of these MERs its position in A" is also successfully obtained.

When a pair of blue lines swap, the relevant MERs can be successfully identified in the
matriz A" in an exactly similar manner, and the necessary updates in both the matrices can
be done.

4. Complexity analysis

A discussed in the preceding sections, our algorithm consists of two phases, (1) finding
the successive event points (grid angles) at which the computation is done dunng the gnd
rotation, and (i1} the management of grid diagram during the rotation. The first phase
e UIres t’}{nlh}gn}l time 4% shown in Section 3.2.1. Now it remains 1o analyze the time
complexity of the second phase.

The construction of initial grid matrix M requires O(n”) time in the worst case. While
processing cach pair of points (pe . pg). it needs 0 raverse a pair of rows and a par
of columns corresponding 1o the pomts p, and pg in either of the matrices M and A
depending on whether the gradient of the line Lyg (joining p, and pg) is positive or
negative. The total number of entries encountered during the traversal is @{n) m the worst
case. For each MER encountered during the traversal, which will not exist further, the
corresponding PMER can be reported in €9 1) time. The generation of all new MERs and
their insertion in the matrices M and A may require (n) time in wtal. Finally, the swap
of two rows in the matrix M requires another (r) time. So, apart from the reporting of
the PMERSs and generating new MERs, one needs an additional @Q{n) tme for processing
cach pair of points pe. pe € P during the gnd rotation. The grid rotation halts }n?) time.
Thus, we have the final theorem stating the time complexity of our algorithm,

Theorem 2. The time complexity of our algorithm of recognizing all (and hence the largest)
PMER is (. }{n'j" ) in the worst case

The space required for storing the matrices M oand A at a particular grid angle is
equal o the number of MERs present in the plane at that time. Surely, it may be @(n?)
in the worst case; but it is Qinlogn) on an average [7]. As we are using {n) space
for determining the event points, the average case space complexity of our algonthm is
Oinlogn).
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5. Conclusion

In this paper, we have considered the problem of locating the largest empty rectangle,
of any arbitrary orientation, among a set of points. An algonthmie weehnique is proposed
o solve this problem which mspects all the PMERs present in the plane. One may hope
for a faster algorithm without considering all the PMERs.
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Appendix A. Area calculation

Let us consider a set of MERs denoted by six-tuples {p;. p;. pr. pe. . 1} The PMER
15 4 member in this set which has largest area. Let the grid angle cormesponding to the
PMER be @, The value of @ 15 obtained as follows:

Al grid angle 8, the lines comresponding to the north and south boundaries of the PMER
will be (v — vi) = m* (x —x;) and (v — vg) = m* (x —xp ). respectvely, where m = tan(8).
The lines at the east and west boundanes will be (v — w) = (—1/m) +({x — x¢) and
(y—yil={—=1/m)*{x —x;) respectively. So we have the coordinates of its four corners
as follows:

(ml[_w — ¥+ (x4 x) mixe —x) + (m7ye + _w})
north-cast: i 2 N 2

m? +1 ’ m? .+ 1
miy; —wi+ {ml.r,- +x) mixj—x)+ {mz_v_,- -+ _1;,-})
north-west: = 4 5 s
m=-+1 m-—+1
miyy — i) + (mxg +x¢) mixg — xg) + (mye + _vx})
south-east: o § = i
m=+1 m-—+1
mivi — ¥ +m2.r + x;) mix; —x +m21;-+1.'
south-west: {__,l _k}'q { k _,1}1 { ¥l 1}? { ¥i k})
m=+1 m=+1

The area of the rectangle is
_ Amiye —yj) + (xe — x))((ye — yi) +mix; —xi))
= m2+ 1 ’
This is a unimodal functionin 0 < 8 < 7 /2. Its maximum value can be obtained by solving
;,-.;A.n; =(). Now we have
&
L
3077 T mitl
+ 2m| (x; — xe)(ve — y) + O — yid(xe — x5)]

— ml[{_w_ —vilw —wid e —xilx —.rk}], where m = tan(# ).

p<O<Y

[l[_w; — ¥illye — ¥i) +lxp — xgdixg —rj}]
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The choice of the optimal value of 8% is as follows:

¢ if fAs <0atd =g, .
g =1 if A =0at8=4p. .
8" if SAg =0at8=0"¢($, V).

Thus, given the four points and the range of grid angle, 8% can be computed in constant
Lirme.
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