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SUMMARY. The existing criteris of i n.nd fei of ostimation havo bsen
in tho light of recent oritici and i g thema. A new oritorion cnl.le«l mujorm Jfirst
order efficiency which Is a botter indi of the of an esti in isti has
been introduced. It is, ho\vovur, pointad out that the anomaly in tho oarlior oritarion of officioncy can
be removed by ideri b which g0 to o normal distribution uniformly in
compacts of tho parameter spaco. Firat order officiency by ilsolf cannot diseriminato among a large
number of estimation pracedures. Therofore, an additional critorion callod the second order efficiency
haa beon introduced, whmh oonndamhly restriota tho cloas of uselul estimation procedurea and by which
d could bo olimi d in favour of the method of maximum

hlished

esveral well
1. INTRODUOTION

Estimation, as conceived by the late Sir Ronald Fisher, is one of the methodo-
logical processes by which data are analysed or reduced for purposesof drawing inferences
on the unknown population from which data are observed. For instance a sample
survey of consumer expenditure may provide a mass of data which by themselves are
difficult to interpret. We therefore need summary figures or estimates which provide
a fair ides of the characteristics of the population sampled and enablo us to answer
a variety of questions. Haa the per-capita expenditure on rice increased over time
and is it different in different regions? Does a given estimate reasonably agree with
what is believed to be the per-capita expenditure, or with another estimate obtained
by & parallel agency? No clear indication of answers to such questions would be
available without computing from tho dataan estimate which represents the per-capita
expenditure and other quantities which indicate the possible extent of error in the esti-
mate and guide us in making judicious statements about the population. Further
questions may suggest themeelves after some initial questions are answered with the
estimates already obtained.

There hes been & tendency to consider the problem of estimation as a part of
decision theory, requiring a prestated purpose for the cstimate and specification of
Joss resulting from any given magnitude of error in the estimate. It is not, however,
my view that the latter approach should be completely abandoned. There may be
gituations where such an approach is necessary and appropriate as in the case of accep-
tance procedures in industrisl statistics. But in a majority of situations the framework
of decision theory may not be applicable and it may be necessary to consider the problem
of estimation from a wider point of view as ‘extraction of information’ for drawing
inferences and for recording it, as a substitute for the entire data, for possiblo future uses.

Since estimation, however it may be viewed, involves reduction of dats, it
may entail some loss of information for we are interpreting the data through the

$Looture deliverod on the ion of the p ion of Bhanti Swarup Bhatnagar award
for 1059.

This paper hss beea inoluded in butions to ki d to Profeasor P. C. Mahalanohis
on the voosaion of his 70th birthday,
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egtimates. Tho criteria for ohoice of estimators should then relate to minimisation of
loss of information. Unfortunately, no objective moasurement of information is pos-
sible and hence the diffiaulty in the formulation of suitable criteria. However, asymptotic
theories of estimation based on the criterin of consistency and efficiency (to bo referred
to as v-officiency) bave Dbeen comstructed and certain mothods have beon shown
to yiold estimators satisfying these criteria. It was thought that the criteria of con
sistenoy and v-efficiency ensure minimum loss of information due to estimation as
the sample sizo increases.

These theories are not satisfactory due to three main reasons. Firstly, all the
results relate to limiting propertics as the sample size tends to infinity and no indication
is available of their applicability to samples of sizes ordinarily met with in actual
practice. Secondly, there seem to exist infinitely many procedures leading to esti-
mators satisfying the stated criteria and no further criteria have been suggosted to
distinguish among them. Thirdly, the criterion of v-efficiency does not provide o
satisfactory index of the performance of an estimator from the view point of statistical
inference.

I have attempted to resolve these difficulties in some ways (Rao, 1060, 1961,
1962). Firstly, the criterion of v-efficiency has been reformulated to ensure some
optimum asymptotic properties of an estimator used in the place of the sample for
purposes of inference. This is called first order efficiency. Secondly, another criterion
known as second order efficiency has been introduced to distinguish among different
procedures leading to first order efficient estimators. On the basis of the latter cri-
terion several well-known procedures, such as the minimum chi-square, modified mini-
mum chi-square ete., which are considered as competitors to maximum likelihood on
the basis of v-efficiency, could be eliminated. The second order efficiency also provides
a partial answer to the question of sample size. Corrcction terms of order O(n-!) to
the estimate and of order O(n~2) to its precision have been determined for several
estimation procedures.

The present paper is intended for a further discussion of first and second order
efficiencies and to introduce a new concept of uniform efficiency which seems to be
important when asymptotic theories are considered. Some new light is thrown on
the use of asymptotic variance of an estimator as an index of efficiency. Further the
gecond order efficiency is linked with terms of order (n~%) in the asymptotic expansion
of the variance of an estimator. Problems requiring further investigation are indicated.

In undertaking these studios I have been guided by the basic idess contained
in two fundamental papers on estimation by Fisher (1922, 1925). I wish to record
my debt of gratitude to the late Sir Ronald Fisher for the encouragemont I recoived
from him when I was working under his guidance at Cambridge and during his recont
visits to the Indian Statistical Institute. I also wish to thank Professor P. C. Mahala-
nobis, the Diroctor of the Indian Statistical Institute for his stimulating discussions
on the logic of statistical inference and the purpose of statistios to whioh I have been
oonstantly exposed.
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2. CONBSISTENOY

The oriterion of consistency is in the nature of identifying the parameter for
whioh & statistio is said to be an estimator. This is important from the praotical point
of view of interpreting the estimates. There are various definitions of consistency of
which the one frequently referred to in literature is probability consistenoy (PC).

Definition 2A: Probability consistency (PC). A sequence of statistics
T, is said to be consistent for a paramoter § if T,— 6 in probability.

But one criticism of such e definition is that it places no restriction on the
atatistic for any given n. An alternative definition of consistency due to Fisher,
called Fisher consistency (FC) seems to be more satisfactory in this respect, but
somewhat restriotive in application.

Definition 2B : Fisher consistency (FC). A statistio 7', = f(S,), where 8,
is the empirical distribution function based on n observations and f is o weakly conti-
nuous functional defined on the space of distribution functions is said to be Fisher
consistent if f(Fy) = 6, where F, is the true distribution function from which obser-
vations are drawn.

1t is easy to see that FC == PC and that FC refers to a restriction on the
estimate for any finite » and is not just a limiting property of a sequence of statistics.
But it is applicable only in situations where independent observations are drawn from
a population characterised by a distribution function.

3. ErrIcIENOY

Efficiency of an estimator, which we rename as v-efficiency because it is linked
with asymptotic variance, is usually defined as follows :

Definition 3A : v-efficiency. Consider the class {T',} of consistent asympto-
tically normal (CAN) estimators of 6, i.e., for each T',, nd(T,—6) N[0, w(0)]. Any
member of the sub-class for which v(0) = 1/¢(0) is said to be an efficient estimator of 8.

It was believed that for a CAN catimetor, the asymptotic variance ¥(6) satis-
fies the inequality

o(o)>Tz) . (3)

and that an estimator with the smallest v(f) has maximum concentration round the

true value in sufficiently large samples. Unfortunately, both these results are not

atrictly true without any restrictions on the estimating function or the mode of con-

vergence to normality. About ten years ago Hodges (see LeCam, 1953) constructed

an example to show that the result (3.1) is not true in general, Let
T,=2 (]3] > 27 }

=az(|8] & ns)
where  is the average of # observations from N(6, 1) and « is arbitrary. It may be
verified that 7', is also CAN with

®o) =1, for 0#0}
= of, for §=0
101

(3.2)



SANKHYA : THE INDIAN JOURNAL OF STATTSTICS : Sgrtes A

80 thet the variance at & = 0 oan be made arbitrarily small. Such an estimate has
been termed ‘super efficient.” This example throws in doubt the exact significance
of v-cfficiency.

Even if there is no lower bound to asymptotic variance, the question remains
as to whother we should prefer the estimator T', as defined in (3.2) to T becausc of smaller
agymptotic variance at least at one point and equivalence elsowhero. It cin be casily
geen that for any given %, 7', has better concentration than %, in the sense of higher
probabilitics for intervals enclosing the true value, only for the special values of
0 = 0 and a small neighbourhood of zero, and thereafter for a continuous set of 0, T,
has less concentration than 2z, This may also be inferred by comparing the mean
square errors (m.s.e.) of T, and 2. For anygiven 2 the m.s.o. of T',is smaller than that
of Z for & close to zero and thereafter it stays larger, although the difference tends to
zero as 0 increases. It may, however, be observed that the m.s.c. in either case tends
to the corresponding asymptotic value but the anomaly arises due to convergence
being not uniform in the case of 7',. We shall have occasion to stress the imprrtance
of uniform convergence in a later section of this paper. An attompt to improve the
concentration in the neighbourhood of a particular value of the parameter seems to
have injured the performance of the estimator at other values. A general statement
to this effect is proved by LeCam (1953) using bounded risk functions. Superiority
as judged by asymptotic variance function need not therefore indicate greater concen-
tration for all values of the unknown parameter even in sufficiently large samples.

Consider another stiper efficient estimator U,

U=z ([5] > )
(3.3)
=az, (|Z] <27 J

where 2,, is the sample median and  is arbitrarily small. The statistics (3.2) and (3.3)
have the same asymptotic variance and are therefore indistinguishable on the basis
of v-efficiency. There must, however, be some difference in the performance of these
two statistics, the estimator (3.3) being cssentially equivalent to the sample median
when 0 = 0.

Since there is no lower bound to the asymptotic variance of a CAN estimator,
it may bo thought that an improvement over z is possiblo by constructing a statistic
7', with a uniformly lower asymptotic varinnce and thereby incrensing the concentra-
tion at every value of the parameter, as at § = 0 in examples (3.2) and (3.3). LeCam
(1953) has demonstrated that such an improvement is not possible for any continuous
interval of the parameter and the set of points with a lower asymptotie variance
has to be of Lebesgue measure zero.

Can we avoid all these troubles by considering only efficient estimators in
the sense of Definition 3A and not trying to improve upon the asymptotic varianoe
1/i(0)? The following example provides an answer to this question.

Let, W,=% (|2] > n~YY

, (3.4)

= () 2a (131 < a7y
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where 2 is the sample mean and z,, is the sample median. W, is also CAN with the
same asymptotic variance v(0) = 1 for all 0 as that of 2. Tho estimator W, is thus
indistingvishable from Z so far as consistency and v-efliciency are concorned. Yet
for any given large n, W, has less concentration than that of 2 for all values of 4.

It is no doubt true that an estimator having a higher concentration than
another for every value of 0 is more useful indrawing inferenceson f from an obsorved
ectimate. That such a situation is realised for an estimator compared to another for
sufficiently large » cannot be judged by comparing the asymptotic variances only
as shown by examples (3.2), (3.3) and (3.4). It is, however, difficult to choose betweon
two estimators when one does not have uniformly better concentration than another
without bringing in other considerations. For instance, we muy have an estimator
whose distribution for a partioular value of 0 is highly concentrated but it will bo a
poor discriminator between this value of 8 and other values close to it if the concon-
tration at the other values is low. To compare the estimators 7, 7,, U, and WV, we
may examine one aspect of their usefulness in statistical inference e.g., the power func-
tions of tests based on these statistics to test the hypothesis that 0 has an assigned
value. It may be inferred from the optimum properties possessed by Z, that in large
samples Z and 7', tend to have the same local power (Rao, 1962) whereas U, and W,
being equivalent to the sample median when § = 0, will have a smaller local power.
Since v-efficiency does not enable us to distinguish between estimators such as z or
T, and U, or W, we shall consider an alternative definition of cfficiency (to be called
first order) which appears to be more satisfactory.

Definition 3B : First order efficiency. A statistic T, is said to be efficient
if

(P, —8)—A6)Z,15 0 . (38)

where 4(6) is & function of & only, and Z, = n-'[d log P(X,, 0)/d0], P(X,, 0) being
the density of the observations. The condition (3.5) implies that the asymptotic cor-
relation between 7', and Z, is unity.

1 have shown elsewhere (Rao, 1060b) that according to definition 3B, T', is just
a8 efficient as Z, although 7', is super efficient in tho sonse of v-cficiency and U, and
W, are not efficient in the new sense at § = 0 although U, and W, are super efficient
and efficient respectively in the old sense. If the efficiency of an estimator is measured
by the square of its asymptotic correlation with Z,, then U, and W, have the same
efficiency 2/m < 1, although U, and W, have different asymptotic variances. It is
also shown (Theorem 2 in Rao, 1962) that an estimator satisfying, or cfficient in the
sense of Definition 3B provides a locally more powerful test of a simple hypotheais
concerning § then any other teat in sufficiontly large samples. Another important

q of Definition 3B of efficiency is that the ratio of I(T,) the Fisher's
information contained in the estimator T, to I, the total information in the sample
tends to unity as n— o (Doob, 1834; Rao, 1981).
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The Definition 3B of efficiency implies that the limiting distribution of n¥(7,—6)
is normal for any given 0 and in large samples, any simple hypothesis on # can be tested
by using the normal approximation. But in problems of statistical inforence, it is
often necessary to express our preference for different values of 8, on the basis of the
eatimate as in the case of interval estimation, and not just examine whether a parti-
cular value is true or not. There is thus for a given z, a need to consider tho whole
set of distributions of the estimator for all values of 0 at least in a small interval (in
large samples) where different values of 0 havo to be distinguished. If the distributions
are to be approximated by appropriate normal distributions, it seems to be a logical
necessity that the convergence to normality of the chosen estimator should be uniform
in compacts of 0. Under fairly general conditions the convergence to normality
of ntZ (0) is found to be uniform in which case the desired property is assured by the
following definition of uniform first order efficienoy.

Definition 3C: Uniform first order efficiency. An estimator is said to have
uniform firat order efficiency if

| T ,—6—Z,(0)}i(8)| 50 . (3.8)

in compacts of 0, where the symbol UL stands for uniform convergence in law and
i(0) is Fisher's information per observation.

It would have been more natural to define uniform first order efficiency as
| 7,—0—B0) Z,(0)| %5 0 . (3
without specifying the value of A(0) as in (3.8). It appears that if the condition (3.7)

is satisfied for various values of B(0), then it is desirable to choose an estimator for
which f(8) is & minimum which is shown to be [i(6)]-! in section 4 of this paper.

4. SOME LEMMAS
Nolations and assumptions. We consider only sequences of independent and
identically distributed variables with probability density p(z, 8), where 6 is a parameter
with values in an open interval ©. Inthe case of discrete variables, p(z, 6) represents
the probability of z. The probability density of » observations is denoted by P(X , 6).
The first derivative p'(z, 8) = dp(z, 6)/d0 exists. Let a(z, 6) = p'(z, 0)/p(x, 6) and
i(0) = Eja(z, )1

Fisher’s information per observation be continuous in 8. The following assumptions
are made in the various lemmas of this section.
Assumption 11 () p(6, 8) = Eylalz, 00)] = (6—8,)i(60)+0(0~0,)
(i) [0(80, O = Vlalz, Op)] = i(6p)+0(1)
(iii) (B, 6) = covy[a(z, 6), al, B)] = i(Go)+-of1)
8+e
. ', 0)
Assumption TL: B, | &
i ¢ n(z, 0))

< oo for some ¢ > 0 in compaots of 6.
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Assumption III :
Let ¥z, 6, 6;) = log [p(z, 6)/p(x, 0,)]

B €6, 6) = Ealtiz, 0,001 =— =2 ig)oi0- g,
(i) [0, 0))* = Voolblz, 0, 0,)] = (6—060)* (6o} +0{—0,)*
(iii)  &(6, 85) = covaulbiz, 0, Oy}, a(x, Oo)] = (0—0)i(0y)+0(0—0,)
. o a? _ da
Assumption IV : (i) ;{, W[P(X", 0))dv = i B{.Hxﬂ 0)dv
for every Lebesgue measurable set E,,
(-
5 ¥, 6)
(i) E, 2% 0)
| B(z, 6)
The Assumptions I, II, and [II are not severe. Conditions may be imposed directly on
the probability density to ensure them. For instance restrictions such as those im

poscd by Danials (1961) on the probability density will imply the conditions (i)-(iii)
of Assumption I.

i8 bounded in compacts of 4.

Lemma 1: Let B,(0) be the power function of any test of the hypothesis 8 = 6,
based on a sample of n independent observalions, at probability level . Then under
Assumptions I-1IT

im f(6,+8nt) & Ola—sit) o (40)
A)®
where ® ia the distribution function of N(0, 1) and a is the upper a point of N(0, 1).
The limit of #(6,+68n-1) when it exists is known as Pitman power of the test.
Lemma 1 gives an upper bound to Pitman power under some conditions on the pro-

bability density of the observations. Two limit theorems of a different type concern-
ing the local power of a test have been given in an earlier paper of the author
(Rao, 1962).

Let

-1 PX,0 _1
Z,(0) = 7 }TXF) iy T a(x, 8)

PX,6) _1 )

BE 8~ Z b(zi, 6, 6y)
u,(0) = 0¥ ,—E(6, 6,)) /(6. 6)
va(0) = N[ Y o+ E(0y, )]/ 7865, 0)
w(0) = nt 2 (6)/[i(6)}.

Under the Assumptions I, IT, and III, it is easy to show that

1
Y, = Tlog

(i) Va[un0)—w, (6,)] - 0 a8 66, e (42)
fi 100, 8) _

(i) Vylva(6) m) w, (6)] >0 as 66, e (4.3)
(i) wa(6) 3 N0, 1) in compadts of 6. e (44)

195



SANKH_YA: THE INDIAN JOURNAL OF STATISTICS : Series A
The best test of the hypothesis H, : § = 6, against the alternative 0, = G,+3n-
* ua{f,) > ¢, o (45)
where ¢, is chosen such that the size of the test -z as n— 0.
"linl Po[,(0,) 2 6. = "E": Poy[u,(0,)—w,{05)+wa(0g) > 6]

= lim Po[w,(0,) > ¢,] by (4.2).
A

Since the limiting distribution of w,(0,) is N(0, 1), ¢,—> a the upper « point of N(0, 1).
The power of the test (4.5) is
B48,) = Peyu,{0,) > cu)
= Poy(u,(0,)—w,(0,)+wa(0,) > ¢4
00, 0,.) N[E(0g, 0,)+ (0, 6,))
= Po, {08,y M0 oy (6 )+w,(8,) > c,4 150 00+ 80 6]
0 { 0000 1 55 —wn0.)+10(0) > et R }
writing #,(6,) in terms of v,(0,) using their definitions.
WU 0,0, 0]
20, 6o)
= ¢ (a—3dit) using (4.4) of uniform convergence,

lim Aa0,) = lim Po, {w,,(o,,) > 6t
n—p o 1@

where —8il = Lim ni[E(6,, 0,)+ E(0,, 0,)]/m(0,, 0y). The result of Lemma 1 follows
n—p ®©
by observing that £;(6) > 8.,(0) for cach 6, where £,(6) is the power of any other test.
[2

Lemma 2: Let n‘(T,,-—ﬁ)—f N, [Y(0)]®) in compacts of 0, where y(0) is
bounded. Then

(i) Y(6) is continuous if the probability density p(x, 0) is conlinuous in 0.

(ii) [¥(0)]? < 1/i(B) under Assumptions I-TII.

We use an argument similar to that of LeCam (1960) to prove (i) of lemma 2 :

If p(z, 6) is continuous in @ the distribution function F , of 7', is continuous
in @ and consequently the characteristic function c.(t,8) of U, = al(T,—6) is
continuous in 0. Since U, converges uniformly, ¢ (¢, 8) converges uniformly to c(t, 8)
the oharacteristic function of the asymptotic distribution N(0,[y(6)]?). But (¢, 8)
is continuous. Hence y(f) is continuous in the interval of the uniform convergence
of U,

Let us consider the test

(T ,—6,)
¥(60)
of tho hypothesis & = 6, at a probability level . The power of the test at 6 is
Ba0) = Pynd(T ,—6) > A,y(60)}

- P (T ,—0) Y0o) _ nH0—8,)
”{ 0 6 YO }
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Substituting § = 8,482~ and observing that the convergence to normality of
(T ,—0) is uniform in 6, we find

1'-“1 ﬂ..(00+3""') Dla—3/¥(6,)] e (4.8)
where the argument of ® in (4.8) is the limit of
Any(8y) __ n0—0b,)
OO
with 6 = 6,+6n4, a8 n— 0,

It is shown in Lemma 1 under Assumptions I-TTT

im f(0,+8n71) < ©(a—adit).
n—e
Hence from (4.6)
Dla—dfy(6y)) < @ (a—8i¥)
or a—8[y(8,) > a—&it
ie., Y0,) > 1/il6y) (for any given 6,).

We thus see that the asymptotic variance of CUAN (consistent uniformly
asymptotically normal) estimator has Fisher's lower bound 1/i{6) when the probability
density satisfies some regularity conditions. It appears then that in the examples of
Hodges and LeCam, super efficiency in the sense of having asymptotic variance less
than 1/i(6) has been achieved at the sacrifice of uniform convergence.

Lemma 3: Let

Z.6) T —f
Haor sa) “n
Then

(i) n‘(T,,—B)ZIi N(O, [Y(0)]%) én compacts of 8, where y(0) is continuous, under
4 plion 11 and continuity of p(z, 6), and

(ii) p(0) =[(0)] under Assumptions II and IV.

Under Assumption IT,

ntZ,(0) oL

TR - N(0,1) v (4.8)
dh 2T, ~0) UL
and hence o - N(0, 1) . (49)

since by the condition (4.7) of Lemma 3, the difference of (4.8) and (4.9) 3 0, Hence
the result (i) of Lomma 3 follows.
Consider the teat
2Ty —64) > c,y(6y) - (410)
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of the hypothesis # = 0, at o probability lovel e, where ¢,— a, the upper « probability
point of N(0, 1). The power of the test (4.10) at 0, = 6+ dn-t is

BalBa+817%) = Pa, (T ,—04) > cxy(0r)
iy (T, —6)  ca¥(6o) _ nHO—6p)
> E e
ll_’:’ﬂn(ﬁo+5n“)=°[a—5/7(ﬂo)] e (d11)

using the uniform convergence proved in (i) of Lemma 3. It appears from (4.11) that a
test of the hypothesis 6 = ), based on T, does not attain the full Pitman power
D(a—48iY) unless y? = i-1, It is therefore interesting to know whether the condition
(4.7)of Lemma 3 itsolf implies that y2 = ¢=1. I have been able to establish this result
only under the additional Assumption IV but it is worth examining whether such a
strong assumption is necessary.

Under condition (i) of Assumption IV we have the expansion of the power
funetion

POk b~ = B0+ 400+ 4110 )

and under condition (i) of Assumption IV, 8;(0')/n is bounded in an interval of &
enclosing 6,. From (4.12) we find

fim L Aot D=PO) _ iy yigye,.
) e

40 nowm
Henee lim Ye=8M—¥@) _ i igiey e (413)
10 F] n—voo
The limit of the R.H.S. of (4.13) is
(i/2m)e—arj2 o (4.14)
using the result of Theorem 1 in an earlier paper (Rao, 1062). The value of the L.H.S.
of (4.13) is
(2my?)~te—arj3, (4.15)
Comparing (4.14) and (4.15) we find ¥® = i which establishes (ii) of Lemma 3.
Lemma 4: Let {n¥(T,—0), n8Z (6)}—> in law to a bivariate normal distribu-
tion uniformly in compacts of 6, with the asymplolic covariance malriz
(ﬂ’(ﬂ)li(e) p(6)8(6) )
p(6) B(6) i(6)
Then under Assumptions I-TII
B(6) = 1==3 p(8) = 1 = n}| Z,(6)—i(T,—6)| Zo.
The Lemma 4 implies that v-efficiency of UCAN is equivalent to uniform first
order efficioncy.
Consider the test
n‘[T..—ﬁa+/\Z..(0o)] >0
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where o? = 1/i(8)+A%(0,)+2Ap(0,) the asymptotic variance of the test statistic.
Using an argument similar to that of Lemma 3, the Pitman power of the test is
Da—8(1+A3)o).
By the result of Lemma 1,
3@) < 8it, for any arbitrary A

or (1424)% < 14-22ip+A%i2

which implies p = 1 at 8 = 6, (any chosen value). The asymptotic variance of
ni{Z,(0)—i(T,—0)] is then zero, and since the convergence is assumed to be uniform
the desired result follows.

The results of Lemmas 1—4 under the conditions assumed on the probability
density of the observations can be summarised as follows.

(i) If T,is UCAN, the asymptotio variance of 7', has Fisher’s lower bound
1/ni. This implies that the concept of v-efficiency is not void when the class of
estimators is restricted to UCAN.

It may be noted that the existence of such & lower bound to the asymptotio
variance was established by Kallienpur and Rao (1956) under some conditions on the
estimator such as Fisher consistency (FC) and Frechét differentiability. Recently
(Rallianpur, 1963) relaxed the restriction of Frechét differentiability to a weaker
form due to Volterra. Some observations on lower bound to asymptotic variance of
2 CAN estimator have also been made by Bahadur (1960) from a different point of view.

(ii) Uniform first order efficiency of 7', implies that it is CUAN and
v-efficient,.

(iii) The converse of (ii) has been established under the additional assumption
that the joint asymptotio distribution of 7, and Z,, is bivariate normal and the con-
vergence is uniform in compacts of 6.

It may be interesting to examine other conditions under which the existence
of a CUAN estimator T, with v-officiency implies uniform first order efficiency.
Restrictions on the estimator such as those imposed by Kallianpur and Rao (1955)
and Kallianpur (1963) may be sufficient.

The investigations of Section 4 show that v-efficiency is a valid and useful
concept if only we restrict dur consideration to estimators which are consistent and
uniformly esymptotically normal in compaoct intervals of the unknown parameter.

5. SECOND ORDER BFFIOIENOY
The second order efficiency is defined in earlier papers by Rao (1961, 1962)
a8 the minimum asymptotio variance of
[ Z,— (T ,—6)—y(T,— )5 v (8.1)
when minimised with respect to y. Under some conditions this minimum value is
equivalent to the limiting value of the difference in the aotual amounts of information
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contained in the sample and in the statistio. It was slso shown (Rno, 1961) that for
tho m.l. estimate the asymptotic veriance of (5.1) is the lesst, thus establishing its
higbest second order effioiency.

It may be seen that the concepts of tirst and second order efficiencies are not
explicitly Linked with any loss function. It is also not important which funotion of
0 is under estimation. We could, for instance, define first order efficiency as

| 2, —Af(T,)—f6)]1— 0

in probability for any funotion f admitting a continuous first derivative. Similarly
the second order efficiency could be defined as the minimum asymptotio variance of

(2, — BT ) —f(O)—yf(Ta)—1(6))) - (8.2)
where f admits & continuous second derivative. The expression for the minimum
asymptotic variance in either case (6.1) or (6.2) would be exactly the same. Similarly
if 7', is altered as

T+ ”(11:!1)

where g is a smooth function, the first and second order efficionoies remnin the same
although from the point of view of quadratic loss function there would be difference in
terins of order (1/n?). So the first and second order officiencies as defined refer to
some intringio properties of an estimator (statistic) used as a substitute for the whole
sample for purposes of inference on the unknown pargmeter.

I a discussion on my paper (Rao, 1962), Lindley thought that the superiority
of the m.]. estimate is probably establishod through some specific loss function impli-
cit in the definition of second order efficiency. It is, therefore, proposed to compare
differont estimators in a more direct way by assuming a quadratic loss function.
Before doing this, the procedure has to be cleared of some unpleasantness arising
out of some samples of relatively small frequency leading to large deviations in the
estimator and making tho expected loss unduly large. We shall, therefore, omit a
portion of the sample space and compnre the performance of estimators over the rest
of the sample space. Usually the total probability of the portion so omitted rapidly
diminishes to zero es the sample size increases and the value of the estimator over
this portion could be defined arbitrarily except that it should be bounded.

We shall consider the caso of the finite multinomial distribution as in the earlier
paper {Rao, 1961). Lot ua represent the theoretical frequencies in the k cells by

m(6), ..., m(0)
where § is an unknown parameter, the observed proportions by

Py s By
and the estimating equation by
f6, 2y, -pp) =0 .. (63)
whero SO, 70), ... m(0)) = 6
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80 that the estimator satisfies Fisher consistency. We shall assume that f as a function
of 6, p,, ..., p, admits third order partial dorivatives which are bounded in a closed
region P of the cube C

0g<agL i=1..k

and for values of 0 satisfying (5.8) with (p,, ..., p,)eP. The true point m (0), ..., LAD))
is assumed to be an intorior point of P. Lot * be n solution of tho cquation (5.3)
such that 0°—> 0 as p;—om; (0). Then oxpanding f(0*, py, ..., pi) by Taylor’s theorom
at 0, m(0), ..., m(B), we have

¥ go_pyrs I (p—
500+ L)

Iy 8
=——X 3 "4 (p— —
5 g B )ni)

_l L 31V 82]_ . __
5 (00— o —(0°—0)%

&f

T, (Dr—m)+e, ... (6.4)

Due to the boundedness of the third order partial derivatives, if we define §* arbitrarily
in (— P, except that it should be bounded, jt follows that

E(§'—6) = O(n),  B(e?) = Ofn %).
If the equation (5.3) is such that first order efficiency is satisfied then

o Lo __tm
0 T i
a8 shown in (Rao, 1061) in which case, dividing (5.4) by 8f/80, the left hand side expres-
sion can be written

6*—0—2Z (0)}:
where 2, = Z[n(p,—n)fm). If the rvight hand side of (5.4) without ., divided by
0fj00 and (0*—0) veplaced by Z,/i is represented by §,, we have the approximate rela-
tion

6*—6—2Z, )i ~ 8,. ... (b.6)

Hence E(6*—0) ~ E(S,) = bf)jn

wihicro b(0)/n is the Dias in the estimator up to terms of O(1/n). Such a bins has no
effect if the moan square crror js ovaluated up to terms of O(1/n). Otherwise correc-
tion for bias scems to be necessary. The correction can easily be done by considering
tho estimator

b(8°)

f=0x2")
n

in which the bias is o(1/2). Wo shall ovaluate E(§—8)? upto terms of O(1/a9).
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Consider the approximate relationship
B6"y~6+ 1O
n
which on differentiation with respect to 6 yields
RE(0°Z.) ~ l+b;—(»0)' (5.6)
Further V(b) ~ V(0" —2,(0)/ni)

~ V(6°)—2b"(0)/n2i
using (5.6) and

V(O — 2, /i) = V(6°) 4 V(Z.Ji)—2 cov (6", Z.J3)
= vyt =2 (1+Y)
ni n n

1
Vi) - ——
©) % nt

V(a)—%. . (87)

Frow (5.5) PO —2.Ji) ~ V(8,) = '/%fl (sag)
Using (5.7) we have
1 @ 1
vty = L4+¥0) 4o (_2) .. (58)
M 7
We shall compute (8) for some methods of estimation and compare the values. The
variance of §°, without correction for bias, is

Y
vey = +40

Lt 20'(0) +°(an) . (6.9

2
(i) Maximum likelihood. For the method of maximuom likelihood (m.l.)
_ 2W,—92,) _puZn
? 2:3
where W, = Z(d? log m,({d6*)(p,—7,), ¢ = (fy—Hao)s
g = Em(mfm ) ().
The bias in the estimator and the value of y(6) are

S,

n

o0 _ __H#
= = B8 =73

2ni?’
Y(6) = n2V(S,) = V[Zn(Wn—yzn)]+ @ V(22
" i "
o HMoa— 2t iag L_(l‘ll“/{ﬁi)a+j‘|i
8 i i 244

= Y(m.l). oo (B.10)
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The variance of the m.l. estimator without correction for bias is
L, Yml) 1 dgp, 1
1Ti+ n® i dﬂ( m‘)+o(yﬁ)
whioh agrees with the expression given by Haldane and Smith (1956). It may be

seen that Y(m.1) is connected with E,(m.L.), the index of second order efficiency defined
in the earlier paper (Rao, 1961) by the relation

Y(m) = Byml)+Hn
23

It may be seen that the m.l. estimator corrected for bias is similar to the esti-
mator given by Lindley (1961). For other properties of m.). estimators referonco may
be made to papers by Cramér (1946), Daniels (1961), Doob (1934, 1936), LeCam {1953,
1956), Rao (1957, 1058, 1960a), Wald (1949) and others. Uniform consistoncy and
convergence to normality of m.l. estimators are considered by Kraft (1955) and
Parzen (1964).

(ii) Minimum chi-square. A theoretical investigation of the esymptotio
properties of minimum chi-square estimates is contained in papers by Neyman (1949)
and Rao (1966). The estimating equntion is

z n,—- =0
and the velue of 8, is
P 72\ | ZWa—92,) _ oy
(0+ Gp )+ ot

1
R . A a1 m, _
where 0 = 2—‘ z 7, (?r 7") ‘—.; Zu % ("—’) (pr 7'!)'

By using the expressions already derived in Rao (1961), the bias in the minimum
chi-square estimate and the value of ¢(0) are
o) _ { — Hwt
K3 2 n, 28
Y(6) = wV(8,) = 5+w(m.l.)

_ 1 m, Hao I"ao
where 8= 2_‘_,2(7’7) e e (6.11)

which is non-negative and zero only in speoial cases.
(iii) Mintmum modified chi-square(Neyman, 1949). The estimating equation is

E”’”’ _

7

leading to the value of S,

_2(Q+ ) zn)+ n(W -qu) /;:: z
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The bias and y¥(6) are
0)y_ 1 1 w7 | 2iye—pm
X0 _ _{ Tsz, +*-}

n n
Y(6) = 48+y(m.L).
(iv) Haldane's minimum discrepancy (Haldane, 1963). The estimating equa-
tion, after a slight modification which does not effect the treatment of the present

paper, is

giving the value of S,
_ B g2\ ZoWa—gZ0) _pu g
(k+1) (Q+ 2‘}3 Zn)+ a 2]; ™

The biaa and y{f) are

e

LB L Sy
n n 2 n, -
HO) = (k+1)%84+¥(m.L)
(v) Minimum Hellinger distance. The estimating equation is
smP_g
m
giving the value of §,
%(Q+ Hag z;’.)+ Z..(W,.a—az..) —tu g

23

The bias and y(f) are

oO) _1(_1 s feo—2um,
n Z{ 2% Z+ 448 }

3
¥0) = I +p(ml).
(vi) Mintmum Kullback-Liebler separator. The estimating equation is
T, log :r_l,. =0

giving the value of 8,
— s g2 ZWoa—02Z,) __ tn zs
(0+- G )+ = - G 2

The values of biag and ¥(6) are

bo) _1[_1 oM | fa—tn
A = g B e )

¥(0) = d+¥(ml)
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PTIgeR )

It is seen that g the six d, the mean aquare arror in
the estimator corrected for bias is the least in the oase s of bhe m.l., when terms up to the
order (1/n%) are considered. It may be shown more generally (following the mecha-
nism developed in the earlier paper, Rao 1961) that under the assumptions made
on the estimating equation f(6, p) = 0, the m.1. estimator haa the leaat value for y(f).

The bias and variance for estimators correoted for bias, obtained by the dif-
ferent methods considered in this section are given below, where & and (m.l.) are as
defined in (5.10) and (5.11).

variance of estimator
corrected for bias

bias
method of estimation (coefficient of n-1) eoeféﬁoient. coefficient
of n1 of n—3
maximum lkelihood —fu 1 pml
ini i Ay (M) _ totau 1
minimum chi-square 2',2 (”') o 3 $+y(m.L)
. . . _1 ﬁ 2pbny— ) 1
modified minimom chi-square TZ( "') + 5 T 43+ y(m.l.)
Haldane’s minimum _";‘_‘“) z(Z)+ Do 1 gy iy piml)
disorepancy e % s
- . . _1 T\ | He—2%n 1 3
minimum Hellinger distance % 2 (;: ) +T i T +¢(m.l)
- E _1 g im\ | be—bn 1
minimum K.-L. eeparate % 3 ( 1’:) +T T 8+y(ml)

The expressions for bias and veriance will be similar in the case of estimation
of p ters in & conti distribution. The conditions to be essumed on the esti-
mating equation and the probability density will be very severe if an expanaion of the
asymptotio variance up to terms of order (1/n%) is desired. A recent paper by Linnik
and Mitrafanova (1963) on the computation of the variance of the m.l. estimator in
& ocontinuous case shows the nature of the complexities involved.
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