A Probabilistic Active Support Vector
Learning Algorithm

Pabitra Mitra, Student Member, IEEE, C.A. Murthy,
and Sankar K. Pal, Fellow, IEEE

Abstract—The paper describes a probabilistic adive kaming strategy for
support vector madhine (SWVM) design in large data applications. The lkeaming
strategy s motivated by the statistical query model. While most exsting methods
of active EVM learning quary for points based on their proximity 1o the current
saparating hypamplane, the proposad method quanes for a sat of points according
to a distibution as determined by the curant separating hyperplana and a newly
defined concept of an adaptive confidence fador. This enables the algorithm io
hawe mora robust and effident learning capabiliies. The confidence factor is
esiimated from kocal informafion using the & nearest neighbor principla. Tha
effectivaenass of the method is demonstrated on reallie data sets both in terms of
genaralization parformanca, quary complexity, and training time.

Index Terms—Diata mining, keaming theory, quary leaming, incremental leaming,
statistical query model, classification.
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1 INTRODUCTION

THE support vector machine (SY M) [1] has been successful asa high-
performance classifier in several domains including pattern
recognition, data mining, and bioinformatics. It has strong theore-
tical foundations and good generalizalion capability. A limitation of
the SV design algorithm, particularly for large data sets, is the
need to solve a quadratic programming (QF) problem involving a
dense o« nomatrix, where n is the number of points in the data set.
Since QF routines have high complexity, SVM design requires huge
memaory and computational ime for large data applications. Several
approaches exist for circumventing the above shortcomings. These
include simpler optimization criterion for SVM design, e.g., the
lingar SWM and the kernel adatron, specialized QP algorithms like
the cojugate gradient method, decomposition echniques which
break down the large QP problem into a series of smaller QP
subproblems, the sequential minimal optimization (SMO) algorithm
and its various extersions, Nystrom approximations [2], and greedy
Bayesian methods [3]. Many of these approaches are discussed in
[4]. A simple method to solve the SVM QP problem has been
described by Vapnik, which is known as “chunking” [5]. The
chunking algorithm uses the fact that the soluion of the SVM
problem remains the same if one removes the points that correspond
o zero Lagrange multipliers of the QF problem (the non-5V points).
The large QF problem can thus be broken down into a series of
smaller QP problems whose ultimate goal is to identify all of the
nonzero Lagrange mulbipliers (SVs) while discarding the zero
Lagrange multipliers (non-SVs). At every skep, chunking solves a
QP problem that consists of the nonzero Lagrange multiplier points
from the previous step, and a chunk of p other points. At the final
step, the entire set of nonzero Lagrange multipliers has been
identified, thereby solving the large QP problem. Several variations
of the chunking algorithm exist depending upon the method of
forming the chunks [6]. Chunking greatly red uces the training time
compared o batch learning of SVMs, However, it may not handle
large-scale training problems due to slow convergence of the
chunking steps when p new points are chosen randomly,
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Recently, active leaming has become a popular paradigm for
reducing the sample complexity of large-scale learning tasks (7], [8].
It is also useful in situations where unlabeled data is plentiful but
labeling is expensive. In active learning, instead of learning from
“random samples,” the learner has the ability to select its own
training data. This is done iteratively and the output of a step is used
to select the examples for the next step. In the context of suppaort
vector machine, active leaming can be used to speed up chunking
algorithms. In [9], a query learning strategy for large margin
classifiers is presented which ileratively requests the label of the
data point closest to the current separating hvperplane. This
accelerates the leaming drastically compared to random sampling,
An active learning strategy based on version space splitting is
presented in [10]. The algorithm attempis to select the points that
split the current version space into two halves having equal volumes
ateach step, as they are likely tobe the actual support vectors, Three
heuristics for approximating the above criterion are described, the
simplest among them selects the point closest to the current
hyperplaneas in [9]. A greedy optimal strategy foractive 5V learning
is described in [11]. Here, logistic regression is used o compute the
class probabilities, which is further used to estimate the expected
errorafter adding an example. Theexample thatminimizes thiserror
is selected as a candidate SV, Note that the method was developed
only for querving single point, but the result reported in [11] used
batches of different sizes inadd ition to single point.

Although most of these active learning strategies query only for
a single point at each step, several studies have noted that the gain
in computational time can be obtained by gquerving multiple
instances at a Hme This motivates the formulation of active
leaming strategies which query for multiple points. Error driven
methods for incremental support vector learning with multiple
points are described in [12]. In [12], a chunk of p new points having
a fixed ratio of corvectly classified and misclassified points are
used o update the current SV set. However, no guideline is
provided for choosing the above ratio. Another major limitation of
all the above strategies is that they are essentially greedy methods
where the selection of a new point is influenced only by the current
hypothesis (separating hyperplane) available. The greedy margin-
based methods are weak because focusing purely on the boundary
points produces a kind of nonrobustness, with the algorthm never
asking itself whether a large number of examples far from the
current boundary do, in fact, have the correct implied labels. In the
above setup, learning may be severely hampered in two situations:
A bad” example i gueried which drastically worsens the current
hypothesis and the current hypothesis itself is far from the optimal
hypothesis (eg., in the initial phase of leaming). As a result, the
examples queried are less likely to be the actual support vectors.

The present paper describes an active support vector learning
algorithm which is a probabilistic generalization of purely margin
based methods, The methodology is motivated by the model of
learming from statistical queries [13] which captures the natural
notion of learning algorithms that construct a hy pothesis based on
statistical properties of large samples rather than the idicsyncrasies
of a particular example. A similar probabilistic active learning
strategy s presented in [14]. The present algorithm involves
estimating the likelihood that a new example belongs to the actual
support vector set and selecting a set of p new points according to
the above likelihood, which are then used along with the current
SVs to obtain the new SVs, The likelihood of an example being an
SV is estimated using a combination of bwo factors: The margin of
the particular example with respect to the current hyperplane and
the degree of confidence that the current set of SVs provides the
actual SVs. The degree of confidence is quantified by a measure
that is based on the local properties of each of the current support
vectors and is computed using the nearest neighbor estimates.

The aforesaid strategy for active support vector learning has
several advantages. It allows for querving mulliple instances and,
hence, is computationally more efficient than those that are
querying for a single example at a ime. It not only queries for the
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error points or points close o the separating hyperplane but also a
number of other points which are far from the separating hyper-
plane and also correctly classified ones. Thus, even if a current
hy pothesis is erroneous, there is scope for it being corrected owing
to the later points. If only error points were selected , the hy pothesis
might actually become worse. The ratio of selected points lvingclose
to the separating hyperplane (and misclassified points) o those far
from the hvperplane is decided by the confidence factor, which
varies adaptively with iteration. If the current 5V set is close to the
optimal one, the algorithm focuses only on the low margin points
and ignores the redundant points that lie far from the hy perplane.
On the other hand, if the confidence Bctor is low (say, in the initial
learning phase), itexplones a higher number of interior points. Thus,
the trade off between efficiency and robustess of performance is
adequately handled in this framework. This results in a red uction in
the total number of labeled points querded by the algorithm in
addition to speed up in raining, thereby making the algorithm
suitable for applications where labeled data is scarce.

Experiments are performed on four real-life classification
problems. The size of the data ranges from 684 to 495 141,
dimension from 9 to 294, Our algorithm is found to provide
superior performance and faster convergence compared o several
related algorithms for incremental and active SV learning,

2 SupPORT VECTOR MACHINE

Support vector machines are a general class of learning architec-
ture inspired from statistical learning theory that performs
strictural risk minimization on a nested set strocture of separating
hyperplanes [1]. Given training data, the SVM training algorithm
obtains the optimal separating hyperplane in terms of general-
ization error. Though SVMs may also be used for regression and
multiclass classification, in this article, we concentrate only on two-
class classification problem.

Algorithm: Suppose we are given a set of examples
(3.8 (x,m)x € Y gy e {=1,+1}. We consider decision
funcions of the form sgni(w . x) + b), where (w. x) represents
the inner product of w and x. We would like to find a decision
funchon f,, with the properties

willw )+ bp=1, i=1,....1L (1)

In many practical situations, a separating hvperplane does not
exist. To allow for possibilibes of violating (1), slack variables are
introdvced like

i=1... (2)

bo get

willw-x)+b)=1=&, i=1,..., 4 i3}

The support vector approach for minimizing the generalization
error consists of the following:

]
Minimize : Tiw. &) = (w-w) 4 {'.'Z.E,. [4)
i=1

subject to constraints (2) and (3).

It can be shown that minimizing the first term in (4) amounts bo
minimizing a bound on the VO-dimension and minimizing the
second term corresponds to minimizing the misclassification error
[1]. The above minimization problem can be posed as a constrained
quadratic programming (QF) problem.

The solution gives rise to a decision function of the form:

flx) = sgn [Z gion (3 3g) 4 I.l] ;

Only a small fraction of the o, coefficients are nonzero. The
corresponding pairs of x; entries are known as support vectors and
they fully define the decision function.

3 PROBABILISTIC ACTIVE SUPPORT VECTOR
LEARNING ALGORITHM

I the context of support vector machines, the target of the learning
algorithm is to leam the set of support vectors, This is done by
incrementally training an SVM on a set of examples consisting of the
previous SVs and a new set of points. In the proposed algorithm, the
new setof points, instead of being randomly generated, is generated
according to a probability Pr, . . y(x. fix)) denotes the event
that example x is an SV, f(x) is the optimal separating hyperplane,
The methodology is motivated by the statistical query model of
leaming [13], where the oracle, instead of providing actual class
labels, provides an (approximate) answer to the statistical query
“what is the probability that an example belongs to a particular
class?”

We define the probability Pr. . s, as follows: Let < w. b = be
the current separating hy perplane available o the learner.

if yiw x4 b)=1
o ber weise,

Py = ¢

.
e (5)

Here, +is a confidence parameter which denotes how close the current
hyperplane < w. b = is to the optimal one. i is the label of x.

The significance of P,y jx, is as follows: If ¢ is high, which
signifies that the current hyperplane is close to the optimal one,
points having margin value less than unity are highly likely to be
the actual 5Vs. Hence, the probability P, ., retumed to the
corresponding query is set to a high value o When the value ¢ is
low, the probability of selecling a point lving within the margin
decreases and a high probability value (1 — ¢} is then assigned to a
point having high margin. Let us now describe a method for
estimating the confidence factor o

3.1 Estimating the Confidence Factor for an SV Set

Let the current set of support vectors be denoted by
S§={z.5,..., 5. Also, corsider a test set T = {x|.x..... ® )
and an integer & (say, k= vi). For every s © 5, computbe the
set of & nearest points in T, Among the & nearest neighbors, let
k' oand & number of points have labels +1 and -1
respectively. The confidence factor ¢ is then defined as

i

!

e=2% " min(kf, k7). (6}

| 13

=1

=
=

Mote that the maximum value of the confidence Factor ¢ is unity
when k' = k7 Wi=1..... 1, and the minimum value is zero when
min(k & ) =0 ¥i= 1 ....0. The first case implies that all the
support vectors lie near the class boundaries and the set 5§ =
[8.%:.....5]} i& close o the actual support vector set. The second
case, on the other hand, denotes that set 5 corsists only of interior
points and is far from the actual support vector set. Thus, the
confidence factor « measures the degree of closeness of 5 to the
actual support vector set. The higher the value of ¢ is, the closer the
current SV set is to the actual 5V set.

32 Algorithm
The active support vector learning algorithm, which uses the
probability Pr, , j.. estimated above, is presented below.

Let A= {x;.%z,.... %, | denote the entire training set used for
SWM design. 51705} denobes the set of support vectors of the set B
obtined using the methodology described in Section 2. 5, =
[81.%..... 5} is the support vector set obtained after tth iteration,
and < we. v = is the corresponding separating hyperplane. 0 =
(g 02.. ... .} is the setof p points actively queried for at step .
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TABLE 1
Comparison of Perfformance of 3VM Design Algonthms
Data Algorithm geni [ ) Py Pguery | tepa (507
Mean 5D
BatchSVM | D632 0.22 - - 1291
Cancer TnerSVM [ 8610 0.72 | 1092 | (L83 302
QuerySVM | 0621 0.27 [ 501 0.52 262
Star(QSVM | 06.43 0.25 | T.82 041 171
SM0 06.41 0.23 - - 91
BaichSVM | 0746 0.72 | - - BO1 =101
Twonoarm TneeSWVA | 92200 1.0 | 1270 0 024 7T
QuerySVM | D304 1.15 [ 12,75 | 007 410
SlarQSVM | 06.01 1.52 [ 1200 | (.02 300
SMO av.oz 0.5 - - &2
ToerSWVM | 37.90 (.74 - o4 | 470 =10?
Covertype | QuerySVM | 6577 0.72 - 0008 | 3.20 =101
StarQSVM [ 7483 0.77 - 0.004 | 2.01 =107
SM0O 74.22 041 - - .52 109
Microsoft | Iner3VM | 3210 0.22 - 010 | 2.54 =107
Weh QuerySVM | 3277 078 | - o | 197 10!
StarQSVM | 63.83 0.4 - 001 | 002 =10t
SMO 65.43 0.17 | - - | 0.22 %104

¢ is the confidence factor obtained using (6). The learning steps
involved are given below:

Initialize: Randomly select an initial starting set 0 of p instances
from the training set 4. Set + =0 and 5, = 5V} Let the
parameters of the corresponding hyperplane be < w. Iy = .
While Stopping Criferion is not satisfied:
=
While Cardivalityv(Ch) <
Randomly select an instance x © A
Let o be the label of x.
If yyiw, x4 b) = 1:
Select x with probability o Set ), = (U x
Else:
Select x with probability 1
End If
End While
8, = V(5 U,

t=1t4 L
End While

The set Sp, where T is the iteration at which the algorithm
terminates, containg the final 5V set.

Stopping Criterion: Among the p points actively queried at
each step ¢, let p,, points have margin greater than unity
(4w x4 b} = 1). Leaming is stopped if the quantity ’—-'J— evceeds
a threshold Th (say, = 0L9).

The stopping criterion may be interpreted & follows: A high
value of the quantity " implies that the query set contains a small
number of points with margin less than unity, No further gain can
be thus achieved by the learning process. The value of p,, may
also be large when the value of ¢ is low in the initial phase of

o Setih = O U

leaming. However, if both ¢ and p,,,, have high values, the current
SV oset is close o the actual one (Le., a good classifier is obkained)
and also the margin band is empty (Le., the learning process is
saturated ); hence, the leaming may be terminated.

4 EXPERIMENTAL RESULTS AND COMPARISON

Organization of the experimental results is as follows: First, the
characteristics of the four dat sets used are discussed briefly.
MNext, the performance of the proposed algorithm in terms of
generalization capability, training time, and some related quan-
tties, is compared with two other incremental support vector
leaming algorithms as well as the batch SVM. Linear SVMs are
used in all the cases, The effectiveness of the confidence factor o,
used for active querving, is then shudied.

41 Data Sets
Four public domain data sets are used, two of which are large and
bwo relatively smaller, All the data sels have bwo overlapping
classes. Their characteristics are described below. The dat sets are
available in the UCT machine learning and KDD repositories [15].

Wisconsin Cancer: The popular Wisconsin breast cancer daka set
containg 9 features, 684 instances, and 2 classes,

Twonorm: This is an artificial data set, having dimersion 20,
2 classes, and 20,000 points. Each class is drawn from a moultivariate
normal distribution with unit covariance matrix. Class 1 has mean
(o, a,. .., a}and class 2 has mean (—a, —a, ..., .

Forest Cover Type: This is a GIS data set representing the forest
cover type of a region There are 54 atiributes, out of which we
select 10 numeric valued attributes. The original data contains

o). a=-"1,
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Fig. 1. Varation of a, , (maximum, minimum, and average ower 10 runs) with CPU time for (g) Cancear, {b) Twonomm, (¢} Forest covartype, and (d) Microsoft Web data.

581,012 instances and eight classes, out of which only
495,141 points, belonging to classes 1 and 2, are considered here.

Microsaft Web Data: There are 30,818 examples with 294 binary
attributes. The task is to predict whether a user visits a
particular site.

4.2 Classification Accuracy and Training Time

The algorithm for active SV learning with statistical queries
(StatQSVM) is compared with two other techniques for incre
mental SV learning as well as the actual batch SVM algorithm.
Only for the Forest Cover type data set, batch SVM could not be
obtained due to its large size. The sequential minimal optimization
(SMO) algorithm [168] is also compared for all the dak sets. The
following incremental algorithms are considered: 1) incremental
SV leaming with random chunk selection [17]. (Denoted by
InceSVM in Table 1) 2) SV learning by querving the point closest
to the current separating hyvperplane [9]. (Denoted by QuervSY M
in Table 1.) This i also the "simple margin® strategy in [10].
Comparison s made on the basis of the following quantities:
Results are presented in Table 1.

1. Classificaion accuracy on best set (o). The test set has
size 10 percent of that of the entire data set, and contains
points that do not belong to the (90 percent) training set.
Mears and standard deviations (SDs) over 10 independent
runs are reported.

2. Closeness of the SV set We measure closeness of the SV set
(), obtained by an algorithm, with the corresponding

actual one (5). These are measured by the distance T
defined as follows [18]:

s A o o
D= EZ@:MLH | E;;M;;.S} b Dist(8.8).  (7)

where
lx, 5) = mind{x. y). Sy, &= mindix, i),
veS Te8

and Dist(§ 5) = max{max g d{x, 5), max,e 8y, 3-}} g
and ng are the number of points in § and 5, respectively.
dir. yhisthe usual Euclidean distance bebween points x and
. The distance measure has been used for guantifying the
errors of set approximation algorithms [18], and is related to
the £ cover of a set.

3. Fraction of training samples queried (n.,) by the

algorithms,
4. CPUtime it,,) on a Sun UltraSparc 3500M Hz workstation.

It is observed from the results shown in Table 1 that all three
incremental learning algorithms require several orders less
training time as compared to batch SVM design, while providing
comparable classification accuracies. Among them, the proposed
one achieves the highest or second highest classification score in
the least time and number of queries for all the data sets. The
superiority becomes more apparent for the Forest Cover type data
set, where it significantly outperforms both QuerySVM and
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InceSY L The QuerySVM algorthm performs better than InceSYM
for Cancer, Twonorm, and the Forest Covertype data sets.

It can be seen from the values of n,,., in Table 1 that the total
number labeled points queried by StatQSVM is the least among all
the methods including QuerySVM. This is in spite of the fact that
StabDSVM needs the label of the randomly chosen points even if
they wind up not being used for training, as opposed to QuervSVM,
which just takes the point closest to the hyperplane (and so d oes not
require knowing its label until one decides o actually rain on it).
The overall red uction in gy for SEHSVM is probably achieved by
its efficient handling of the exploration-exploitation trade off in
actve learning,

The SMO algorithm requires substantially less time compared to
the incremental ones. However, SMO is not suitable to applications
where labeled data is scarce. Also, SMO may be used along with the
incremental algorithms for further reduction in design Hme.

The nature of convergence of the classification accuracy on test
set ay, 4 is shown in Fig. 1 for all the data sets. It is observed that the
convergence curve for the proposed algorithm dominates those of
QueryS VM and InceSVM. Since the IncrSVM algorithm selects the
chunks randomly, the corresponding curve is smooth and almost
monotonic, although its convergence rate s much slower come-
pared to the other bwo algorithms, On the other hand, the
QueryS VM algorithm selects only the point closest to the current
separating hyperplane and achieves a high classification accuracy
in a few iterations. However, its convergence curve i oscillatory
and the classificaion accuracy falls significantly after certain
iterations. This is expected as queryving for points close to the
current separating hyperplane may often result in gain in
performance if the current hyperplane is close to the optimal
one. While querying for interior points reduces the rsk of
performance degradation, it also achieves poor convergence rate.
Owur strategy for active support vector learning with statistical
queries selects a combination of low margin and interior points
and, hence, maintains a fast conwvergence mate without oscillatory
performance degradation.

In apart of the experiment, the margin distributionof the sam ples
wasstudied as a measureof generalization performance of the SVM.
The distribution in which a larger number of examples have high
positive margin values leads toa better generalization performance.
It was observed that, although the proposed active learning
algorithm terminated before all the achial SVs were identified, the
SVM obtained by it produced a better margin distribution than the
batch SYM designed using the entire data set. This strengthens the
observation of [11] and [9] that active learning, along with early
stopping, improves the generalization performance.

4.3 Effectiveness of the Confidence Factor ¢

Fig. 2 shows the variation of the confidence factor ¢ for the SV sets
with distance T It is observed that, for all the data sets, « is linearly
correlated with D, As the current SV set converges closer to the
optimal one, the value of D decreases and the value of confidence
factor ¢ increases. Hence, ¢ is an effective measurne of the closeness
of the SV set with the actual one.

5 CoONCLUSIONS AND Discussion

A method for probabilistic active SVM leaming is presented.
Existing algorithms for incremental SV leaming either query for
points close to the current separating hy perplane or select rand om
chunks corsisting mostly of interior points. Both these strategies
represent extreme cases; the former one is fast but unstable, while
the later one is robust but slowly converging. The former strategy
is useful in the final phase of learning, while the later one is more
suitable in the initial phase. The proposed active learning
algorithm uses an adaptive confidence factor to handle the above
trade off. It is more robust than purely margin based methods and
potentially fster than random chunk selection because it can, to
some extent, avoid calculating marging for nonsupport vector
examples. The superiority of our algorithm s experimentally
demonstrated for some real life data sets in terms of both training
time and number of queries. The strength of the proposed
StatSVM algorithm lies in the reduction of the number of labeled
points queried, rather than just speed up in training, This makes it
suitable for environments where labeled data is scarce.

The selection probability (P, (5)) used for active learning is a
bwo level funcion of the margin (y(w x4 0} of a point x
Continuous functions of the margin of x may also be used. Also,
the confidence factor ¢ may be esimated using a kemel-based
relative class likelihood for more general kernel structures. Logistic
framework and probabilistic methods [14] may also be emploved
for estimating the confidence factor,
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