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Heat transfer due to permeable stretching.

Wall in presence of transverse magnetic field
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Exact similarity solution for the viscous flow due to stretching surface in the
presence of magnetic field is derived. Further exact solutions for the temperature dis-
tributions in terms of Kummer’s functions are obtained. Two cases of heat transfer
are considered: the sheet (i) with prescribed surface temperature and (ii) – the pre-
scribed wall heat flux. Both the cases are further extended to study the heat transfer
due to suction and injection. A simple relation for the two cases of heat transfer is
obtained.

1. Introduction

Flow problem with obvious relevance to polymer extrusion is an interesting
area of present-day research. In a melt-spinning process, the extrudate from the
die is generally drawn and simultaneously stretched into a filament or sheet,
which is thereafter solidified through rapid quenching or gradual cooling by
direct contact with water or chilled metal rolls. In fact, stretching imports a
unidirectional orientation to the extrudate, thereby improving its mechanical
properties and the quality of the final product greatly depends on the rate of
cooling. Crane [1] studied the two-dimensional boundary-layer flow caused by
the stretching of the sheet which moves in its own plane at a velocity that varies
linearly with the distance from the slit. This problem was extended to heat and
mass transfer with suction or blowing by Gupta and Gupta [2] who studied the
temperature and concentration distributions for isothermal case. Dutta, Roy
and Gupta [3] analyzed the temperature distribution in the flow over a stretch-
ing sheet with uniform heat flux. Grubka and Bobba [4] studied the heat
transfer characteristics of a continuous stretching surface with variable temper-
ature. Further study of magnetohydrodynamic (MHD) flow of an electrically
conducting fluid due to the stretching of the sheet is of considerable interest in
modern metallurgical and metal-working process. To be more specific, it may
be mentioned that many metallurgical processes involve cooling of the continu-
ous strips or filaments by drawing them through a quiescent fluid and that in
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process of the drawing, these strips are sometimes stretched. Mention may be
made of drawing, annealing and thinning of copper wires. In all these cases the
properties of the final product depend to a great extent on the rate of cooling.
By drawing such strips in an electrically conducting fluid subject to a magnetic
field, the rate of cooling can be controlled and final products of the desired
characteristics might be achieved. Pavlov [5] presented an exact similarity so-
lution of the boundary-layer equation for the steady two-dimensional flow of an
electrically conducting incompressible fluid due to stretching of a plane elastic
surface in a uniform transverse magnetic field. In this analysis he has neglected
the induced magnetic field under the assumption of small magnetic Reynolds
number. Andersson [6] has demonstrated that the similarity solution derived
by Pavlov [5] is not only a boundary layer equation but also represents an exact
solution of the complete Navier–Stokes equation. Chakrabarti and Gupta [7]
extended the above analysis of Pavlov to study the temperature distribution for
isothermal boundary when a uniform suction is applied at the surface. It would
be of interest to study the effects of power-law variations of temperature and
heat flux distribution on the heat transfer characteristics of stretching sheet in
presence of a uniform transverse magnetic field subject to suction or blowing.

The analysis is carried out in a general form allowing us, in a unified approach,
to describe the heat transfer on a stretching sheet in presence of a transverse
magnetic field with suction or blowing for different types of thermal boundary
conditions on the surface.

2. Formulation of the problem

Consider the flow of an incompressible electrically conducting fluid (with
electrical conductivity σ and thermal diffusivity α) due to the stretching of a
permeable flat sheet. It is assumed that the speed of a point on the sheet is
proportional to its distance from the slit at x = 0, y = 0. Further we assume
that the sheet lies in the x−z plane and is stretched along the x− axis. A uniform
transverse magnetic field B0 acts parallel to the y axis and the conducting fluid
occupies the half space y > 0. We have also assumed that the sheet is subjected
to either (a) prescribed surface temperature or (b) prescribed wall heat flux. The
steady velocity field [u(x, y), v(x, y), 0] that developed due to the stretching of the
sheet with velocity Ax satisfies the boundary-layer equation of mass, momentum
and thermal energy.

∂xu + ∂yv = 0,(2.1)

u∂xu + v∂yu = ν∂yyu − (σB2
0/ρ)u,(2.2)

u∂xT + v∂yT = α∂yyT,(2.3)
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where the induced magnetic field is neglected by assuming the flow for small
magnetic Reynolds number, as justified by Shercliff [8]. It is also assumed that
the external electrical field due to polarization of charges is negligible. Further we
assume that ν, the kinematic viscosity of the ambient fluid, is constant and the
gravity force gives rise to a hydrostatic pressure variation in the liquid. In order
to justify the boundary layer approximation, length scale in the primary flow
direction should be significantly larger than the length scale in the cross-stream
direction. In fact, the flow takes place within a thin layer of thickness (ν/A)1/2

due to the stretching of the sheet, the scale ratio x/(ν/A)1/2 ≫ 1. Further it
is possible to define a local Reynolds number Rex = Ux/ν = Ax2/ν which
initially equals the square of the above scale ratio. Thus, just as in aerodynamic
boundary layer theory, cross-stream diffusion of momentum and thermal energy
can only be neglected at a high Reynolds number. The corresponding boundary
conditions are:

u(x, 0) = Ax, v(x, 0) = Vw(x), u(x,∞) = 0,(2.4)

either Tw(x, 0) = T1(x), T (x,∞) = T∞,(2.5)

or, −k∂yT = qw(x) for y = 0, T (x,∞) = T∞,(2.6)

where Vw denotes the lateral mass flux of velocity which occurs due to suction
or injection. Tw, T∞ and qw denote the temperature at the wall, temperature at
a large distance from the wall and heat flux at the wall, respectively. Assuming
the functional structure of the similarity solutions in the form :

u(x, y) = Axf ′(η),(2.7)

v(x, y) = − (νA)1/2 f(η),(2.8)

η = (A/ν)1/2y(2.9)

and substituting (2.7)–(2.9) in the system of Eqs. (2.1) to (2.3), it can be shown
that similarity solution of the above set of boundary layer equations exists and
reduces to:

(2.10) f ′′′ + ff ′′ − (f ′)2 − Hf ′ = 0

subject to the boundary conditions

(2.11) f(0) = fw, f ′(0) = 1, f ′(∞) = 0,

where H(≡ σB2
0/(Aρ)) and fw(≡ −Vw/(νA)1/2) denote the magnetic parameter,

suction/injection parameter, respectively and prime (′) denotes derivative with
respect to the similarity variable η. In Eq. (2.11), fw = 0 corresponds to an
impermeable wall, fw > 0 and fw < 0 denote respectively the suction and
injection of the fluid through the permeable wall.
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3. Exact analytic solutions for fw 6= 0

System of Eqs. (2.10) and (2.11) gives an exact analytical form for the stream
function f as:

(3.1) f(η) = fw + (1/β)
[

1 − exp(−βη)
]

,

where

(3.2) β = 1/2
[

fw +
√

f2
w + 4(H + 1)

]

.

The above form of solution was first obtained by Gupta and Gupta [2] for H =
0. In absence of the suction/injection velocity fw (fw = 0), the solution (3.1)
exactly agrees with Andersson [6]. The skin friction acting on the stretching
surface in contact with the ambient fluid of constant density (ρ) is given by

τw = ρν
∂u

∂y
(x, 0) = ρ

√
A3ν xf ′′(0).

Substituting the value of f ′′(0) deduced from (3.1) and (3.2) we get

(3.3) τw = −1

2
ρ
√

A3ν x
[

fw +
{

f2
w + 4(H + 1)

}1/2
]

.

It is clear from Eq. (3.3) that the skin friction τw is always negative irrespective
of the sign of fw. This implies that the stretching wall experiences a drag for
any finite value of fw. Then the drag increases as H increases.

4. Heat transfer

In this section we are interested to study the heat transfer for two different
heating processes.

4.1. Prescribed surface temperature

We assign a general functional structure in Eq. (2.5) to prescribe the tem-
perature at the boundary as

(4.1) Tw = T1(x) = T∞ + Cxr for y = 0

and

(4.2) T = T∞ as y → ∞,
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where r is the temperature parameter and T∞ denotes temperature at a large
distance from the wall and it is constant. For r = 0, the thermal boundary will
be isothermal. Introducing

(4.3) θ(η) =
T − T∞

Tw − T∞

in Eq. (2.3) and using (2.9), we get

(4.4) θ′′ + Pr[fθ′ − rf ′θ] = 0

where Pr = ν/α is the Prandtl number. The corresponding boundary condi-
tions (2.5) reduce to

(4.5) θ(0) = 1, θ(∞) = 0.

Substituting the values of f(η) and f ′(η) from Eqs. (3.1) in (4.4) and using a
new variable ζ as

(4.6) ζ = −(Pr/β2)exp−βη,

we arrive at

(4.7) ζ
d2θ

dζ2
+ (1 − P − ζ)

dθ

dζ
+ rθ = 0,

where

(4.8) P = Pr(fwβ + 1)/β2.

The corresponding boundary conditions (4.5) reduce to

(4.9) θ

(−Pr

β2

)

= 1, θ(0) = 0.

The solution of (4.7) satisfying (4.9) can be obtained in terms of Kummer’s
function (Abramowitz and Stegun [9])

(4.10) θ(ζ) = [−β2ζ/Pr]
P M(P − r, P + 1, ζ)

M(P − r, P + 1,−Pr/β2)
,

where M(a, b, x) = 1 +
∑

∞

n=1

anxn

bnn!
, an = a(a + 1)(a + 2)(a + 3)...(a + n − 1)

and bn = b(b + 1)(b + 2)(b + 3)...(b + n− 1). Equation (4.10) can be expressed in
terms of η as

(4.11) θ(η) = [exp−βPη]
M(P − r, P + 1,−(Pr/β2) exp(−βη))

M(P − r, P + 1,−Pr/(β2))
.



92 B. S. Dandapat, S.N. Singh, R. P. Singh

The wall temperature gradient becomes

(4.12) θ′(0) = −βP +
P − r

P + 1

(

Pr

β

)

M(P − r + 1, P + 2,−Pr/β2)

M(P − r, P + 1,−Pr/β2)
,

and the local wall heat flux can be expressed as

(4.13) qw = −K(∂yT )w = −kC

√

(

A

ν

)

xrθ′(0).

The dimensionless surface temperature gradient θ′(0) is related to the local Nus-
selt and Reynolds numbers:

Nux =
qw(x)x

K(Tw(x) − T∞)

and

Rex =
Ux

ν
=

Ax2

ν
,

as

(4.14)
Nux√
Rex

= −θ′(0).

A few special cases may be deduced depending on the relative values of r and P .

4.1.1. Case of r = P. We have

(4.15) θ(η) = exp−βPη

and

(4.16) θ′(0) = −βP.

θ′(0) < 0 implies that the heat flows from the stretching surface to the ambient
fluid. We like to add a few comments regarding the physical validity of the
temperature fields. It is clear from Eq. (4.10) that the temperature field may
become positive or negative, depending on the values of the Kummer’s function
at different ranges of r and P . It is therefore obvious for a physically consistent
result that the parameter range should be such that the corresponding θ is
everywhere finite and non-negative, i.e.

(4.17) 0 ≤ θ(η; r, P ) < ∞ for any 0 ≤ η ≤ ∞.
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A negative θ is unrealistic since according to Eq. (4.3) we have

(4.18) T = T∞ + Cxrθ.

Now for θ to be negative for any region of η, the steady temperature T (x, y)
of the ambient fluid would become smaller than T∞ if C > 0 and greater than
T∞ if C < 0; in spite of the fact that, in accordance with Eq. (4.1), the wall
temperature is everywhere higher for C > 0 and everywhere lower than T∞

for C < 0. Such situations are physically impossible. Therefore for a physically
consistent result one must have

(4.19) P ≥ r.

4.1.2. Case of r = 0 and P 6= 0. We have

θ(η) = γ(P, (Pre
−βη/β2))/γ(P, Pr/β2)

and
θ′(0) = −β(Pr/β2)P e(−Pr/β2)/γ(P, Pr/β2),

where γ is incomplete gamma function. This result coincides with Gupta and
Gupta [2] for isothermal case.

4.1.3. Case of r = −1 and P > 0. We have

θ(η) = exp[Pr(1 − [fwβ + 1]βη − e(−βη)/β2] and θ′(0) = −Prfw < 0.

4.2. Prescribed wall heat flux

In this case the thermal boundary conditions will be

(4.20) −k∂yT = qw = Dxs for y = 0

and

(4.21) T = T∞ as y → ∞,

where s is the heat flux parameter. For s = 0 the stretching sheet is under
uniform heat flux. We assume the similar solution as

(4.22) T = T∞ +
Dxs

K

√

ν/A g(η)

where η =
√

A/ν y. Using Eqs. (3.1) and (4.22) in (2.3), we get

(4.23) g′′ + Pr

[

fw + (1 − exp−βη)/(β)
]

g′ − Prexp−βηsg = 0.
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The corresponding boundary conditions (4.20) and (4.21) will reduce to

(4.24) g′(0) = −1 and g(∞) = 0.

Introducing (4.6) in (4.23) and (2.3), we have

ζ
d2g

dζ2
+ (1 − P − ζ)

dg

dζ
+ sg = 0,(4.25)

g′(−Pr/β2) = −β/Pr, g(0) = 0,(4.26)

where P is defined in Eq. (4.8). Similarity solution for (4.25) and (4.26) can also
be expressed in terms of Kummer’s function

(4.27) g(η) =

(

1

βP

)

exp−βPη M(P − s, P + 1, (−Pr/β2)exp−βη)

M(P − s, P,−Pr/β2)
.

The wall temperature Tw can be obtained as

(4.28) Tw − T∞ =
Dxs

k

√

(ν/A) g(0).

For a consistent and physically realistic temperature field one must have

(4.29) P ≥ s.

Again several closed-form solutions can be obtained from (41) for specific values
of s and P and these solutions are presented below:

• for s = P 6= 0,
g(η) = exp[−βPη]/(βP )

and
• for s = 0, P 6= 0

g(η) = β−1

(

β2

Pr

)P

exp

(

Pr

β2

)

γ(P, Pre
−βη/β2).

5. Results and discussion

To get insight into the problem, a few figures are drawn by evaluating

Eqs. (3.1), (4.11), (4.12) and (4.27) for different values of the parameters.

Figure 1 represents the variation of f ′(η) with respect to η for different values of

suction, injection and magnetic parameters. It is clear that as suction parameter

increasing (curves b and e), f ′(η) decreases while for increasing of injection pa-

rameters (curves c and f), f ′(η) increases. Further it is clear that when magnetic
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parameter increases either for suction (curves a and b) or for injection (curves c

and d), f ′(η) decreases for all values of η. This is due to the fact that the increase

of H implies the increase of Lorentz force which puts greater resistance to the

flow, and as a result the flow decelerates. For prescribed surface temperature

case, Eqs. (4.11) and (4.12) are evaluated for different values of Pr, H, fw and r.

The results are presented in Figs. 2, 3, 4 and 5. Figure 2 represents the variation

of temperature distribution with η for different values of Pr, H and r in the case

of suction. Figures 3 and 4 show the temperature variation with η for injection

when Pr, H and r vary. It is clear from Fig. 2 (in case of suction) that the tempe-

rature θ at a given point decreases if the Prandt number (Pr), suction (fw)

and r the temperature parameter increase while θ increases with the magnetic

parameter H. But for case of injection, as depicted in Fig. 3, it shows that the

temperature θ at a given point decreases with the increase of Pr and r for all

r > 0, where as θ increases with the increase of magnetic parameter H, injection

parameter (−fw) and r for all r > 0. Figure 4 shows that, for r > 0, heat flows

from the stretching surface to the ambient fluid. The magnitude of the temper-

ature gradient increases as r increases (curve c and d). Further for r = −2, the

wall temperature gradient is positive and heat flows into the stretching surface

from the ambient fluid. It is to be mentioned here that heat always flows from
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Fig. 1. Variation of f ′(η) with η for different values of suction, injection and magnetic
parameters, (a) fw = 1, H = 1; (b) fw = 1, H = 5; (c) fw = −.2, H = 5; (d) fw = −.2,

H = 10; (e) fw = 2, H = 5; (f) fw = −.8, H = 5.
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Fig. 2. Variation of θ with η for different values of fw, H, Pr and r (a) fw = 1, H = 1,
Pr = 1, r = −1; (b) fw = 1, H = 1, Pr = 1, r = 1; (c) fw = 2, H = 1, Pr = .25, r = 1;

(d) fw = 1, H = 1, Pr = .25, r = 5; (e) fw = 1, H = 1, Pr = .25, r = 1; (f) fw = 1,
H = 15, Pr = .25, r = 1.
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Fig. 3. Variation of θ with η for different values of fw, H, Pr and r (a) fw = −.1, H = 3,
Pr = .25, r = 1; (b) fw = −.2, H = 1, Pr = .25, r = 1; (c) fw = −.1, H = 1, Pr = .25, r = 1;

(d) fw = −.1, H = 1, Pr = .25, r = 3; (e) fw = −.1, H = 1, Pr = .5, r = 1.
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Fig. 4. Variation of θ with η for different values of fw, H, Pr and r (a) fw = −.1, H = 1,
Pr = .25, r = −2; (b) fw = −.1, H = 1, Pr = .25, r = 0; (c) fw = −.1, H = 1, Pr = .25,

r = 1; (d) fw = −.1, H = 1, Pr = .25, r = 2; (e) fw = 1, H = 1, Pr = .25, r = −2.
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Fig. 5. Variation of θ′(0) with η for different values of fw, H and r (a) fw = 1, H = 1,
r = 1; (b) fw = −.5, H = 1, r = 1; (c) fw = −.1, H = 1, r = 1; (d) fw = 1, H = 15, r = 1.
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the stretching surface to the ambient fluid in case of suction. One can also see

from Fig. 4 that zero temperature gradient occurs (curve a) implying heat flows

into the thermal boundary layer from both the stretching sheet and the ambi-

ent fluid. The wall temperature gradient θ′(0) is plotted as a function of Pr for

selected values of suction/blowing parameter, magnetic parameter H and r in

Fig. 5. It is clear from Fig. 5 that θ′(0) becomes more negative for suction than

injection. Further one can see that the wall temperature gradient θ′(0) is negative

for r > 0. For the prescribed wall heat flux case, the temperature distribution

obtained in (41) is plotted in Figs. 6 and 7 for two different cases of suction and

blowing respectively, when other parameters Pr, H and s change. It is clear from

Fig. 6 that g at a point decreases as s, fw or Pr increases, while increase of H

produces increase of g. Figure 7 shows the temperature variation g with η for

blowing. It is evident that g increases with the increase of the blowing parameter

fw or H, while g decreases when Pr or s increases. It is to be pointed out here

that the dimensionless temperature distribution θ = (T − T∞)/(Tw − T∞) is

equal to the ratio of g(η) and g(0). This shows that

(5.1) θ(η) =
g(η)

g(0)
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Fig. 6. Variation of g with η for different values of fw, H, Pr and s (a) fw = 2, H = 1,
Pr = .25, s = 1; (b) fw = 1, H = 1, Pr = .25, s = −2; (c) fw = 1, H = 5, Pr = .25, s = 1;
(d) fw = 1, H = 1, Pr = .25, s = 5; (e) fw = 1, H = 1, Pr = .5, s = 1; (f) fw = 1, H = 1,

Pr = .25, s = 1.
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Fig. 7. Variation of g with η for different values of fw, H, Pr and s (a) fw = −.15, H = 2,
Pr = .25, s = 1; (b) fw = −.1, H = 2, Pr = .25, s = 1; (c) fw = −.1, H = 1, Pr = .25, s = 1;

(d) fw = −.1, H = 1, Pr = .25, s = 5; (e) fw = −.1, H = 1, Pr = .75, s = 1.
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Fig. 8. Variation of temperature distribution with η for prescribed surface temperature
and wall heat flux (suction) (a) fw = 1, H = 1, Pr = .25, r = 1; (b) fw = 1, H = 1,

Pr = .25, s = 1.
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if only r is replaced by s. Through analogy with Fig. 4, one can say that the wall

temperature gradient for prescribed wall heat flux condition will be negative for

s = 0, 1 and 2. This implies that heat flows from the stretching surface to the

ambient fluid. For s = −2, the sign of temperature gradient changes but the

value of g(0) will be negative indicating the heat flux at the sheet flows into

the fluid. Further we conclude from (4.21) that the nature of the temperature

distribution in both the cases will be same except for a shift by a constant

g(0). This result can be seen in Figs. 8 and 9 representing the comparison of

temperature distribution for both the suction and blowing when the prescribed

surface temperature θ and prescribed wall heat flux g are considered.
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Fig. 9. Variation of temperature distribution with η for prescribed surface temperature
and wall heat flux (injection) (a) fw = −.1, H = 1, Pr = .25, r = 1; (b) fw = −.1, H = 1,

Pr = .25, s = 1.
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