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Abstract:
A novel geometric model of a noncommutative plane has been constructed. We demonstrate
that it can be construed as a toy model for describing and explaining the basic features of
physics in a noncommutative spacetime from a field theory perspective. The noncommutativ-
ity is induced internally through constraints and does not require external interactions. We
show that the noncommutative space-time is to be interpreted as having an internal angular
momentum throughout. Subsequently, the elementary excitations - i.e. point particles - living
on this plane are endowed with a spin. This is explicitly demonstrated for the zero-momentum
Fourier mode. The study of these excitations reveals in a natural way various stringy signatures
of a noncommutative quantum theory, such as dipolar nature of the basic excitations [7] and
momentum dependent shifts in the interaction point [8]. The observation [9] that noncommu-
tative and ordinary field theories are alternative descriptions of the same underlying theory, is
corroborated here by showing that thev are gauge equivalent.

Also, treating the present model as an explicit example, we show that, even classically,
in the presence of additional constraints, (besides the usual ones due to reparameterization
invariances), the equivalence between Nambu-Goto and Polyvakov formulations is subtle.
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Non-Commutativity in Quantum Field Theory (QFT) has a long history. It was originally
postulated by Snyder [1] as a means of a {Lorentz invariant) regularization to cure the short
distance singularities. In a different scenario, Connes 2] introduced Non-Commutative (NC)
geometry by extending the standard differentiable manifold to a mixed one with an additional
discrete NC manifold, where the Higgs field, (and subsequently the Higgs potential), appear as
part of the gauge field structure. For various reasons the above formulation did not gain much
popularity.

With the advent of D-brane solutions [3] in open string theory, the role of noncommutativity
in space-time [] has gained importance since it reflects the low energy stringy behavior in a
(constant) background field. The effective NC gauge theory is more tractable than the original
string theory as the former is (computationally ) very close to field theory in ordinary space-time.
The NC is induced in the D-branes when the open string endpoints are on the branes, in the
presence of a two-form background field, via a qualitative change in the boundary conditions
(5l 6]

A very interesting feature of NC theory is that in the charged sector, the basic excitations act
as dipoles [7] in U(1) gauge interactions. Another peculiarity is that a consistent quantization
requires a momentum dependent shift in the interaction point [§, leading to a specific kind of
non-locality. A further crucial observation of [ is that ordinary and NC gauge theories are
alternative descriptions, (dictated by the choice of regularization), of the same quantum theory.

The goal of this Letter is to remove some of the mysteries surrounding NC theory and to
establish the noncommutativity from fundamental principles. In the present work we demon-
strate that the above mentioned alien features of an NC QFT can be accommodated in a natural
way, staving within the realm of conventional QFT on a differentiable manifold. Thus their
origin can be studied in a unified manner at a deeper level. ' This requires the construction
of a noncommutative space-time hypersurface on which a field theory can be studied directly.
Essentially the present work is a toy model of such a surface.

Here we have initiated the study of a relativistic. reparameterization invariant theory of such
a noncommutative surface, both in the Nambu-Goto and Polvakov formalism. We stress that,
on this plane, the string induced effects of noncommutativity mentioned above, are generated
and can be interpreted in a natural way. The NC is induced internally through constraints
and does not require an external interaction. Obviously, it can be reduced to conventional NC
theory for the sake of comparison. On this NC surface, we show that "point” particles will
behave like dipoles [7] in electromagnetic interaction. Occurrence of the non-locality [§], via
the momentum dependent phase shift in the interaction vertex, is explained naturally. Also,
we demonstrate that in the Polyakov formulation, the NC is induced, depending on our choice
of gauge. This is reminiscent of the equivalence between the NC and ordinary gauge theories
[[]. In the present setup, the celebrated Seiberg-Witten map [J] might possibly be interpreted
as a gauge transformation.

The above has been achieved by the extension of the target space X*#(o, 7) to(X* (o, 7),
N, 7)) where NN, = 1. Hence the extended manifold is a bundle of unit spheres over the
flat X*(&, 7) manifold. In physical terns, an internal angular momentum has been generated
by N throughout the space-time in a reparameterization invariant way. This leads to a spinin

! Generally, one considers the effective theory as an NC field theory on the brane and simply postulates the
fundamental NC brane coordinate relation [X#, X¥| = i6”" and proceeds. Also the properties [T} [F] are stated
without explanation.



the fundamental point particle excitations, resulting in a magnetic moment and subsequently
the above observations follow smoothly. Indeed, this is very appealing since spin is a very
fundamental and well studied geometrical property. This enlargement is, in spirit, somewhat
akin to the Superspace formulation. Indeed, it would be interesting if a field theory can be
developed in this extended manifold and matched to the conventional NC theory. Construction
of the model and its applications constitute the first part of the paper.

In the second part, we comment on the established notion, (which is used throughout in
string theory context [I0]), that elassically the Nambu-Goto (square root action) and Polyakov
(induced metric action) forms are completely equivalent. We explicitly demonstrate that in the
presence of constraints, showing the equivalence between the theories resulting from the above
two pictures raises subtle points and in fact the Polyakov form happens to be more general than
the Nambu-Goto form, in the sense that the NC structure is fixed in the Nambu-Goto form,
whereas it is gauge choice dependent in the Polyakov form. Lastly, we make a brief observation
on the quantum theory.

As mentioned before, our model consists of the coordinate X# (o, 7) coupled to another field
N¥{a, 7) in a reparaterization invariant way. The N* manifold is compact with NN, = 1.
Similar to the extension of the relativistic point particle action to the string action, our model
can be thought of as an extension of the relativistic spinning point particle [TTl [T2] with the
spatial parameter ¢ being infinite in extent as well. N* imparts the spin.

Let us consider the Lagrangian,

L =2[(XN)(X'N') - {J‘Zﬁ”}{X’:"‘L“}]I—? =2A, (1)
where (X N') = %% ete. and the conjugate momenta are

'ﬂfa 1 Pty ww P moe A ﬂf' 1 IRy e op ot !
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The primary constraints in the theory, indicating reparamerization invariance, are
ay! . PEA —
PP E0; PeN, =0. (3)
The resulting First Class Constraint (FCC) algebra # (or Schwinger algebra) is given by,

-j(l_.‘_:' — {p}:’!} + {pl-._rjﬁlprr}

(@) xa(@)} = (o) + x1(@)F (0 — ') i {xa(0),x2(e)} = (xa(0) + xa(o)d (o — ),

{x1(e), x2(0")} = (x2(0) + x2(0"))8' (e — '), (4)
where the Poisson brackets are,
{X*(e), P*(c')} = g*8{c — ') , {N¥(0), P (a')} = g d{c — o). (5)

*In the Dirac Hamiltonian constraint analysis [[3] the commuting (in the Poisson Bracket sense) constraints
are termed as First Class Constraints (FCC) and the non-commuting ones as Second Class Constraints (SCC).
The former signals pauge invariance and the latter modify the symplectic structure from Poisson Brackets to

Dirac Brackets.
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In a geometric interpretation, just as the string action constitutes the elementary area in the
o — 7 plane, the action from {IJ) can be worked out to represent an area in the ¢ — 7 plane (see
appendix). So far, this is a free theory with (decoupled) wave equations satistied by X*# and
N#, This will be shown later.

The N* manifold is now compactified by invoking the constraint y3 = N? —1 = 0 via the
multiplier A,

L=2A+ MNN?-1). (6)

As stated before, the model is motivated by an earlier spinning particle model [12], which was
later amended [T1] to a first order Hamiltonian form. vy leads to more primary constraints,
the full set being,

17 X211 Xas N?-1 s W =(PN); 9= (PPy) — {XINI} : (7)

out of which ys and ¢ are FCCs and SCCs [[3] respectively. The canonical Hamiltonian
vanishes on the constraint surface, as it should in a reparameterization invariant theory., The

following definition of Dirac Bracket [13],

{A'- B}DB = {‘4-1 B} = {A'. Wi }{"n'iri'. o }_] {'t,i'_-,.. B} t,j=12, (8)
vields the new symplectic structure #
, Py N, — Py,N, NI 7
{(Xu(0) Xo(0")} = —5—16 3 {Xu(0), P(0)} = 9 — 3 (0)0
PP, PuX, PXy

{Nu(o), Pxu()} = (9w — priy)d i {Pwlo). Pru(d)} = {W{ﬂ}‘FmW )d'
(9)

iy N1 Py P, N X! ;
{}:_u{g}'. Jﬁ"b’{g }} - _P + M‘ﬂ{; {“‘f {g} P'-,L,{(T }} _F_; _'_ﬁr,—gﬁ - 2 ﬁrr_;{g}ﬁ :
PN, ;
{ VP{{T} P {{T }} Pﬂ_;l + ‘;l',"_rg {ﬂ'}{; * {1{]}
The notations in the above are & = d,d8(c — ') , 3 ;i = %{a} Using the above brackets it is
straightforward to check that
- f{i’ﬂ{PLXV - PBX,+ Py, N, — Py, N,) (11)

generates the angular momentum algebra and transforms the vectors properly,

{Jpwr Valo)} = guaViu(o) — gua Vil o), (12)

where V, = X, P,, N,, Py,. Clearly the spin contribution is coming from the N* sector. Thus
we have constructed the NC space-time X* as is evident from the non-vanishing { X, X'} bracket.
The NC factor is not a constant, which would have violated Lorentz invariance. Introduction

Hnless otherwise stated, henceforth all {, } are Dirac brackets.



of spin has turned the ordinary space-time into an NC one on the ¢ — 7 plane. Thus, we have
succeeded in constructing a model for the noncommutative plan and {I0) is the cherished form
of the noncommutative structure. This is the major result of the present work.

A quite involved computation reveals that the Schwinger algebra [} is intact if one exploits
the new symplectic structure given in {[@I0). This establishes the fact that the diffeomorphism
symunetry is not destroved by the introduction of a constraint (y4 in the present case) from
outside. We will use this idea in a crucial way later in the Polvakov formulation.

Now that the field theoretic model for the NC plane is at hand, we can check whether it
leads to some of the intriguing features [T [8] of elementary (NC) excitations, in a fundamental
way. Note that although these observations [Tl B have been made in connection with string
theory, what really matters is the underlying NC spacetime structure. In our more general field
theoretic formulation of the NC spacetime, these results are reproduced naturally. To discuss
the manifestations of noncommutativity in our toy model, we concentrate on the (so called)
point particles living on the NC plane constructed here to analyze how this NC has affected
them. However, deriving the particle properties from the involved symplectic structure given
in ([@O0), this turns out to be non-trivial.

For a conventional field theory, with the canonical equal-time Poisson bracket

{Q(o). P(d)} = d(c — o). (13)

the particle-like properties are revealed upon Fourier mode expansion,
1 ;
Qlo,7) = —= qi(7)e*, 14
@) = 7z T a0 (19)
where for convenience we have confined the system inside L. Using the identity for discrete k
1 Sk e
I f e* R e = 8w, (15)

the discrete mode g, and its conjugate momentum p;, are expressed as

1 — ik 1 ik
Gl =—fr: N, 7)o, pel(T =—ft‘:' Pleo. tde, 16
() = 7 [ Q.o mlr) = = [ = Pla, ) (16)
it is easy to verify that
{@r, P} = O (17)
In the above, all the modes are decoupled and behave in an identical canonical fashion. Notice

that for the k = 0 oscillator, this result is obtained trivially. By utilizing the following relations,

1 1
qlt) = 7I f Qlo. T)de, pylt) = N/7 f Pla,7)de, (18)
we can derive,

(a0} = | [ dodo'{Q0). P} = 7 [do =1 (19)

In the present case, performing a similar analvsis for the & = 0 modes of all the field variables,
we find that [QfI0) reduces to a much simpler algebra,

Pn, My — Pu, T p.p
T FP! b g {:I:jh Iiv} = fuv ; {'.H._u-. Iinp} = {y‘,:w - %}

{805 %0 F=



Ty, pp Prpbh

{I.“ pﬂy} = _p—-_:'. {2“}
where 2#(7) = 24(7) = 1 [ do X,(o, 7) ete.. Naively this is obtained from (@II0) by integrating
out o, which amounts to dropping the o-derivative terms (since &k = () and &. Clearly the
brackets for the non-zero k-modes are more complicated.

Notice that the above set 0] is identical to the Dirac Brackets given in the corrected
version of the spinning particle model [1I]. This algebra can be thought of to be originated
from the first order Lagrangian posited in [I1] with p* denoting the mass of the particle. In
this sense, our model in 2+ 1-dimensions can be interpreted as a field theoretic model for the
anyon, excitations having arbitrary spin and statisties [T1l [12]. Similar type of spin induced
NC in a variant [I] of the present model has been discussed in [13)].

The {x, r}noncommutativity that appears in [Z0) is actually a generalization of the more
restricted form that is commonly used, where {x,.x,} = 8,,. 8,, being a constant c-number
tensor. However, non-constant and operatorial noncommutativity, of a different form. have also
appeared in [I6]. On the other hand, as we discuss below, reducing the noncommutativity in
our model to the above constant form is quite subtle.

Since we have already related our brackets @O0 to that of the spinning particle model
syimplectic structure [L1], let us rely more heavily on [11] where a first order Hamiltonian for-
malism has been discussed. Leaving out the details, (which are provided in [11]), the equations
of motion are obtained as,

{#pnu} = -

P.=0,0,=0 —=p,(7r) = pl:.. n,(r) = n.:. (21)

One further gets,
By = Eﬁpﬂ s Pnp = —Jlﬂﬂ.l (22)

with A and X being arbitrary. The equations [ZZ)) are integrated to
2u(r) = (Y + 20, () = BIS + S, (23)

where & = 2A 15' = —A. Exploiting the relation (Z3) in the noncommutativity bracket, we get

i, ol Puuly = PuyTip
e

4

- [{ i'ﬂ g ot "nd — (8n? —|—pﬂﬂ}ﬂ.::]

0 0
pﬂ_u_ 1 pﬂyf I
_ Py~ Party, (21)
i
Clearly the right hand side is time independent. Finally, using {23). we derive the complete
symplectic structure that is stable under time (7) translation,

LU 1] ” ” () .00
Do — p o
{;]' H} _ fnp [Jp? e _H . :J','l:.lplj} = v ; { Pﬂy} —{ Guw — j:_!}
.””p” pﬂﬂpﬂ
{zf,nd} = ——+£=; {2, =2 (25)

The constant c-munber NC parelmt:tnr {x,, 2.} = B, is finally generated by considering
the spontaneous synunetry breaking reasoning, originally developed in the context of Standard
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Model extension [I7], and later used in demonstrating the violation of Lorentz invariance in
NC field theory [I8]. Here, the vector fields attain a non-vanishing expectation value in the
vacuum at low energy.’

Let us now discuss the effects of the noncommutativity exhibited in (Z5) in the quantum
theory. However, [Z3)) is not convenient for the conventional quantization programme of el-
evating the classical brackets to quantum commutators via the correspondence principle. To
facilitate this, we move on to a canonical (¢*, Q") setup with

0.9 =@ Q] =0; [¢", Q"] =ig®*

and solve the non-trivial spacetime algebra in Z3)) by rewriting [15],

ot :{;P o %ij@y . pju o QP‘ {25}

Thus the original theory should be reexpressed in the g, () variables in the quantized version.
This momentum dependent shift, a hallmark of NC quantum theory [§], appears here as a
prerequisite for quantization.

Returning to more down to earth physics, the 3+1-dimensional Coulomb potential due to
a point charge e in the noncommutative spacetime now turns out to be

£ . . e .. E {l_ﬁijﬁ'i@m
|2l [(q? —07g:Q; +0(8%)]F |4l 24!

+ O(6*)). (27)

For simplicity, we have considered 8% = (0 in the above relation. Clearly the second term in
[ZD) reflects the dipole nature of the excitation, with a dipole moment d; = —Lef;QQ7 [7].

The dipole feature is also apparent if we place the point charge e in an external electrostatic
potential ¢. The energy W of the system in the NC plane is

W = ed(z) = eola,— 504Q") = edla) — 5e0,QP 9(q) + O) = elg) —diE' + O(), (28)

where E' = —d'¢ is the electric field. The dipole energy term is again reproduced. This
constitutes the first part of the work.

Obviously the Polyakov formulation of a reparameterization invariant theory is more trans-
parent than the Nambu-Goto version involving a square root action, that we have studied so
far. In this part we discuss the Polyvakov formulation of the above model and ascertain how far
it is justified to consider the (previous) Nambu-Goto and Polyakov forms as equivalent even in a
classical scenario. (This means we are not considering the quantum anomalies.) The Polvakov
form of the unconstrained model {I) is,

£r = /T OX BN (29)

‘In the special case of the target space being 2 + 1-dimensional [II] [[2], the spin sector can be removed
altogether by exploiting the constraints. This leads to the NC algebra {z#, 2%} = ¢#¥*p,. In particular, this
means that — {3:1,3:2} = py = m = constant. Hence, this is compatible with the constant c-number -
noncommutativity, at least in the nonerelativistic limit. It is not clear whether similar phenomenon will oceur
in higher dimensions.
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The non-dynamical metric 4** can be eliminated to reproduce the Nambu-Goto Lagrangian ()
in the conventional way. Diffeomorphism and Weyl invariances allow us to enforce locally the
conformal gauge, v = diag(—1, 1), which reduces {Z0) to a simple form,

Lp = —[-(XN) + (X'N)]. (30)

This will lead to two decoupled free wave equations for X* and N*, as mentioned before.
However the constraint ys will change the dynamics of X* to,

X0 R MR — XN =10, (31)

The Hamiltonian is
- IR % L ¥ - :

Mo =1(PPy)l (X' NY)s B=, Po,=X, (32)
Since we are considering a classical theory, for the moment we ignore the fact that the Hamil-
tonian in [(3Z) is not positive definite and invoke the constraint yv4 = N? — 1 on this model.
Note that exploiting the conformal gauge before invoking the constraint yy is justified from our
previous experience of working in Nambu-Goto picture where we saw that v, does not spoil
the invariances. The conformal gauge removes the reparameterization invariance and we must
check the stability of y4 under time translation. However, time persistence of the successive
constraints now generates an infinite chain of constraints of the following form,

xa=N*—=1—= (NP)— P*-N? - (PN")—(P'N') - P? - N" > .,
Gy {Pﬁfﬂ} s {P”ﬁr”} - P.f.r‘] i Jq*r.f.rfj g {33}

Notice that all the constraints in 33) are in involution, i.e. the constraints are FCC, the phase
space being canonical ). Quite elearly this (Polyakov) constrained system is very different
from the finite number of FCC and SCCs present in the Nambu-Goto version given in (). In
fact one can choose a gauge in the Nambu-Goto form [] which is equivalent to the conformal
gauge in the Polvakov form. However, the structure of the SCCs (inducing the NC) is fixed in
the Nambu-Goto form. This is precisely the disparity, even in the classical scenario, between
Nambu-Goto and Polvakov formulations in the presence of constraints. that we had set out to
establish.

A correspondence between the two formulations can be obtained if in the Polvakov form we
choose a suitable gauge. In particular let us choose 1 = (PPy) — (X'N') of [0} as the gauge
condition. In the chain [@3), it will keep the FC nature of y53 = N? — 1 intact. The gauge
condition vy together with (NP) = 4, are rendered to an SCC pair. Subsequently rest of the
FCCs will drop out of the picture once the Dirac brackets are exploited. which are precisely
the ones derived before [@I0). Hence, we recover the constraint structure of the Nambu-Goto
form {7 without the FCCs y; and y,, since we have fixed the conformal gauge. Thus, in the
Polyakov form, whether NC is induced or not, depends on our choice of gauge. Obviously
any P*-independent gauge will fail to generate NC in X*. In this sense, we conclude that the
Polyakov form is more general than the Nambu-Goto form.

Lastly, let us comment on the non-positive definite nature of the Hamiltonian in (32)) which
can hinder its quantization. A possible way out is to invoke the ideas of t'Hooft where we
rewrite Hp = [ Hp in the following way,

Hp=H,—H_ 6 {H. H.}=0, (34)
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where both H, are positive definite. Subsequently one quantizes the system by taking H, as
the Hamiltonian and employ H_ as a constraint such that H_ | Physical State == (). Thus
we can express Hp in ([32) as,

Hp = %[{{P F P+ (X NP = (P— P2+ (X' =N =H, —H_. (35)

and proceed with the constraint analvsis of Hp.

Finally, let us make a passing comment on the yvet to be investigated quantum theory. Note
that the classical conformal invariance of the model will be broken by quantum anomalies.
However, since the model is new, the structure of the anomaly and also whether any non-trivial
anomaly vanishing constraints emerge, are some of the topics of interest.

To conclude, we have constructed a field theoretic tov model, which vields a noncommutative
space-time, without any external influence. The nonconumutativity is induced by the constraints
of the theory via Dirac brackets. We have also derived the syvmplectic structure for the zero
momentum Fourier modes, which coincides with the algebra of a spinning particle model [11].
The algebra for the non-zero momentum sector is much more complicated.

To put our work in the proper perspective, it should be stressed that generation of the
spinning particle model [I1] is actually a by product of our construction and not the main issue
involved. What we have achieved here is an explicit field theoretic construction of a noncom-
mutative spacetime. This can serve as an alternative to the noncommutative spacetime where
commutative (i.e. ordinary) spacetime coordinates can be used at the expense of working in
an extended phase space [22] with extra auxiliary degrees of freedom. The noncommutativity
was induced via the Dirac brackets [I3], the latter being necessary since the system has Second
Class constraints [I3]. In the extended space [22], these constraints are modified to First Class
constraints [I3] and so the Dirac brackets are not needed. Incidentally, the noncanonical (and
especially operator valued) Dirac brackets are a hindrance to the subsequent quantization of the
model. It is very important to note that the extended space [22] is (by construction) completely
canonical, which a prerequisite for carrving out the canonical quantization programme. The
noncommutativity is reproduced through the auxiliary variables. The extended space formu-
lation of the present model will proceed along the lines of [151[22]. Although straightforward,
this is a separate problem by itself and is postponed for a future publication.

In this model, various traits of a string induced noncommutative quantum theory on the
D-brane, such as dipolar nature of the basic excitations [7] and momentum dependent shifts in
the interaction point [§] appear naturally in our noncommutative spacetime. The observation
that noncommutative and ordinary field theories are alternative deseriptions of the same
underlying theory, is corroborated here by showing that they are gauge equivalent. This has
been achieved by the introduction of an additional spin field which endows the point charges
with a spin and subsequently a magnetic moment.

Also, treating the present model as an explicit example, we show that, in the presence of
constraints, exact equivalence between the Nambu-Goto and Polyakov formulations can not be
established in a naive way even classically.

Appendix: The target space consists of "position” vectors o' = {X*, N} with the metric,

g [0 o
e o



where (¥ and 44 represent null and unit matrices respectively. Hence, the distance ds in

spacetime (ds)? = g;;de'da? = dX*dN, leads to the induced metric,

5 ) X" N, .
(ds)® = Yabd€®d€® ; b= age ﬁgﬁ ; £0=(r,0).

Thus /=det v reproduces the action {I). Furthermore, restricting the z'-space such that
the induced metric v, is symmetrie, one obtains the interpretation of /—det v drde as the
infinitesimal area in the 7 — o plane trivially [21].

The off-diagonal nature of the target space metric requires some comments. The motivation
was the construction of a reparameterization invariant geometric field theory to describe a
noncommutative spacetime and the structure of the metric is geared for that purpose. It might
be useful to note that prior to the introduction of the compactifying constraint on N,, the
X, and N, sectors are treated in an identical way, which is reflected by their symmetrical
appearence in the expressions. Unfortunately, at the present level of research concerning this
model, it is difficult to ascribe a physical significance regarding the form of the metric.
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