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The literature on bond markets and interest rates has focused largely on the term
structure of interest rates, specifically, on the so-called expectations hypothesis. At
the same time, little is known about the nature of the spread of the interest rates in
the money market beyond the fact that such spreads are generally unstable. How-
ever, with the evolution of complex financial instruments, it has become imperative
to identify the time series process that can help one accurately forecast such spreads
into the future. This article explores the nature of the time series process underlying
the spread between three-month and one-year US rates, and concludes that the
movements in this spread over time is best captured by a GARCH(1,1) process. It
also suggests the use of a relatively long term measure of interest rate volatility as an
explanatory variahle. This exercise has pained added importance in view of the
revelation that GARCH based estimates of option prices consistently outperform

the corresponding estimates based on the stylized Black—Scholes algorithm.

I. INTRODUCTION

The most debated explanation for the stylized upward slop-
ing term structure of interest rates lies in the so-called
expectations hypothesis. The ‘pure’ version of this hypoth-
esis suggests that the slope and the shape of the term struc-
ture depend on the market participants’ expectations about
the forward rates. More specifically, according to the pure
expectations hypothesis, an upward sloping vield curve
implies that the market expects the short term interest
rates to increase in the future. However, this implication
of the pure version has been questioned by several econo-
mists (Fabozzi, 1996)."

Critics of the expectations hypothesis argue that
by assuming that the forward rates are perfect predictors
of future short term rates, the hypothesis ignores the

*Cnrrmpnndmg author. E-mail: sbhavmik(@london.edu

price and reinvestment risks that are associated with
future bond prices (for example, see Cox et al, 1981).
In the absence of such risks, an investor who wants
to hold a security for a five-year period, say, has options
other than holding a five-year bond. For example, she
can hold a two-year bond face value of which they can
reinvest in a six-year bond after two years, or hold a
10-year bond of the same credit quality. In case of the
first alternative, they can sell the six-year bond afier
three years, and, in case of the second, she can sell the 10-
year bond afier five years. But, in reality, this is often
not the case, implying that there are some risks associated
with the future prices of the bonds, such that the two
alternatives may not offer the same return, with certainty,
as the option where the investor buys and holds a five-year
bond.”

! Indeed. the expectations hypothesis is one of the most tested hypothesis of finance theory. For details. see Bekaert er af. (1996).
2 For example, using US data, Campbell and Shiller (1991) found that the expectations hypot hesis cannot accurately predict the direction
of movement of long term rates, but is fairly good at predicting the direction of movement of the future short term mtes. Note that this
finding is in harmony with the argument that in order to predict long term rates, the forward rates should reflect borh the future short-
term rates and the risk premia. If the risk premia are not taken into account. the predictions about the long-term rates will have a

downward bias.

(5]
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Given the uncertainty regarding future bond prices, it
would be reasonable to assume that, in reality, the forward
rates reflect not only the expectations about the future
short-term rates but also the risk premia associated with
uncertainty about the prices of long-term bonds. This vari-
ation of the expectations hypothesis, known as the liquidity
theory of term structure of interest rates, implies that a
yield curve can be upward sloping irrespective of whether
the shori-term rates are expected to rise in the future.
Indeed, even if short-term rates are expected to decline in
the future, the yield curve can be upward sloping if the risk
premia more than compensate for the drop in the expected
future rates (Sharpe ef al., 1998). In other words, since the
n-period spot rate is generated using the (n — 1) period spot
rate and the corresponding forward rate, the former spot
rate too should reflect expectations about future short-term
rates, and the aforementioned risk premium. Hence, the
difference between the n-period spot rate and the (n— 1)
period spot rate should reflect the expected difference
between the present short term rate and the future short
term rate, and the associated risk premium. Unfortunately,
it is has thus far proved difficult to move beyond this basic
understanding of the nature of the spread, and relation-
ships between spot rates at the short end of the term struc-
ture has proved to be very unstable (Fama and Bliss, 1987).

However, given the rising sophistication of the financial
derivatives and other financial instruments, spreads at the
short end of the yield curve have assumed significant im-
portance. For example, it is not uncommon for hedge
funds to speculate on the spreads between any two interest
rates. While the usual vehicle of such speculation is the
spread between interest rates of two different countries
having similar maturities, the nature of the speculation
highlights the importance of accurate forecasts about vari-
ous kinds of spreads into the future. Further, recent
research indicates that GARCH based estimation of option
prices for financial variables consistently outperform the
stylized Black—Scholes algorithm  based estimation of
such prices (Heston and MNandi, 1997). This has serious
implications for financial structures involving knock out
options on interest rate spreads. In other words, there is
a need to identify the time series processes that underlie the
movement of the interest rates in the short end of the term
structure, namely, the money market. However, the empiri-
cal literature on interest rates has largely ignored this issue,
and this paper contributes towards filling this void.

This article identifies the process underlying the spread
between spot rates of USA government securities with resi-
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dual lives of three months and one year.” This spread has
been modelled as being determined by interest rate volati-
lity prevailing in the market. It was found that this move-
ment follows a highly autoregressive process, and that,
after being corrected for conditional heteroscedasticity,
more than 97% of the variation in the spread can be
explained by its previous value and the proxies for interest
rate risk. Specifically, it suggests that a GARCH(1,1) pro-
cess that takes into account interest rate volatility over a
relatively long time period best explains the movements of
the spread over time. The structure of the article is as fol-
lows: the next section describes the nature of the data and
the research methodology used. The following section
highlights the results and their implications. In the final
section, the concluding views are presented.

II. DATA AND SPECIFICATION

The data set was downloaded from the web site of the
Federal Reserve Bank of New York. It provides informa-
tion on the daily yields on, among others, government
securities with three-month and one-year maturity. The
data set spans 30 years (1962-1992), and consists of 9871
observations. The data set covers three different eras in the
macroeconomic history of the USA. The first third of the
data, which covers most of the 1960s and the first half of
the 1970s, was marked by macroeconomic stability char-
acterized by a low inflation rate and relatively high levels of
economic growth. The second third of the data spans much
of the 1970s and the early 1980s. This was a period of
significant macroeconomic instability in the USA marked
by high inflation rates and periods of economic slowdown.
The final third of the data, spanning much of the 1980s
and the early 1990s was once again a period of relative
prosperity and macroeconomic stability, albeit with sys-
temic shocks like the one caused by the savings and loans
Ccrisis.

The differences in the macroeconomic regimes are amply
reflected in the data set. The mean and the standard devi-
ations of the spread for the first third of the data set are
043 and 0.28 respectively, while the values of these statis-
tical moments for the second third are 0.81 and 0.60
respectively.’ Presumably, higher inflation rate and the
consequent (additional) uncertainty about the future nom-
inal interest rates contributed to a higher average value of
the spread and greater interest rate volatility during the
more unstable of the two macroeconomic eras.” As relative

* Two short horizon securities were deliberately chosen for the econometric exercise, to avoid the problems associated with modelling the
long horizon movements of short-term nominal rates. As shown by Kozicki and Tinsley (1997), forecasts from such models are highly

sensitive to endpoint specifications.

* Throughout this paper, ‘the spread’ refers to the spread,difference between vields on the three-month and one-vear securities.
* Note that the volatility of the spread can increase only if the volatility of the three-month vield, or the volatility of the one-year vield, or
both increases. In other words, the volatility of the spread is a reasonably good proxy for interest mte volatility in general.
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stability returned to the US economy after 1982, the inter-
est rate volatility fell by about 50% and the standard devi-
ation of the spread for the final third of the data recorded a
value of 0.40. However, possibly in keeping with the tight-
money policy of the Federal Reserve Board during the
Volcker years, the average value of the spread, at 0.71,
remained higher than that during the 1960s and early
1970s.® To summarize, therefore, the three macroeconomic
regimes seem to have sufficiently different impacts on the
spread, and hence it is imperative to identify specifications
and models that fit each of these three regimes well.

Let us now turn to the problem of identifying the initial
specification that can form the starting point of the sub-
sequent econometric exercise. To recapitulate, it is pro-
posed that the movements of the spread should, in
principle, be significantly explained by the interest rate
risk prevailing in the market. It is also argued that, to the
extent volatility is an adequate measure of risk, the volati-
lity of the spread is a reasonably pood proxy for the vola-
tility of interest rates in the money market. The basic model
specification can, therefore, be the linear regression model:

SPRD = py +  STDDEV + u (1
where SPRD and STDDEV denote the spread and its stan-
dard deviation at any point of time, py. g2, and = being the
regression parameters and the equation disturbance term,
respectively.

Given the nature of the specification, we have had to
identify the number of past values of the spread that the
investors take into account when they estimate the afore-
mentioned variance/volatility. There is no theoretical basis
for choosing a unique number of trading days that can
constitute the appropriate number of observations for the
implicit distributions of the spread. Hence, the choice of
the number of periods would have to be ad hoc, and that
oives rise to the possibility of the estimates being sensitive
to this choice. We, therefore, used three different spans of
time — 90 days, 60 days and 30 days — for the generation of
the distributions of spread. In other words, the STDDEV
variable in Equation 2, for period ¢, are derived from the
distribution of the spread over the period (f —j¢—1)
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when j equals either 90, or 60 or 30." The models with
which we begin our estimation process, therefore, are
given by:

SPRD = pg+ i STDDEVyy + =
SPRD = Fiy + H STDB.EV{,“ + &2 {Ej

SPRD = pg+ i STDDEVy, + 24

where the number in the subscript of STDDEV refers to the
number of (past) time periods defining the distribution
from which these (square root of) second moments have
been worked out.

I11. MODEL SELECTION

Since macro-financial time series typically have unit roots,
the exercise began with testing for unit roots of the depen-
dent and independent variables using the Phillips—Perron
test for stationarity® (Table 1).* The values of the test sta-
tistic suggest that the null hypothesis of unit root was
rejected for all variables and for all tests, for most at the
1% level of significance and for some at the 3% level of
significance. In other words, the dependent and indepen-
dent variables are stationary for all the three subsamples
described in the previous section. The same conclusion was
reached after estimating the corresponding values of the
adjusted Dickey—Fuller statistic, not reported in the
table."” Hence, one can estimate Equation 2 using ordinary
least squares (OLS), without recourse to differencing of the
variables, and tests of cointegration between the dependent
and independent variables.

However, the OLS estimates suggest that STDDEV can
explain less than 7% of the variation in the spread, for all
subsamples, and for all n-day measures of standard devi-
ation, when n equals 30, 60 and 90. Moreover, the values of
the Durbin-Watson statistic indicate that the equation dis-
turbance terms may be autocorrelated.

To improve the explanatory power of the regression
model, let us temporarily ignore the phenomenon of auto-
correlation of the equation disturbance term and look for

®Such a conjecture implicitly assumes that the liquidity crunch affected the vield of one-vear securities more than the vield of three-
month securities. While, this is plausible, there is no obvious reason as to why this would necessarily happen. However, the relative
impact of monetary policy on different spot rates does not affect our analysis, and is not the focus of this paper. Hence, this relationship
is not explored in the remainder of the article.

"MNote that this is somewhat similar to taking a fperiod moving average of a vardable. For example, the underlying distribution of the
1pre¢d for perod ¢ + 1 is dependent on the values of the spread for the period (v —j + 1, 1),

“In keeping with Schwert {1989), the number of lags used for the Phillips—Perron and the adjusted Dickey-Fuller tests were estimated
using the formula & = int{12{7/100)"*} when k is the number of lags. The number of lags used for each of the sub-samples roughly
equal 27.

?In the table, §F_3M1Y refers to the spread. The STDDEV, variables highlighted in Equation 2 are given by SD_800, §0_600D and
'Q‘L'i 30D respectively.

" In view of the discussion in Maddala and Kim (1998), it is prudent to check for stationarity using both the augmented Dickey-Fuller
and Phillips—Perron tests.
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Table 1. Phillips—FPerron statistics
Variable Options Ist third 2nd third ird third
SP_3M1Y Intercept —3.750 —4.682 —3.130
Intercept & trend —5.031 — 5.080 — 3008
SD 90D Intercept —4.709 —4.657 — 5050
Intercept & trend —5.823 —4.933 = 5226
SD_oOD Intercept —5.154 —5.471 — 6040
Intercept & trend —6.422 —5.706 — 6280
SD 30D Intercept —6.924 —6.715 — B.626
Intercept & trend —8.275 — 6949 —0.151

additional explanatory variable(s). Thus, if it is assumed
that the investors’ behaviour is governed by adaptive
expectations, the spread for the ith day should depend
not only on the nature of the distribution of spread in
p vious days, but also on the absolute value of the spread
.n the (i — 1)th day. Hence, we may modify the regression
specifications as follows:

SPRD = pg+ o SPRD(—1) + p STDDEV g + =,
SPRD = py+ p SPRD(—1) + p. STDDEV  +21 (3)
SPRD = pg+ p SPRD{—1) 4+ p STDDEVy, + =4

The specifications (Equation 3) containing the lagged
value of spread as an additional explanatory variable vastly
improve the goodness of fit. Indeed this new specification
explains 96-98% of the observed variations of the depen-
dent wvariable. But the high wvalues of the associated
Durbin’s # statistic for the first and the second samples
suggest rejection of the null hypothesis of a white noise
equation disturbance term for these samples (see Table
2). In other words, we have to use higher order lags of
SPRD asright hand side variables to eliminate the problem
of autocorrelation of the disturbance terms.!! At the same

Table 2. Ordinary lease square estimates

Yariable Ist third 2nd third 3rd third
Constant 00046 0.0143 0.0042
{0,000y (0.0 {0.062)
SP_3MIY(-1) 09847 0.9833 0.99%05
{0, 0y {0000y {0, 0y
SD 90D 0.0053 — (.06 0.0051
(0.048) (0.7 38) (0.081)
Adjusted e 0.9724 0. 9606 0.9835
Durbin's & 3.6507 6.3510 —1.6084
{000 {0000y {0.105)
Ramsey RESET 22519 0.53491 1.0879
{0.134) {0.439) {0.297)

Nete: The numbers within parentheses are p-values of the test
statistic.

" The resultant/final specifications are reported in Tables 5-7.

time, the movement of the spread over time indicates that
we may have to correct for conditional heteroscedasticity
(Figures 1-3). Therefore, we have to test for presence of
conditional heteroscedasticity, and if it is present in the
given data set (Greene, 1997), one would have to try a
model that incorporates an ARCH or a GARCH process.

The obvious next step is thus to decide on the nature of
the conditional heteroscedasticity to specify. To recapitu-
late, an autoregressive time series v, exhibiting conditional
heteroscedasticity can be described by the following set of
equations (Franses, 1998):

yl¥ = {‘rir:lﬂ.sifr
1~ NID(0, 1) (4]

by = o + o ag = 0,0y € (0, 1)

where Y, is the information set containing information
on y, uniil time period ¢ — 1, and where N1D means normal
and identically distributed. In the above specification, since
h, depends on one period lagged value of y, {ie. on y,_ ),
the y, series is said to be ARCH of order 1. In general, fora
time series variable y; following an ARCH process of order
g Equation 4 is of the form:

b= ag+ @i+t iy, (5)

where the restrictions on the parameters are oy > (0 and
ap £ (0,17 If a wvariable obeys an ARCH{p) process
where p is large, the pth order polynomial given in
Equation 5 may be replaced by a rational polynomial of
order {p. g).viz.:

ho=ag+ oy +... +“q}‘$-q + Bt Bl
(6)

The set of Equations 46 with the restrictions that a-s and
(s are greater than zero and (£, o + X, 3) is less than
unity defines the GARCH (p.g) process. The advantage of
using a GARCH specification over a corresponding ARCH
specification in a given empirical situation lies in the fact

that compared to the latter the former is parametrically
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parsimonious in the sense that a high order ARCH process
can be satisfactorily approximated by a GARCH process
of sufficiently small order having very small values of p and
g. In other words, a GARCH(1,1) process, say, may be
capable of capturing the non-linearities implicit in an
ARCH(n) process, when n is large ?

Given that one is fairly sure that the equation disturb-
ances in Equation 3 are autoregressive, the first step in
respecification should be to check for presence of con-
ditional heteroscedasticity, i.e. whether or not a
{(G)ARCH specification of these equation disturbance

4380

N
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4 580
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terms would be adequate. One, therefore, estimated the
model:

(7)

where ¢ are the squared residuals of the ARMA filtered
time series SPRD. Under the null hypothesis of no ARCH
(of order g), n times the R* value of the regression given by
Equation 7 has an asymptotic y-(g) distribution. The
values of the chi-squared test statistic obtained from the
residuals of AR(1) filtered SF RD indicate the null hypoth-
esis of no ARCH is rejected for g = 1 as well has for higher

pl el el
e =y e e e Ry

2 Far a lucid description of the difference between an ARCH(1) and a GARCH(1.1) process, see Frances (1998).
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values of g (see Table 3). A similar conclusion is suggested
oy the # version of the test. Therefore, an ARCH( 1) model
was estimated next as well as GARCH(1 p) models with
p =1, 2, the latter models being proxies for higher order
ARCH models.

IV. INTERPRETATION OF ESTIMATION
RESULTS

Table 4 presents the results of the diagnostic tests (viz. the
Ljung—Box statistic to judge whether the equation disturb-
ance terms of the ARCH/GARCH specification were
indeed white noise errors and the Jarque-Bera statistic to
judge the normality of the conditional heteroscedasticity

Table 3. LM tesr statistics for ARCH{ g/

TME

~ o &= - b o ]
cREIRYREE

corrected equation disturbances). These tend to indicate
that for the given data set GARCH(1,1) and
GARCH(1,2) specifications are clearly superior to
ARCH(1) specification. However, there is virtually little
to choose between the GARCH(L1) and GARCH{1,2)
specifications. This is true for each of the three time periods
under examination, and for all three different measures of
(moving average) risk. " Interestingly, in all cases, the
superiority of GARCH(1.p) specifications over ARCH(1)
specification is based on lower autocorrelation of the cor-
responding residuals. Hence, keeping in view the para-
metric parsimony criterion of model selection, we choose
the GARCHI(1.1) model as the one that is best suited for
explaining the observed intertemporal variations in the
spread in the given data set.

Filtering ARCH order 15t third 2nd third ird third
AR(L) g=1 110,96 111.52 14204

g =10 435 80 278,54 35299
AR & SD_9D g=1 111.54 111.53 14247

g =10 434.75 2TR.55 351.85
ARy & SD_o0D g=1 121.76 108.11 142.54

g =10 450069 200,98 35025
AR & SD_30D g=1 11817 107.82 155.74

g =10 42793 281.83 33176

Y Note, however, that the residuals from the estimations involving the data from the first and third subsamples are generally better
behaved than the residuals from the estimations involving the second subsample. Since the second subsample includes data from the
volatile 19705 and early 1980s, there is reason to believe that durng periods of high and volatile inflation rates, finding the appropriate
model for the prediction of vield spreads may be guite difficult. This premonition finds further support from the fact that the residuals
from the estimations involving the low inflation-stable macroeconomy era of the third subsample are very well behaved.
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Table 4.

Sample ARCH(1) GARCHI(L1) GARCHIL.2)

Model with %0-day moving standard deviation as measure of risk (SD_900)

1st third LB: 38.905 LB: 6.9119 LB: 6.6607
Kurt: 89630 Kurt 9.6293 Kurt: 96209
JB: 38903 JB: 47819 JB: 47784
Adj. & 0972 Adj. & 0.972 Adj. & 0.972

nd third LB: 56.441 LB 19.915 LB: 20.153
Kurt: 98615 Kurt: 9.7321 Kurt: 9.7309
IB: 33465 1B 5146.9 IB: 51450
Adj. B 0966 Adj. & 0.960 Adj. R*: 0.960

3rd third LB: 1.6082 LB: 1.9477 LB: 1.9344
Kurt: §.5242 Kurt: B.5119 Kurt: B.5125
JB: 33565 JB: 33324 JB: 33335
Adj. R 0.983 Adj. & 0.983 Adj. R 0.983

Model with 60-day moving standard deviation as measure of sk (SD_600)

Ist sample LB: 42019 LB: 6.6249 LB: 6.3520
Kurt: B.OOTS Kurt: 9.5881 Kurt: 95861
IB: 8138 IB: 4271.4 IB: 47183
Adj. ®: 0972 Adj. & 0.972 Adj. #%: 0.972

Ind sample LB: 55.780 LB: 20.582 LB: 20.825
Kurt: 9.7367 Kurt: 9.5750 Kurt: 9.5734
JB: 51428 JB: 48938 JB: 48913
Adj. & 0960 Adj. & 0.966 Adj. & 0.966

ird sample LE: 1.6389 LE: 1. 9004 LB: 1.9849
Kurt: #.53340 Kurt: B.5144 Kurt: B.5154
IB: 33633 1B EEEIN IB: 33332
Adj. B 0.983 Adj. & 0.983 Adj. R*: 0.983

Model with 30-day moving standard deviation as measure of risk (SD_300)

Ist sample LB: 43.193 LB 6.83035 LB: 6.9851
Kurt: 89391 Kurt: 9.6393 Kurt: 9. 7954
JB: 38527 JB: 47959 JB: 50242
Adj. R 0972 Adj. & 0.972 Adj. R 0.972

2nd sample LE: 56.122 LE: 19.782 LB: 19982
Kurt: 9.7341 Kurt 9.7055 Kurt: 97049
IB: 51328 IB: 5104.2 IB: 5103.1
Adj. ®: 0966 Adj. & 0.960 Adj. #%: 0.960

ird sample LB 16940 LE: 20004 LB: 19987
Kurt: 8.5205 Kurt: 8. 5040 Kurt: 8. 3056
JB: 33408 JB: 33195 JB: 33209
Adj. R 0983 Adj. & 0.983 Adj. & 0.983

Notes: LB =Ljung-Box statistic, Kurt =kurtosis, 1B = Jarque—Bera test statistic for normality.

The estimated coefficients of the GARCH(1.1) model
{see, Tables 5-7 below) are along expected lines for all
the three specifications: viz. those with 90-day, 60-day
and 30-day moving standard deviation as proxies for inter-
est rate risk. The coefficients of the a{0)a(l), as well as
(1) are significant at 1% level, justifying the adoption of
the GARCH(1.1) model. The value of the constant term is,
almost always, higher for the second third of the sample for
all the specifications, indicating higher average spread dur-
ing the 1970s and early 1980s, and this is in agreement with
the descriptive statistics.

Perhaps the most interesting feature of the results pre-
sented above is that they suggest that while interest rate

volatility over a relatively long period of time, namely, 90
days, affects the spread in the expected manner — the spread
increases with increase in volatility (and hence risk) —
shorter run volatility does not affect the spread at all. As
such, neither the diagnostic tests nor the measures of good-
ness of fit suggest that one should choose one specification
over the others. However, economic theory suggests that,
more likely than not, interest rate volatility determines the
three-month and one-year yields differently such that the
spread between them would not completely be independent
of the volatility. Hence, it would perhaps be prudent to use
the specification of the GARCH(1,1) model which includes
the 90-day moving standard deviation.
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Table 7. GARCH{ 1) with 30-day moving standard deviation

Yariable 15t third Ind third 3rd third Variable 15t third Ind third 3rd third
Constant 0.002 [IXIDR 0004 Constant 0,002 0012 0.005
{00 0y {000y (0.00T) {0,002 {0 Oy (0001 )
SP_3MIY(-1) 1.047 1.020 0987 SP_AMIY(-1) 1.048 1.020 0987
{0 0y {0000y {000y {00, (N {0 00y {0 0y
SP_3MIY(-2) — .02 — 0076 SP_3IMIY(-2) — {0093 —0.076
{0002y (0.006) {0,002 (0006
SP_3MIY(-3) 0.031 0039 SP_AMIY(-3) 0.031 0040
(0.142) (0.044) (0.041) (0.044)
SD 90D 0,006 0.001 0004 SD 30D 0,006 0.3E-03 0.002
(0.005) {0.336) (0.095) (0.135) [[IR4ILY] {0.523)
ALPHA_D 0 4E-05 0.3E-4 0.1 E-(4 ALPHA 0O 0.3E-05 0.3E-04 0. 1E-04
{00 0y (0.336) {0000y {0,002 (0 0y {00 Oy
ALPHA_I 0089 0119 0062 ALPHA I (.08 0118 0063
{0 000y {0000y {0000y {00 Ny {0 00y {0 00y
BETA I 0915 (B 0931 BETA_I 0916 . B 0,930
{00 0y {00000y {0000y {00 (N {0 00y {0 000y
Hivy 009E-(4 0001 0004 Hiy 0. 1E-03 0.001 0004
{0.632) (0.1 80 {0.014) {0.605) (0.180) {0.015)

Note: The numbers within parentheses are p-values of the test
statistic.

Table 6. GARCH 1) with 60-day moving standard deviation

Yariable 15t third 2nd third 3rd third
Constant 0.002 0013 0.005
{0.003) {0000y (0.003)
SP_3MIY(-1) 1048 1.020 0987
{0 0y {0000y {0000y
SP_3MI1Y(-2) —0.093 — 0076
{0002 (0006
SP_3MIY(-3) 0031 — 0004
(0.139) (0.8R1)
SP_3MIY(-4) 0.044
(000300
SD_ 60D 0003 0.003 0003
(0.23%) (0.118) (0.224)
ALPHA_D 0.3E-05 03E-4 0.1 E-(4
{0002 {000y {000y
ALPHA_I 0088 0119 0063
{0 Oy {000y {0000y
BETA_I 0916 (B 8G 0930
{00 Oy {00000y {0000y
Hiny 0. 1E-03 0001 0004
{0.603) (0.178) (0.0 16)

Note: The numbers within parentheses are p-values of the test
statistic.

V. CONCLUSION

The increasing degree of sophistication in the financial
world demands a better understanding of not only interest
rates per se, but also of co-movement between interest rates
of different maturities. However, while the literature on
bond markets and interest rates has focused on the nature
of the term structure, little attention has been paid to the

Note: The numbers within parentheses are p-values of the test
statistic.

spread among money market interest rates. This article fills
this lacuna in the literature, and concludes that a
GARCH(1,1) model, which includes a moderately long-
term measure of interest rate volatility in the specification,
is best suited to forecast the spread between short term and
long term money market rates in the USA between 1962
and 1992,

However, as with any empirical analysis, it is imprudent
to make a definitive statement about the process underlying
movements in interest rate spreads in general, given that
the analysis includes data from only one country. This
exercise should be repeated using data from other coun-
tries, initially from the developed countries of Western
Europe, and later from emerging markets. The contrast
between the macroeconomic conditions of the various
countries would, we feel, broaden the understanding
about interest rate movements in the money market.
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