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Abstract. Kostreva and Wiecek [3] introduced a problem called LCP-related weighted problem in connection
with a multiple objective programming problem, and suggested that a given linear complementarity problem
(LCP) can be solved by solving the LCP-related weighted problem associated with it. In this note we provide
several clarifications of the claims made in [3]. Finally, we feel that solving any LCP by the approach given
in [3] may not be as useful as it is claimed.
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1. Introduction

Given a square matrix M ∈ Rn×n and a vector q ∈ Rn the linear complementarity
problem (denoted by LCP(q, M)) is to find vectors w, z ∈ Rn such that

w − Mz = q, w ≥ 0, z ≥ 0, (1.1)

wt z = 0. (1.2)

If a pair of vectors (w, z) satisfies (1.1), then the problem LCP(q, M) is said to be
feasible. A pair (w, z) of vectors satisfying (1.1) and (1.2) is called a solution to the
LCP(q, M). This problem is well studied in the literature over the years. This problem
arises in some mathematical programming problems, game theory, control theory, eco-
nomics and some engineering applications. For the recent books on LCP theory and
its applications see Cottle, Pang and Stone [2] and Murty [8]. The algorithm presented
by Lemke and Howson [6] to compute an equilibrium pair of strategies to a bimatrix
game, later extended by Lemke [5] to solve a LCP(q, M) contributed significantly to
the development of the linear complementarity theory. However, this algorithm does not
solve every instance of the linear complementarity problem and in some instances of
the problem may terminate inconclusively without either computing a solution to it or
showing that no solution to it exists.
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A multiple objective programming problem may be stated as follows:

Minimize f (x), (1.3)

subject to x ∈ X (1.4)

where f (x) = [f1(x), f2(x), . . . , fm(x)]t , m ≥ 2 is a vector valued function, fi :
Rn → R ∀ i = 1, 2, . . . , m and the feasible set X = {x ∈ Rn | gi(x) ≥
0 ∀ i = 1, 2, . . . , m}. Multiple objective programming problems (MOP) arise in dif-
ferent branches of science and technology, economics, game theory etc. In [3], Kostreva
and Wiecek claim that they prove certain results which may be considered as a bridge
between LCP and a class of MOP so that certain ideas of solving MOP can be effectively
used for solving LCP and conversely. However, we present examples for clarification of
the claims made in [3].

2. Preliminaries

We begin by introducing some basic notations used in this paper. We consider matrices
and vectors with real entries. For any matrix A ∈ Rm×n, aij denotes its ith row and
j th column entry. A·j denotes the j th column and Ai·, the ith row of A. For any set
S, |S| denotes its cardinality. Any vector x ∈ Rn is a column vector unless otherwise
specified and xt denotes the row transpose of x.

In this note we consider a special subclass of MOP, namely

Minimize (y1x1, y2x2, . . . , ynxn)
t (2.1)

subject to x ∈ X where

X = {x | x ≥ 0, y = Mx + q ≥ 0} (2.2)

Note that the problem stated above is a quadratic multiobjective problem subject to linear
constraints. We denote this problem as QMOP.

We can write down formulations of QMOP as LCP related weighted problem. Note
that these formulations of QMOP are equivalent to LCP(q, M) under some assumption.
See [3], [4] and references cited there in.

LCP related weighted problem

Given a matrix M ∈ Rn×n and vectors v = (v1, v2, . . . , vn)
t ∈ R+

n such that
n∑

j=1

vj = 1

and q ∈ Rn, the LCP related weighted problem, denoted as P(v, M, q) is as follows:

min
n∑

j=1

vjfj (x)

subject to x ∈ X
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where fj (x) = xj (Mj ·x + qj ) and X = {x | x ≥ 0, Mx + q ≥ 0}. This problem is
a quadratic programming problem subject to linear constraints and may be rewritten as
follows:

Minimize
1

2
xt (V M + MtV )x + xtV q

subject to − (Mx + q) ≤ 0, −x ≤ 0

where V is a nonzero diagonal matrix with diagonal entries vi ≥ 0.

Karush-Kuhn-Tucker necessary(KKT) conditions of optimality for P(v, M, q) lead
to the following LCP

M =
[

0 M

−Mt V M + MtV

]
and q̃ =

[
q

V q

]

where V is a diagonal matrix with diagonal entries vi ≥ 0, i = 1, 2, . . . , n with∑

i

vi = 1. By solving the LCP(q̃, M) by Lemke’s algorithm, it is claimed that a KKT

point x∗ to the LCP related weighted problem is found which in turn solves the original
LCP.

The following LCP(q, M) is solved in [3] as an application of the above result where

M =
[−1 2

2 −1

]
and q =

[−1
−2

]
.

This example is due to Mangasarian[7] and Murty[8] has shown that Lemke’s algorithm
cannot solve this problem for any d > 0. The nonegative vector v = (v1 v2)

t used in
this example is v1 = 0 and v2 = 1.

It is proposed in [3] that a KKT point P(v, M, q) can be obtained by solving
LCP(q̃, M) by Lemke’s algorithm and further it is claimed that one can choose any

v ≥ 0 with
n∑

1=1

vi = 1. In this connection the following questions arise.

(i) Is it true that for any v ≥ 0, any solution of equivalent LCP(q̃, M) will solve the
LCP related weighted problem P(v, M, q)?
As the quadratic objective function in P(v, M, q) need not be convex in general,
it is clear that any solution to LCP(q̃, M) need not be a solution to LCP related
weighted problem.

(ii) Is any optimal solution to P(v, M, q) constructed using any 0 �= v ≥ 0, a solution
to LCP(q, M)?
The answer is no and an example to demonstrate this can be easily constructed.
Now we ask the following question.

(iii) Is it true that at least one optimal solution of P(v, M, q) for any nonzero nonneg-
ative v will solve LCP(q, M)?

The following example shows that this is not true.
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Example 2.1. Consider the following LCP(q, M) where

M =



−1 1 0

1 1 0
0 0 1



 and q =



−1

1
1



 .

M and q̃ is given by

M =





0 0 0 −1 1 0
0 0 0 1 1 0
0 0 0 0 0 1
1 −1 0 0 0 0

−1 −1 0 0 0 0
0 0 −1 0 0 2




and q̃ =





−1
1
1
0
0
1




.

We choose the following normalized nonnegative vector v where v1 = v2 = 0 and
v3 = 1.

Note that the objective function P(v, M, q) with v as stated above is convex. Lemke’s
algorithm applied to LCP(q̃, M) with d = e provides the following solution.

w1 = 0, w2 = 2, w3 = 1, w4 = 0, w5 = 0, w6 = 1,

z1 = 0, z2 = 0, z3 = 0, z4 = 0, z5 = 1, z6 = 0.

Therefore the solution of P(v, M, q) is given by x1 = 0, x2 = 1, x3 = 0 and the value
of the objective function is equal to 0.

This is an optimal solution of P(v, M, q) but the solution set of LCP(q, M) is empty.

(iv) Suppose we take v > 0 and solve LCP related weighted problem P(v, M, q). Is it
true that a solution to LCP related weighted problem is a solution to LCP(q, M)?

The following theorem answers the question.

Theorem 2.1. Let v > 0. The LCP related weighted problem P(v, M, q) has an optimal
solution with value 0, iff the LCP(q, M) has a solution.

Proof. Suppose P(v, M, q) has an optimal solution with value 0. Then ∃ a x ≥ 0 such
that Mx + q ≥ 0. Since

∑

j

vjfj (x) = 0, it follows that fj (x) = xj (Mx + q)j = 0 as

vj > 0, ∀ j. Thus x solves LCP(q, M).

Conversely, if x solves LCP(q, M), then x ∈ X = {x | x ≥ 0, Mx + q ≥ 0} and
fj (x) = 0, ∀ j. Hence

∑

j

vjfj (x) = 0. Thus, it follows that x solves P(v, M, q) with

optimal value 0. 	

In [3], Kostreva and Wiecek also suggests that by solving LCP(q̃, M) by Lemke’s

algorithm one can obtain a solution to LCP(q, M). This approach may not work for

v > 0(≥ 0) with
n∑

i=1

vi = 1. LCP related weighted problem P(v, M, q) may have a
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nonconvex objective function and consequently a solution (which is accessible by Lem-
ke’s algorithm) may only be a point of local optimum. While solving LCP(q̃, M) by
Lemke’s method with appropriate d it is possible that whatever d is used, we only com-
pute a point of local optimum and hence we do not obtain a solution to LCP(q, M). This
is demonstrated in our counterexample.

Example 2.2. Consider the following LCP(q, M) where

M =



1 −3 0

−3 5 2
2 −5 0



 and q =



0
1

−3



 .

M and q̃ is given by

M =





0 0 0 1 −3 0
0 0 0 −3 5 2
0 0 0 2 −5 0

−1 3 −2 2
3 −2 2

3
3 −5 5 −2 10

3 −1
0 −2 0 2

3 −1 0




and q̃ =





0
1

−3
0
1
3−1




.

We choose the following normalized nonnegative vector v = (v1 v2 v3)
t where v1 =

v2 = v3 = 1
3 . Lemke’s algorithm applied to LCP(q̃, M) with d = (3 8 5 1 1 3)t

provides the following solution.

w1 = 1.5, w2 = 0, w3 = 0, w4 = 0, w5 = 1, w6 = 0,

z1 = 0, z2 = 0, z3 = 1.1, z4 = 1.5, z5 = 0, z6 = 1.8.

Therefore the solution of P(v, M, q) is given by x1 = 1.5, x2 = 0, x3 = 1.8 and the
value of the objective function is equal to 0.75. This is not a solution of the corresponding
LCP(q, M) as it is not complementary since x1 > 0 and y1 > 0. Note that if any other
d is chosen, Lemke’s algorithm either produces the same solution or it terminates in a
ray. However LCP(q, M) has a unique solution

z1 = 9, z2 = 3, z3 = 5.5, w1 = 0, w2 = 0, w3 = 0.

Note that finding an appropriate d (if it exists) for which a solution is computed by Lem-
ke’s algorithm is an open problem. So solving LCP(q̃, M) with an appropriate d does
not seem to be a promising approach to solve LCP(q, M) as suggested in [3]. Further
the implicit claim that LCP(q̃, M) for any v > 0 with an arbitrary M, can be solved
by Lemke’s algorithm is also not correct. Now the option left is to solve LCP(q̃, M) by
some enumerative method and definitely one of the solutions of LCP(q̃, M) will solve
LCP(q, M). But in that case it is better to solve a smaller size LCP(q, M) rather than
solving LCP(q̃, M).
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