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ABSTRACT

In the setting of semidefinite linear complementarity problems on 8", the
implications strict monotonicity = Py = GUS = P are known. Here, P and
P> properties for a linear transformation L : 8" — 8" are respectively de-
fined by: X € 8", XL(X) = L(X)X <0 = X =0and X > 0,Y >
0, X —-Y)L(X)-LY)|(X+Y) 20 =X =Y; GUS refers to the global
unique solvability in semidefinite linear complementarity problems correspond-
ing to L. In this article, we show that the reverse implications hold for any
self-adjoint linear transformation, and for normal Lyapunov and Stein transfor-
mations. By introducing the concept of a principal subtransformation of a linear
transformation, we show that L : S — &" has the P»-property if and only if for
every n X n real invertible matrix @), every principal subtransformation of L has
the P-property where L(X) := QT L(QXQ")Q. Based on this, we show that Ps,
GUS, and P properties coincide for the two-sided multiplication transformation.
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1. INTRODUCTION

Given a linear transformation L : S — S™ and a matrix Q € 8™, the
Semidefinite Linear Complementarity Problem, SDLCP(L, @), is to find a
matrix X such that

X>0, V:=LX)+Q >0, and (X,Y):=trace(XY)=0

where 8™ denotes the space of all real symmetric n x n matrices and Z > 0
means that Z belongs to the cone S} of all symmetric positive semidefinite
matrices in S™.

This problem, studied in [3], [8], [9], [10], [11], [20], [21], [25], includes
the (standard) LCP [5] and the geometric SDLCP of Kojima, Shindoh,
and Hara [15]. Its applications include primal-dual semidefinite linear pro-
grams, control theory, linear and bilinear matrix inequalities [4], [18]. It is
a special case of a cone complementarity problem, which in turn in a special
case of a variational inequality problem [13]. Since the cone S¥ is nonpoly-
hedral, (standard) LCP results/concepts cannot be routinely generalized
to SDLCPs.

In connection with the semidefinite LCP, various concepts, such as the
(strict) monotonicity, GUS and P properties were introduced and studied
in the above cited works. We recall [9] that L : S — S™ is said to have
the

(a) monotonicity property (strict or strong monotonicity property) if
(L(X),X)>0(>0) for0#X €S8
(b) Globally Uniquely Solvable (GUS )-property if for all Q € S™,
SDLCP(L, Q) has a unique solution;
(c) P-property if

X e8", XL(X)=L(X)X <0= X =0;

(d) Py-property if

X»0,Y=0,( X -V)[LX)-LY)(X+Y)20=>X =Y.

One can define, see [8], a (stronger) noncommutative version of (¢) :
X €S8, XL(X)+ L(X)X <0 = X = 0. This property seems harder to
analyze and will not be treated here. It has been shown, see [9], that under
(¢), SDLCP(L, @) has a solution for all ) and the system X = 0, L(X) = 0
has a solution.
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The properties (b) — (d) (and the noncommutative version of (c)) are
the semidefinite analogs of the following properties of a matrix M € R™"*™
in the (standard) LCP setting [5], [9]:

(v') For all ¢ € R™, LCP(M, q) has a unique solution,
() zeR", z+Mzx<0=>z=0,

where ‘x” denotes the Hadamard (i.e., componentwise) product. As is well
known, these properties are equivalent to M being a P-matrix, that is, all
principal minors of M are positive.

Motivated by the equivalence of properties (b') — (d'), we ask how prop-
erties (a) — (d) are related to each other. Since the (generally irreversible)
implications

strict monotonicity = P = GUS = P (1)

are known (see [20] for the first implication and [9] for the last two impli-
cations), we are interested in the reverse implications. Before describing
our findings, we briefly recall three important transformations studied in
the SDLCP literature.

Given a matrix A € R™ ", the Lyapunov, Stein, and two-sided multi-
plication transformations on 8™ are defined (respectively) by

La(X):= AX+XAT, Su(X):=X-AXAT, Ma(X):=AXAT. (2)

The Lyapunov transformation L, has been extensively studied in the
matrix/control/systems theory literature [1], [4], [6], [7]. A celebrated re-
sult of Lyapunov [17], [7] states that the continuous linear dynamical sys-
tem 22 = —Ax(t) is (globally) asymptotically stable if and only if all the
eigenvalues of A lie in the positive right-half plane and that the latter con-
dition holds if and only if the system X > 0, L4(X) > 0 has a solution.
In [9], it was shown that these conditions are equivalent to the P-property
of L. In [11], the simultaneous stability of a finite number of matrices
was studied based on the composition of several Lyapunov transformations
and a fixed point map on S}. Recently, in [24], Sun and Sun express the
differentiability properties of the projection map X + Ils» (X) in terms
of Lyapunov transformations; these results were used in [19] to discuss the
stability /regularity of a solution of a semidefinite (nonlinear) complemen-
tarity problem.

Along with the Lyapunov transformation, the Stein transformation S4
has also been extensively studied in the matrix/control/systems theory lit-
erature [1], [4], [6], [7]. It is well known that the discrete linear dynamical
system z(k+1) = Az (k) is (globally) asymptotically stable if and only if all



4

the eigenvalues of A lie in the open unit disk and that the latter condition
holds if and only if the system X > 0, S4(X) > 0 has a solution. In [§],
it was shown that these conditions are equivalent to the P-property of S4.
Since this P-property of Sa is equivalent to (spectral radius) p(M4) < 1,
see [8], we may view S4 = I — M4 as a semidefinite analog of a nonsingular
M-matrix (which is a matrix of the form I — B where B is a nonnegative
matrix with spectral radius is less than one) and expect interesting proper-
ties. [We may note that Theorem 2.3, [2] contains 50 equivalent properties
of a nonsingular M-matrix.] Motivated by S4, a general cone complemen-
tarity result was proved in [8] for transformations of the form I — S where
S leaves the (given) cone invariant.

The transformation M4 on S™ leaves the cone S} invariant; it is analo-
gous to a nonnegative matrix on R"™ (which leaves the cone R’} invariant).
Similar to the nonnegative matrices in the standard LCP, one may expect
interesting complementarity properties for M 4. Some of these properties
have been explored in [3], [20].

Our findings in this paper are as follows:

First, by generalizing three recent results involving self-adjoint Lya-
punov, Stein, and two-sided multiplication transformations [9], [10], [20],
we show that the reverse implications hold in (1) for any self-adjoint trans-
formation and for normal Lyapunov and Stein transformations. We con-
clude that L : S — S™ is strictly monotone if and only if L + LT has the
P-property where LT denotes the adjoint of L.

Second, by introducing the concept of a principal subtransformation
of a linear transformation (see Section 5), we show that L has the Py-
property if and only if for each invertible real matriz @, every principal
subtransformation of L has the P-property where L(X) := QTL(QXQT)Q.
(Since linear automorphisms of the semidefinite cone S} are given by X +—
QX QT for some real invertible @ [22], [16], one may view this result as the
semidefinite analog of the following LCP/matrix theory result: A matrix
M € R™ ™ is a P-matrix if and only if for each linear automorphism A of
R (this is of the form z — EDzx where E is a permutation matrix and
D is a positive diagonal matrix), every principal submatrix of AT MA is
a P-matrix.) As a byproduct of this characterization, we show that M4
has the Py-property if and only if A is either positive definite or negative
definite, answering a question raised by Parthasarathy, Sampangi Raman,
and Sriparna [21]. Combining this with a result of Bhimasankaram et al
[3], we deduce that P2, GUS and P properties are equivalent for M 4.



2. PRELIMINARIES

For z,y € R™, the usual inner product is denoted either by {z,y) or by
2Ty; In C™, the inner product is denoted by (-, )c.
For a matrix A € R"*"™, we recall the following definitions:

(a) The trace of A is the sum of all the diagonal elements of A, or equiv-
alently, the sum of all the eigenvalues of A.

(b) A is positive semidefinite (positive definite) if the usual inner product
(Az,z) > 0 (> 0) for all nonzero x € R".

(c) A is positive stable if every eigenvalue of A has positive real part.

(d) A is orthogonal if AAT = I = AT A where I is the n x n identity
matrix.

(e) Ais normal if AAT = AT A.

Recall that ST is the cone of symmetric n x n positive semidefinite matrices
in the space 8™ of real symmetric n x n matrices. We use the notation

X> (=)0

to say that X is symmetric and positive semidefinite (positive definite);
the notation X < 0 means that —X > 0. For A,B € R"*", we define
(A, B) := trace(ABT); In particular, for X,Y € S,

(X,Y) = trace(XY).

For an n x n matrix A and for an index set a C {1,2,---,n}, we write
a;; to denote the (4, j)-entry of A and write Ay, to denote the submatrix
of A consisting of entries a;; with ¢,j € a.

For z € R™, ||z|| denotes its Euclidean norm. For A € R™*™,

2

[[Az|l 2
[|A||op :=sup ——— and |[|4||F = ay;
= 2%

denote, respectively, the operator norm and the Frobenius norm. The

spectral radius of A € R™*" is denoted by p(A).

Consider a linear transformation L : 8™ — S™. Then its transpose
LT : 8" - 8™ is defined by

(LX), Y) = (X, LT(Y)) (X,Y €S").
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L is said to be self-adjoint on S™ if L = LT, and normal if L commutes with
LT, For the Lypunov, Stein, and two-sided multiplication transformations,
we note that (La)T = Lz, (Sa)T = Syr,(Ma)T = Myr and L4, Sa, Ma
are normal when A is normal.

Now let [L] : R* — RF (with k = @) be a matrix representing L
with respect to a complete orthonormal set in §™. Then L and [L] have
the same (real) eigenvalues and determinant; in particular, if every real
eigenvalue of L is positive, then its determinant is positive. Moreover, L
is self-adjoint if and only if [L] is symmetric, and L is strictly monotone
on S™ if and only if [L] is positive definite. Hence, if L is self-adjoint and
has only positive real eigenvalues, then it is strictly monotone. (This also
follows from spectral theory.)

3. SELF-ADJOINT AND NORMAL P-TRANSFORMATIONS

We show below that self-adjoint P transformations are strictly monotone.

THEOREM 1. Suppose a linear transformation L : S* — S™ has the
P-property. Then all real eigenvalues of L are positive and hence L has a
positive determinant. If, in addition, L is self-adjoint, then it is strictly
monotone and the reverse implications hold in (1).

Proof. Suppose ) is a nonpositive real eigenvalue of L. Then there exists
a nonzero X € 8™ such that L(X) = AX and so L(X)X = XL(X) =
AX?2 < 0. This contradicts the P-property of L. Thus all real eigenvalues
of L are positive. It follows that the determinant is positive. Now suppose
that L is also self-adjoint. Then all its eigenvalues are real and positive. It
follows that L is strictly monotone. m|

Remark. The second part of the above theorem generalizes earlier results
proved for L4 (when A is symmetric) [Theorem 9, [9]], for S4 (when A
is symmetric or skew symmetric) [10], and for M4 (when A is symmetric)
[Theorem 6, [20]].

Motivated by the above result, we ask if normal P transformations are
strictly monotone. We answer this in the negative by the following example.

A:[_; f]

This A is normal and positive definite. It can be shown (by direct alge-
braic manipulation) that M4 has the P-property. (This also follows from

Example. Let
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Theorem 17, [3], and from Corollary 7 in Section 5.) Furthermore, it can
be easily shown that M4 is normal. Yet, for

1 -1
a5l
(Ma(X),X) = —12, that is, M4 is not strictly monotone.

In spite of the above example, we show below that for normal Lyapunov
and Stein transformations, P-property indeed implies the strict monotonic-

ity property.
THEOREM 2. If L4 is normal, then the reverse implications hold in (1).

Proof. It is enough to show that the P-property implies strict monotonic-
ity. To this end, let L4 have the P-property. Since Lr = (L)%, it follows
from Ly o Lyr = Lgr o L4 that A is normal. Now the P-property of Ly4
implies that A is positive stable (c¢f. Theorem 5, [9]). We claim that A is
positive definite. Let © € R™ be nonzero. Since A is normal, we have a
unitary matrix U and a diagonal matrix D = diag(ds,...,d,) in C™*" so
that A = U*DU (cf. Theorem 2.5.4, [14]). Then

o= (Az,z) = (Az,z)c = (Dz,2)¢c = idi|zi|2 (3)

where z := Uz is nonzero in C". Since a € R, the last expression in (3)
should be equal to its real part. But since A is positive stable, we have
Re(d;) > 0, proving a > 0.

Now, for any nonzero X € S™,

(X,La(X)) = 2trace(XAX) =2 x] Az; (4)
i=1
where z; is the ith column in X. We see that (X, L4(X)) > 0forall X #0

proving the strict monotonicity of L4. O

THEOREM 3. Let A be an n X n real matriz. For the Stein transforma-
tion Sa, consider the following statements.

(i) |Allop < 1.
(11) Sa is strictly monotone.

(iii) Sa has the GUS-property.
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() Sa has the P-property, i.e., p(A) < 1.
(a) l|Allop < 1.
(b) Sa is monotone.
(c) p(A) < 1.
Then,
(a) = (b)) = (¢) and (b) + (iv) = (i44).

Furthermore, when S4 is normal (i.e., when A is normal), reverse impli-
cations hold in the above statements.

Note that we have obvious implications: (1) = (a), (i4) = (b) and
(iv) = (c).

Proof. To show (i) = (i) and (a) = (b), note that the Cauchy-
Schwartz inequality in R™*"™ gives, for X € 8™,

trace(AXATX) = (AX,XA) < | AX||r||XA|rF.
By writing X = [z1,---,z,] (where z; denotes the ith column of X), we
get
1 1
n 2 n 2
1AX|lr = |14z < 1415, ||$i||2] = | Allopll X1 7.
1 1
Similarly,
IXAlr = 14TXIlr  <[AToplXllr = [lAlloplXIlp-

Hence, trace(AXATX) < ||A]|2,||X|[3. From
(Sa(X),X) = [IX||% — trace(AXATX) > |IX[[%:(1 — [|A[IZ,),

we have the implications (¢) = (i¢) and (a) = (b).

The implication (i7) = (4i7) follows from Cor.3.2, [13].

If (4i7) holds, then S4 has the P-property (Theorem 7, [9]). That p(A) < 1
and the P-property of S4 are equivalent is given in Theorem 11, [8]. We
thus have (iv).

Now suppose (b) holds. Then, for all € > 0, the transformation

1
- 7) =
1+€(SA+€) S 114+€
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is strictly monotone. The implication (i) = (iv) gives p( \/f?) < 1.
Taking the limit, we get (b) = (¢).

The statements (b) and (iv), respectively give, the convexity of the solution
set for the SDLCP(S4,Q) for all Q@ € 8™ (Theorem 6, [9]) and the P-
property of S4 (Theorem 7, [9]). Hence the implication (b) + (iv) => (iii).
To see the last statement, suppose that S4 is normal. From (S40S47)(I) =
(Syr 0 S4)(I), we get (AAT)2 = (AT A)2. From the uniqueness of square
root (Theorem 6.4, [27]), we get AAT = AT A proving that A is normal.
Since ||A||op is also the norm of A computed over C™, and p(A) = ||A||op
(because of normality) we get the last statement of the theorem. O

4. PRINCIPAL SUBTRANSFORMATIONS

Analogous to the definition of a principal submatrix of a matrix, we now
formulate the concept of a principal subtransformation of a linear transfor-
mation.

DEFINITION 4. Let L : S™ — S™ be a linear transformation. For any
a C{1,2,---,n}, we define a linear transformation L, : S1* — Slol by

Laa(Z) = [L(X)]laa (Z €5

where, corresponding to Z € S%/, X € $" is the unique matrix such that
Xoa = Z and z;; = 0 for all (4,j) ¢ a x a. We call Lyo the principal
subtransformation of L corresponding to a.

It can be easily verified that for the Lyapunov transformation L4, we
have (L4)aa = L4, Since the positive stable property of a matrix is not
inherited by its principal submatrices, we may infer that the P-property of
a transformation is not inherited by its principal subtransformations. We
make this statement precise in the following example.

Example 6. Consider the Lyapunov transformation L = Ly : S? — S?
corresponding to
0 -1
=1 7]

so that for any
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—2y T+y—=z
z+y—z 2y+2z)

Then the principal subtransformation of L4 corresponding to a = {1}

is given by
Lll(w):[L(['g 8DL=0 (z € SY).

We note that A is positive stable and positive semidefinite. Hence L4
has the GUS and P properties. Yet L;; does not have the GUS and P
properties.

L(X)=AX + XAT = [

Remarks. Monotonicity and strict monotonicity properties are inherited
by principle subtransformations. Only under certain conditions, princi-
pal subtransformations inherit the GUS and P properties. For example,
suppose a = {1,2,...,.m}, and

o([75 0]) = o= [5 7]

for any X,o. Then it can be easily shown (see [12]) that L., has the
P-property (GUS-property) whenever L has the P-property (respectively,
GUS-property).

O

5. THE P,-PROPERTY

The Py-property of a linear transformation L : 8™ — S™ is introduced in [9]
as a sufficient condition for the GUS-property. Answering a question raised
in [9], namely, whether strict monotonicity is related to the Pa-property,
Parthasarathy, Sampangi Raman, and Sriparna [20] show that

strict monotonicity = Po

and that the converse holds for the Lyapunov transformation L4 and (when
A is symmetric) for M 4. In a subsequent article, the same authors [21] show
that for a 2 x 2 or a 3 x 3-matrix A, M4 has the Py-property if and only
if either A is positive definite or negative definite, and provide an example
of M 4 for which the Py-property holds but not strict monotonicity. They
also raise the question whether their result holds for any n x n matrix A.

Below, we characterize the Po-property, and, as a byproduct, show that
for any A, M 4 has the Pa-property if and only if A is either positive definite
or negative definite.
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In what follows, for a given invertible @ € R™*", we define a linear
transformation L on 8™ by

L(X) = QTLIQXQM)Q. (5)

THEOREM 5. For any linear transformation L on 8™, the following are
equivalent:

(a) L has the Py-property.

(b) For every invertible @ € R™ ", every principal subtransformation of
L has the GUS-property.

(c) For every invertible Q € R™ ", every principal subtransformation of
L has the P-property.

Proof. (a) = (b): Assume that L has the Py-property and fix an invertible
@ and an index set a. First we claim that L defined in (5) has the Pa-
property. To see this, suppose

V=0, W =0, and (V — W)[L(V) = L(W)|(V + W) < 0.

Then Q(V —W)[L(V)—L(W)](V+W)QT < 0. Upon writing X := QVQ7,
Y := QWQT and using the definition of L, we see that X = 0,Y = 0,
with (X = Y)[L(X) — L(Y)](X +Y) < 0. From the Py-property of L, we
get X =Y and (from the invertibility of Q) V = W. This proves the
P,-property of L. R

Now we show that (L)aq has the Py-property. To simplify the notation,
let T := L and let without loss of generality, o = {1,2,...,m}, m < n.
Suppose X, = 0, Y,,, > 0 with

(Xm - YM)[Faa(Xm) - Faa(Ym)](Xm + Ym) j 0

where X, and Y,,, belong to S™. Then letting

Xm 0 _
X_[O 0] and Y—[

=)
oo

and writing

we see that
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where B, := (X — Yo )[Taa(Xm) — Taa (Y )(Xm + Yi). Now from the
Py-property of I, we have X =Y and hence X,, = Y;,. This shows that
Caa, that is, (L)ae has the Po-property. Since Ps-property implies the
GUS-property (Remark 7, [9]), we see that for all invertible ) and all «,
(E)aa has the GUS-property. Thus (b) holds.

(b) = (c) This is immediate since the GUS-property implies the P-property
always.

(¢) = (a): To some extent, our proof follows that of Theorem 4 in [20]
where it is shown that strict monotonicity implies the Py-property. As-
sume that (¢) holds and suppose that X > 0,Y > 0, X # Y with
(X -Y)LX)-LY)(X+Y) <0. Since X + Y is symmetric, posi-
tive semidefinite and nonzero, there exist a (real) invertible matrix @ such
that

X+Y:Q[% 8%?

where I, is the identity matrix of size » X r and 1 < r < n (see Theorem
6.3, [27] or the proof of Theorem 4 in [20]). Put 4 := Q 1X(Q )T and
B := Q7'Y(Q™')T. Then A and B are symmetric positive semidefinite
matrices with

A+B=[” 0}

0 0
It follows that

A0 | B 0
A—[O 0] and B—[O 0]

where A, and B, are r xr-matrices. Now (X —Y)[L(X)-L(Y)](X+Y) <0
yields

QX -Y)(QHTQTL(QAQT) — L(QBRNIQQ™ (X +Y)(Q™H)T < 0.

This gives R
(A—B)[L(A) - L(B)](A+ B) <0

where Z(Z) = QT L(QZQT) Q. Writing

o

@-2@ = | yo 7.

~

we get from (A — B)[L(A) — L(B)](A + B) < 0,

(e 3 ] 2] e
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This implies that (4, — B,)P < 0 (which means that (4, — B,.)P is sym-
metric and negative semidefinite). By the block form of A — B, we note

~

that P = (L)oo (A, — B;) where a = {1,2,...,r}. Thus

~

(A, — B,)(L)aa(A, — B,) < 0.

By our assumption, (L)qq has the P-property. Hence A, = B, proving
A = B and X = Y. This is a contradiction. Therefore L has the P,-
property. This completes the proof.

O

Remarks. Suppose L has the Py-property. Then, because of Lemma 1,
for every invertible @, each principal subtransformation of L has positive
determinant. It is not clear if the converse holds.

COROLLARY 6. For any A € R™"*™, consider M defined by (2). Then
the following statements are equivalent:

(a) A is positive definite or negative definite.
(b) Ma has the Py-property.

Remark. Bhimasankaram et al [3] have shown that for M4, GUS, P,
and Ry-properties are equivalent to (a). Hence for M4, P2, GUS, and P
properties are equivalent.

Proof. (a) = (b): Assume without loss of generality that A is positive
definite. We verify condition (¢) of the previous theorem. For any invertible

Q,
MA(X) = QTMA(QXQT)Q = QTAQXQTATQ = BXBT = Mp(X)

where B := QT AQ. Note that B is also positive definite as Q is invertible.
We need to show that every principal subtransformation of Mp has the P-
property. Without loss of generality, let « = {1,2,...,m}. Let 0 # Z € S™
be such that

Z(MB)aa(Z) = (MB)aa(Z)Z < 0.

Writing B in the block form

=[5 5]

where E conforms with Z, we get (Mp)ao(Z) = EZET. Writing Z =
VTDV where V is orthogonal and D is diagonal and nonzero, we get
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DM¢c(D) < 0 with C := VEVT (which is positive definite). By using an
appropriate permutation matrix, we may assume that

[ D 0
o= 3]

where D; is diagonal and invertible. Writing C' in a block form that con-
forms with D and letting C; be the submatrix that conforms with D1, we
see that DMc(D) =< 0 yields D;C1D;C{ < 0. Note that C is positive
definite. For ease of notation, we assume D; = D and C; = C so that D
is invertible and C is positive definite. Let A be a negative eigenvalue of
DCDCT with a corresponding eigenvector u. From DCDCTu = Au, we
get CDCTu = AD~'u. Hence

(CDCTu, DCTu)y = M(D'u, DCTu) = Au, CTu)

where we compute the inner product in an appropriate Euclidean space.
Since C' is positive definite, the left-hand side of the above expression is
positive while the right-hand side is negative. Thus we reach a contradic-
tion.

The implication (b) = (a) can be proved, as in [21], as follows: Suppose
zT Az = 0 with x # 0. With X = 227, Y =0, we have (X —Y)Ma(X —
Y)[X + Y] = 0, contradicting the Py-property. O

6. CONCLUDING REMARKS

In this paper, we studied the reverse implications in the statement
strict monotonicity = Py = GUS = P.

We showed that the reverse implications hold for self-adjoint transforma-
tions and for normal Lyapunov and Stein transformations. We also gave
a characterization of the Pa-property in terms of principal subtranforma-
tions L defined with respect to invertible ()s. We do not know if the same
characterization holds when @ is restricted to orthogonal matrices. More
open questions can be found in [12] where one also finds an elaborated
discussion on topics covered in this article.
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