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1. Introduction and Main result

Suppose λ1, λ2, ..., λn are all the eigenvalues of a square matrix An of order n. Then the

empirical spectral distribution function (ESDF) of An is defined as

Fn(x, y) = n−1
n∑

i=1

I{Reλi ≤ x, Imλi ≤ y}.

Let {An}∞n=1 be a sequence of square matrices with the corresponding ESDF {Fn}∞n=1. The

Limiting Spectral Distribution (or measure) (LSD) of the sequence is defined as the weak limit

of the sequence {Fn}∞n=1, if it exists.

If {An} are random, the limit is understood to be in some probabilistic sense, such as “almost

surely” or “in probability”. Suppose elements of {An} are defined on some probability space

(Ω,F , P ), that is {An} are random. Let F be a nonrandom distribution function. We say

the ESD of An converges to the limiting spectral distribution (LSD) F in L2 if at all continuty

points (x, y) of F , ∫

ω

(
Fn(x, y)− F (x, y)

)2
dP (ω) → 0 as n →∞

and converges in probability to F if for every ε > 0 and at all continuty points (x, y) of F ,

P
(|Fn(x, y)− F (x, y)| > ε

) → 0 as n →∞.
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For detailed information on limiting spectral distributions of large dimensional random matrices

see [Bai(1999)] and also [Bose and Sen(2008)].

In this article we focus on obtaining the LSD of the circulant matrix (Cn) given by

Cn = 1√
n




x0 x1 x2 . . . xn−2 xn−1

xn−1 x0 x1 . . . xn−3 xn−2

xn−2 xn−1 x0 . . . xn−4 xn−3
...

x1 x2 x3 . . . xn−1 x0




.

So, the (i, j)th element of the matrix is x(j−i+n)mod n. The eigenvalues are given by (see for

example [Brockwell and Davis(2002)]),

λk =
1√
n

n−1∑

l=0

xle
iωkl = bk + ick ∀ k = 1, 2, · · · , n,

where

ωk =
2πk

n
, bk =

1√
n

n−1∑

l=0

xl cos(ωkl), ck =
1√
n

n−1∑

l=0

xl sin(ωkl).

The existence of the LSD of Cn is given by the following theorem of [Bose and Mitra(2002)].

Theorem 1.1. Let {xi} be a sequence of independent random variables with mean 0 and variance

1 and supi E | xi |3< ∞. Then the ESD of Cn converges in L2 to the two-dimensional normal

distribution given by N2(0, D) where D is a diagonal matrix with diagonal entries 1/2.

We investigate the existence of LSD of Cn under a dependent situation. Let {xn;n ≥ 0} be

a two sided moving average process,

xn =
∞∑

i=−∞
aiεn−i

where {an; n ∈ Z} ∈ l1, that is
∑

n |an| < ∞, are nonrandom and {εi; i ∈ Z} are iid random

variables with mean zero and variance one. We show that the LSD of Cn continues to exist in

this dependent situation. Define γh = Cov (xt+h, xt). Then it is easy to see that
∑

j∈Z |γj | < ∞
and the spectral density function of {xn} is given by

f(ω) =
1
2π

∑

k∈Z
γk exp(ikω) =

1
2π

[
γ0 + 2

∑

k≥1

γk cos(kω)
]

for ω ∈ [0, 2π].

Let f∗ = infω∈[0,2π] f(ω) and C0 = {ω ∈ [0, 2π]; f(ω) = 0}. For k = 1, 2, · · · , n, define

ξ2k−1 =
1√
n

n−1∑

t=0

εt cos(ωkt), ξ2k =
1√
n

n−1∑

t=0

εt sin(ωkt).
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Define

B(ω) =
(

a1(eiω) −a2(eiω)
a2(eiω) a1(eiω)

)
,

where a1(eiω) = R[a(eiω)], a2(eiω) = I[a(eiω)], a(eiω) is same as defined in Lemma 1.3 and for

z ∈ C, R(z), I(z) denote the real and imaginary part of z respectively. It is easy to see that

|a(eiω)|2 = a1(eiω)2 + a2(eiω)2 = 2πf(ω).

Define for (x, y) ∈ R2 and ω ∈ [0, 2π],

H(ω, x, y) =
{

P
(
B(ω)(N1, N2)′ ≤

√
2(x, y)′

)
if f(ω) 6= 0,

I(x ≥ 0, y ≥ 0) if f(ω) = 0.

Since a(eiω) is continuous on [0, 2π], it is easy to verify that for fixed (x, y), H is bounded

continuous function in ω. Hence we may define

F (x, y) =
∫ 1

0
H(2πs, x, y)ds.

F is a proper distribution function.

For any Borel set B, let λ(B) denote the corresponding Lebesgue measure. It is easy to see

that

(i) if λ(C0) = 0 then F is continuous everywhere and,

(ii) if λ(C0) 6= 0 then F is discontinuous only on D1 = {(x, y) : xy = 0}.

Theorem 1.2. Suppose {εi} are iid with E|εi|(2+δ) < ∞. Then the ESD of Cn converges in L2

to the LSD

F (x, y) =
∫ 1

0
H(2πs, x, y)ds,

and if λ(C0) = 0 we have

F (x, y) =
∫∫

I{(v1,v2)≤(x,y)}
[ ∫ 1

0
I{f(2πs)6=0}

1
2π2f(2πs)

e
− v2

1+v2
2

2πf(2πs) ds
]
dv1dv2.

Remark 1.1. If infω∈[0,2π] f(ω) > 0, we can write Fg in the following form

F (x, y) =
∫∫

I{(v1,v2)≤(x,y)}
[ ∫ 1

0

1
2π2f(2πs)

e
− v2

1+v2
2

2πf(2πs) ds
]
dv1dv2.

Remark 1.2. If {xi} are i.i.d, then f(ω) = 1/2π for all ω ∈ [0, 2π] and the LSD is standard

complex normal distribution. This agrees with Theorem 1.1.

Proof of the theorem mainly depends on following two lemmas. Lemma 1.3 follows from

[Fan and Yao(2003)] (Theorem 2.14(ii), page 63). For completeness, we have provided a proof.

The proof of Lemma 1.4 follows easily from [Bhattacharya and Ranga Rao(1976)] (Corollary

18.3, page 184). We omit the details.
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Lemma 1.3. Let xt =
∑∞

j=−∞ atεt−j for t ≥ 0, where {εt} are i.i.d random variables with mean

0, variance 1 and
∑∞

j=−∞ |aj | < ∞. Then for k = 1, 2, · · · , n,

λk = a(eiωk)[ξ2k−1 + iξ2k] + Yn(ωk),

where a(eiωk) =
∑∞

j=−∞ aje
iωkj and max0≤k<n E|Yn(ωk)|2 → 0 as n →∞.

Proof.

λk =
1√
n

n−1∑

t=0

xte
iωkt

=
1√
n

∞∑

j=−∞
aje

iωkj
n−1∑

t=0

εt−je
iωk(t−j)

=
1√
n

∞∑

j=−∞
aje

iωkj

(
n−1∑

t=0

εte
iωkt + Unj

)

= a(eiωk)[ξ2k−1 + iξ2k] + Yn(ωk),

where

a(eiωk) =
∞∑

j=−∞
aje

iωkj , Unj =
n−1−j∑

t=−j

εte
iωkt −

n−1∑

t=0

εte
iωkt, Yn(ωk) = n−1/2

∞∑

j=−∞
aje

iωkjUnj .

Note that if |j| < n, Unj is a sum of 2|j| independent random variables, whereas if |j| ≥ n, Unj

is a sum of 2n independent random variables. Thus E|Unj |2 ≤ 2min(|j|, n). Therefore, for any

fixed positive integer l and n > l,

E|Yn(ωk)|2 ≤ 1
n




∞∑

j=−∞
|aj |(EU2

nj)
1/2




2

(
∵

∞∑
−∞

|aj | < ∞)

≤ 2
n




∞∑

j=−∞
|aj |{min(|j|, n)}1/2




2

≤ 2


 1√

n

∑

|j|≤l

|aj ||j|1/2 +
∑

|j|>l

|aj |



2

.

Note that the right-hand side of the above expression is independent of k and as n → ∞,

it can be made smaller than any given positive constant by choosing l large enough. Hence,

max1≤k≤n E|Yn(ωk)|2 → 0. ¤

Lemma 1.4. Let X1, . . . , Xk be independent random vectors with values in Rd, having zero

means and an average positive-definite covariance matrix Vk = k−1
∑k

j=1 CovXj . Let Gk



5

denote the distribution of k−1/2Tk(X1 + . . . + Xk), where Tk is the symmetric, positive-definite

matrix satisfying T 2
k = V −1

k , n ≥ 1. If for some δ > 0, E ‖ Xj ‖(2+δ)< ∞, then

sup
C∈C

|Gk(C)− Φ0,I(C)| ≤ ck−δ/2
[
k−1

k∑

j=1

E ‖ TkXj ‖(2+δ)
]

≤ ck−δ/2(λmin(Vk))−(2+δ)
[
k−1

k∑

j=1

E ‖ Xj ‖(2+δ)
]

where Φ0,I is the normal probability function with mean zero and identity covariance matrix,

C, the class of all Borel-measurable convex subsets of Rd and c is a constant, depending only

on d.

Proof of Theorem 1.2: We first assume λ(C0) = 0. To prove the theorem it suffices to show

that for each x, y ∈ R,

(1.1) E(Fn(x, y)) → F (x, y) and V (Fn(x, y)) → 0.

Note that we may ignore the eigenvalue λn and also λn/2 whenever n is even since they contribute

atmost 2/n to the ESD Fn(x, y). So for x, y ∈ R,

E[Fn(x, y)] ∼ n−1
n−1∑

k=1,(k 6=n/2)

P (bk ≤ x, ck ≤ y).

Define for k = 1, 2, · · · , n,

ηk = (ξ2k−1, ξ2k)′, Y1n(ωk) = R[Yn(ωk)], Y2n(ωk) = I[Yn(ωk)],

Ak =
(

a1(eiωk) −a2(eiωk)
a2(eiωk) a1(eiωk)

)
,

where a(eiωk), Yn(ωk) are same as defined in Lemma 1.3. Then (bk, ck)′ = Akηk +

(Y1n(ωk), Y2n(ωk))′. From Lemma 1.3, it is intutively clear that for large n, λk ∼ a(eiωk)[ξ2k−1+

iξ2k]. So first we show that for large n

1
n

n−1∑

k=1,(k 6=n/2)

P (bk ≤ x, ck ≤ y) ∼ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x, y)′).
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Note
∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (bk ≤ x, ck ≤ y)− 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x, y)′)
∣∣∣

=
∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk + (Y1n(ωk), Y2n(ωk))′ ≤ (x, y)′)− P (Akηk ≤ (x, y)′)
∣∣∣

≤ 1
n

n−1∑

k=1,(k 6=n/2)

P ((|Y1n(ωk)|, |Y2n(ωk)|) > (ε, ε))

+
∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x, y)′, (|Y1n(ωk)|, |Y2n(ωk)|) ≤ (ε, ε))− P (Akηk ≤ (x, y)′)
∣∣∣

= T1 + T2, say.

Now using Lemma 1.3, as n →∞

T1 ≤ 1
n

n−1∑

k=1,(k 6=n/2)

P (|Yn(ωk)|2 > 2ε2) ≤ 1
2ε2

sup
k

E|Yn(ωk)|2 → 0.

T2 ≤ max
{∣∣∣ 1

n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x + ε, y + ε)′ − P (Akηk ≤ (x, y)′)
∣∣∣,

∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x− ε, y − ε)′ − P (Akηk ≤ (x, y)′)
∣∣∣
}

and ∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x + ε, y + ε)′ − P (Akηk ≤ (x, y)′)
∣∣∣ ≤ T3 + T4 + T5.

where

T3 =
∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akξk ≤ (x, y)′)− P (Ak(N1 N2)′ ≤ (
√

2x,
√

2y)′)
∣∣∣,

T4 =
∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akξk ≤ (x + ε, y + ε)′)− P (Ak(N1 N2)′ ≤ (
√

2x +
√

2ε,
√

2y +
√

2ε)′)
∣∣∣,

T5 =
∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Ak(N1 N2)′ ≤ (
√

2x+
√

2ε,
√

2y+
√

2ε)′)−P (Ak(N1 N2)′ ≤ (
√

2x,
√

2y)′)
∣∣∣.

To show T3, T4 → 0 define for k = 1, 2, · · · , n−1, (except for k = n/2) and l = 0, 1, 2, · · · , n−1,

Xl,k = (
√

2εl cos(ωkl),
√

2εl sin(ωkl))′.

Note that

E(Xl,k) = 0 ∀ l, k, n.(1.2)
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n−1
n−1∑

l=0

Cov(Xl,k) = I ∀ k, n.(1.3)

Note that for k 6= n/2

{Akηk ≤ (x, y)′} = {Ak(n−1/2
n−1∑

l=0

Xl,k) ≤ (
√

2x,
√

2y)′}.

Since {(r, s) : Ak(r, s)′ ≤ (
√

2x,
√

2y)′} is a convex set in R2 and {Xl,k, l = 0, 1, . . . (n− 1)}
satisfies (1.2) and (1.3), we can apply Lemma 1.4 for k 6= n/2 to get

∣∣P (Ak(n−1/2
n−1∑

l=0

Xl,k) ≤ (
√

2x,
√

2y)′)−P (Ak(N1, N2)′ ≤ (
√

2x,
√

2y)′)
∣∣ ≤ cn−δ/2[n−1

n−1∑

l=0

E ‖ Xlk ‖(2+δ)],

where N1, N2 are independent standard normal variates. Note that

sup
1≤k≤n

[n−1
n−1∑

l=0

E ‖ Xlk ‖(2+δ)] ≤ M < ∞

and, as n →∞
1
n

n−1∑

k=1,(k 6=n/2)

∣∣P (Ak(n−1/2
n−1∑

l=0

Xl,k) ≤ (
√

2x,
√

2y)′)−P (Ak(N1, N2)′ ≤ (
√

2x,
√

2y)′)
∣∣ ≤ cMn−δ/2 → 0.

Hence T3 → 0 and similarly T4 → 0. and also

lim
n→∞

1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x, y)′) = lim
n→∞

1
n

n−1∑

k=1,(k 6=n/2)

H(
2πk

n
, x, y)

=
∫ 1

0
H(2πs, x, y)ds.

Therefore

lim
n→∞T5 =

∣∣∣
∫ 1

0
H(2πs, x + ε, y + ε)ds−

∫ 1

0
H(2πs, x, y)ds

∣∣∣

≤
∫ 1

0

∣∣H(2πs, x + ε, y + ε)ds−H(2πs, x, y)
∣∣ds.

Note that
∣∣H(2πs, x + ε, y + ε)ds−H(2πs, x, y)

∣∣ ≤ 2

and for fixed (x, y) ∈ R2 as ε → 0,

(1.4)
∣∣H(2πs, x + ε, y + ε)ds−H(2πs, x, y)

∣∣ → 0.

Hence by DCT limε→0 limn→∞ T5 = 0 and

lim
ε→0

lim
n→∞

∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x + ε, y + ε)′ − P (Akηk ≤ (x, y)′)
∣∣∣ = 0.
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Also note that for fixed (x, y) as ε → 0,

(1.5)
∣∣H(2πs, x− ε, y − ε)ds−H(2πs, x, y)

∣∣ → 0,

outside the measure zero set C0. Using this fact, proceeding as above we can show that

lim
ε→0

lim
n→∞

∣∣∣ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x− ε, y − ε)′ − P (Akηk ≤ (x, y)′)
∣∣∣ = 0,

and hence limε→0 limn→∞ T2 = 0. Therefore as n →∞,

E[Fn(x, y)] ∼ 1
n

n−1∑

k=1,(k 6=n/2)

P (Akηk ≤ (x, y)′) →
∫ 1

0
H(2πs, x, y)ds,

and since λ(C0) = 0, we have
∫ 1

0
H(2πs, x, y)ds =

∫ 1

0
I{f(2πs)6=0}H(2πs, x, y)ds

=
∫ 1

0
I{f(2πs)6=0}

[ ∫∫
I{B(2πs)(u1,u2)′≤(x,y)′}

1
2π

e−
u2
1+u2

2
2 du1du2

]
ds

=
∫ 1

0
I{f(2πs)6=0}

[ ∫∫
I{(v1,v2)≤(x,y)}

1
2π2f(2πs)

e
− v2

1+v2
2

2πf(2πs) dv1dv2

]
ds

=
∫∫

I{(v1,v2)≤(x,y)}
[ ∫ 1

0
I{f(2πs)6=0}

1
2π2f(2πs)

e
− v2

1+v2
2

2πf(2πs) ds
]
dv1dv2

= F (x, y).

Now, to show V [Fn(x, y)] → 0, it is enough to show that

1
n2

n∑

k 6=k′;k,k′=1

Cov(Jk, Jk′) → 0.(1.6)

where for 1 ≤ k ≤ n, Jk is the indicator that {bk ≤ x, ck ≤ y}. Observe that

1
n2

n∑

k 6=k′;k,k′=1

Cov(Jk, Jk′) =
1
n2

n∑

k 6=k′;k,k′=1

[E(Jk, Jk′)−E(Jk)E(Jk′)] .

Now as n →∞,

1
n2

n∑

k 6=k′;k,k′=1

E(Jk)E(Jk′) =
( 1
n

n∑

k=1

E(Jk)
)2 − 1

n2

n∑

k=1

(E(Jk))
2 → H(x, y)2.

So to show (1.6), it is enough to show as n →∞,

1
n2

n∑

k 6=k′;k,k′=1

E(Jk, Jk′) → H(x, y)2.

Along the lines of the proof used to show 1
n

∑n
k=1 P (Ak(N1 N2)′ ≤ (

√
2x,

√
2y)′) → F (x, y),

one may now extend the vectors of two coordinates defined above to ones with four coordinates

and proceed exactly as above to verify this. We omit the routine details.
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When λ(C0) 6= 0, we have to show (1.1) only at continuty points of F and it is continuous on

complement of D2. All the above steps except (1.4),(1.5) in the proof will go through for all

(x, y), but on complement of D (1.4),(1.5) also holds. Hence if λ(C0) 6= 0, we have our required

LSD. This proves the Theorem. ¤
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