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Abstract. A theorem of Hardy characterizes the Gauss kernel (heat kernel of the
Laplacian) on B from estimates on the function and its Fourier transform. In this article
we establish a fild group version of the theorem for SL2(E) which can accommodate
functions with arbitrary K -tvpes. We also consider the “heat equation” of the Casimir
operator, which plays the role of the Laplacian for the group. We show that despite the
structural difference of the Casimir with the Laplacian on % or the Laplace—Beltrami
operator on the Riemannian symmetric spaces, it is possible to have a heat kernel. This
heat kernel for the full group can also be characterized by Hardy-like estimates.
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1. Introduction

A modified version of the Hardy’s theorem states that if for a measurable function f
on B, |f{x)| = Cu:_“""'z and If{.r}ll = Cgu_ﬂ'”':, x € R for positive o, A, then (i)
a-f = 1/4mplics f =0but (i) @ - f = 1/4 implies that f 15 4 constant multiple of
the Gauss kernel e~ | Through a number of articles in recent past, the first assertion of
the theorem s established as a faidy general phenomenon of harmonic analysis on semi-
simple, nilpotent and some other Lie groups. However, due to intdnsic difficuliies, research
remains incomplete in most of these cases as to the second assertion of the theorem, that
is, which functions satisfy the sharpest possible decay conditions.

The purpose of this articke 1 to extend the above result of Hardy (both (1) and (i) for
the full group SL2(E). This article may be considered as a starting point to understand
Hardy’s result inits totality and in particular its relation with chareerization of the heat
kemnel in the context of a full group. Our setting is sufficient to exhibit the new feature
of considening the heat kernel of the Casimir operator on the group and at the same time
concrele enough to provide explicit relations between the estimates and nontrivial oty pic
components of the function.

Let 7 be SLo(E) and let K be its maximal compact subgroup §0:(E). As we are
dealing with the group O our aim 15 o obtain a version of the theorem which accommodates
functions with no restriction on K-Lypes. Our first result characterizes a function with given
arbitrary K -typessatisfying the Hardy-like estimates. In fact, we getanexphcitrelationship
between the vanishing of 4 K -isoty pic component of a func ton and the estimates it satisfies.
We find it necessary to strengthen the estimates using polynomials to preserve nonirivial
sotypic components. We observe that a sharp point of the estimates can be achieved, only
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in terms of this polynomial say P o keepinge - # = 1 /4. On one side(whendeg P=v <=0
in Theorem 3.2) the function 1s dentically zero and on the other side (v = 00, 1L s good
enough to generate an L'-module which is dense in the set of LP-functions of its isotypic
class for p £ [1, 23 (Theorems 3.5 and 3.6).

Since the Casimir operator plays the role of the Laplacian for the group, we proceed to
explore possible relation of Hardy's estimate with the characterizatnon of the heat kemel
of the Casimir operator. It is not difficult to see that the heat kemel of the Laplace-
Beltrumi operator on &/ K which is bi- K-invanant cannot fulfil the requirement of being
a heat kernel for the full group. But when the heat equation is considered on the group G,
replacing the Laplace-Beltram operator of &/ K by the Casimir operator £2, the situation
changes drastically. Because, unlike the cases of Euclidean spaces and the Riemannian
symmetric spaces of non-compact type, the general theory does not provide a well-defined
heat kernel with nice L7 properties, due to the non-ellipticity of £2. We show that the
object which emerges naturally as a heat kernel of £ and fits pedfectly for the full group
is only a virtual one. But the situation is saved onfy if we restricet in an arbitrary but fixed
K -finite environment. Then, we can still have an actual heat kemel which retains all the
nice properties of the Gauss kemel [1;’{2@}”&:“”'””2“‘ on B and there we are able to
relate this heat kernel of £2 with the Hardy's estimates.

We conclude with a brief review and references on Hardy's theorem. Hardy proved
this theorem on B in [10]. A well-known stronger version, which we have general-
teed, can be found, e.g., in [11] and [6]. For Lie groups the Hardy’s theomem was first
Laken up by Sitaram and Sundari in [17]. This riggered considerable attention in the
last half-decade. Different versions of this theorem was proved for semi-simple Lie
groups, symmetne spaces, nilpotent groups, motion groups and solvable extensions of
H-type groups. Among these many articles [5,7.16.17] have dealt with semi-simple
Lie groups. See [8] for a comprehensive survey and references for Hardy's theorem
on semi-simple and other groups. All these results are analogues of the first half of
the Hardy's theorem where the estimates foree the function to be zem. These results
are usually viewed as mathematical uncertainty principle. For § L2([), Theorem 3 2(ii)
in this paper accommodates these mesults and provides the sharpest possible Hardy-
type uncerainty (see Remark 3.3). See also [14] which takes up Hardy's theorem on
GiK.

2. Notation and preliminaries

We shall mainly use the notation of Barker [3] with a few vanations which will be mentioned
here.

Unless stated otherwise, 7 is §L2( ), gis the Lic algebras of & and gg is the complexi-
ficaton of g throughout this articke. Let

01 i ~1 i
X:(—l (})‘ E:(f—l)‘ F:(f 1)

11 0 01 w_ (00
Hz(ii} —1)' Yz([}l)‘ rz(—l n)'

and
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Then X. ¥, ¥ € gand {X, E, F} is a basis of go. Let K be a fixed maximal compact
subgroup of SL2([E). Then K = {kg|d € B} where

cos 8 sin 8
ke = ( —sin & ¢os f ) = eXpIL),

Let A = {oy = exp2tH|t € B} and AT = {a;|t = 0}. Then A is an Abelian subgroup

of . Let £ and a denote the Lie algebras of K and A respectively. In our set up the

multiplicities of the two positive roots p and 2y are 0 and 1 respectively, the half sum of

the positive roots p = 1 and the Weyl group 27 is Z;.

Let K = {yxln € Z) bethe set of the characters of K, where 3, (ks ) = "% Instead of y,,,
by abuse of language, we will call integers nas K-ltypes. A complex valued function fon (G
issaid to beofleftiresp.right) K-typenif fikx) = (k) fix)(resp. fixk) = xp (k) flx))
forallk € K and x € G. A function is of type (m, n) if its keft K-type is m and right
K-type is n. Suppose F is a finite subset of K = Z. Then we call a function left (resp.
right) K{ F)-finite, if all of it left (resp. right) K-types are in F. A function is K { F)-finite
when itis both right and left K { F)-finite. For a suitable function f, the (m, n)-th isolypic
component of f 15 denoted by fi » and 15 given by:

[ [t 7y st

Let a* be the real dual of a and o be the complexification of o*. Then af. and a* has
obvious identifications with C and [ respectively. Let M be {:l:f}, where 1 is the 2 x 2
identity matrix. Then the unitary dual of M is M= {7, a7} of which ™ is the rivial
representation of M. Let 27 (resp. 2% ) be the set of even fn:sp. odd) integers. Also let
—oT =0 and —o” =a7.

Fora € Mand A ':'-?.‘ = C, let (7; 3. Hs ) be the principal series representation where
H, is a subspace of L*(K). Define e, on K by e, (ks) = ¢ Then, forn € 27, e, € H,
transforms according to the K-type n and {ey(n € Z7} is an orthonormal basis for H,, .
The representation m; 3 15 $0 normalized that it is unitary if and only if & € ia® = i[E. For
every k £ Zthere is a discrete series representation g which oceur as a subrepresentation
of 5 4 sothatk € Z77 Form.n € % andk € 277, let OV (x) = {mg 1(x)ew, ;) and

m "{.r}l {my {.r}l.-:"ffJ 2 ff‘r}k . be the matrix coefficients of the principal series and discrete
series representations respectively, where {f{‘r} are the renormalized basis and {, ) s the
renormalized inner product of o (see [3]. p. 2000 Also, for every positive integer m, 7
has exactly one iredocible representation of dimension m owhich are subrepresentations
of m; _yy with m € 277 For details of the parameterization of the representations my g
and mp and ther realizations on LZ{ K) we refer o [3].

For f € C™{G), I} € g and any admissible representation (7, V), define

d
miD = d—.ﬂ'{cxprD}llllI=n, re V,
1

d d
flx: D) = EJ'{IG‘EP{ID}}!:ﬁ]. flD; x) = E.ﬂ'—‘ﬁpﬂn}'x}'h:i]-

Letus recall that { X, E, F}isa basisof g . The following action of these basis elements
on {e, b,owill be useful for us (see [3], 4.4 and 4.6):

-'T-:r.J.{X}fn = fney (1)
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Ay (Edey =(n+ A+ lleyyo (2)
Ta 3 F ey =(n— 4L — lley_a. (3)
Letd be the distance on /K induced by the Riemannian metne on it Define o{x) =

dix K. o) where o = e K. Thenal{exp H) = |H| = {H, H}'*"‘?’H € a, where {, } s the
Killing form. Then we have

e M < Bx) e ™ (1 +a(x) foralx el (4)
where E(x) = 027 (x) (see[3],3.2).
Let dk and da respectively be the Haar measures on K and A and fj: di = 1. Then the

Haar measure dx on 7 15 given by dv = J{a)dk dadk;, where the J{a) is the Jacobian
of the K A7 K decomposition of 7. Also,

[f{a)] < Ce®™  foralla € A. (5)
From the integral expression of <IJ""~” (see [3], 4.8), it follows that i‘D‘"f{.r}ll =
Cin, ,J‘I’f: t]{.r}ll,, wherme Cy 15 8 constant which depends on m,n. Now as }‘I’f: U{ ) =
ehzlloga) g Efa) (see [9], Proposition 4.6.1), we have

|0 ()| < C2 8 E(a), ae A (6)

Here A5 1s the Weyl translate of Ag which is dominant, 1.e., belongs to the positive Weyl
chamber. In our case Ay is simply [Ag|.
Forp e ((L2] ket & = {z € T|[MA = (2/p) — 1}. Then from the estimate (6), it

follows that L9 -nom of <I>i;‘ ir{.r}l is uniformly bounded on i € S'"‘ where $P is the interior

of 5°.
For a suitable function f, let f: (Fyl ). Fe( i where Fy(f) and Fgi f) denote
its continuous and discrete Fourier ransforms respectively. Precisely

Frl fila, &) =f Flxdmg iz~ Hdx
G
and
Fg(fik)= ,;_f{.r}l:ru.r_'}dx

The (m, n)-th matrix coefficients of Fg(f) and Fgif) are denoted by F“_‘:."”{_f'}
and FZ"(f). Thus Fp'(flah) = [f; Fx)O0 Mz ydx and FR" (k) =
_,I} _,f'{.r}l"-I-""‘ "(x~')ydx. Then clearly, F‘"'”{f} Fyil f ). Smee m, n determines a
unjue T £ M by m,n € Z7, we may sometimes wrile F;:." "{j}l{)-.}l for F';;.‘ ”{j}{ AR
omitting the o as that does not kad to any confusion.

For p € (0. 2] we denote the LP-Schwartz spaces of G by CP(G) and C™G) =
F‘:]EPEIC”{G} (see [3] for definitions). The space of ut}mfw_'tly .k;du__ppﬂrtud inliﬁnituly dif-
ferentiable functions of G is denoted by C2F (). By CP(G), C%G)y and C ) respee-
tively we denote their images under Fourier transform. For any class of function JF, Fy,
denotes the corresponding subelass of (m, n)-type functions.

We follow the practice of using C, C7 elc. to denote a constant (real or complex ) whose
value might change from line o line. We vse subsceripts of © when needed o indicate
therr dependence on parameters of interest. We may not repeal mentioning these at the
particular places.
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3. Hardy’s theorem

[51 our parameterizations (see [3], p. 16), pancipal series representations {myp [(a, &) €
M x T} are not imeducible only when L € 277, But when m,; 5, s not imeducible it has
ireducible subrepresentations. If w5 has anirreducible subrepresentation which containg
ey but not e, for m,n € Z7, then CIJ:‘_f{_r} = {Tgalx)em.ent = 0forall x € G
and hence the Fourier transform of any admissible function of (m_n) type is zero at this
(d. ) e M x C. There are |m—n|/2 suchzeroes each of order one of the Fourier trans form
of an (m, n) type function (see [3], Proposition 7.1). Let pa, be the monomial with exactly
those zeroes with order one. Then py,, is clearly a polynomial of degree [m — n|/2 with
integer coefficients. For instance, when m = n, then

Pon=(m—1—-4{m—-3—-24)---(n4+1—24).

Thus when m = n we see that the coefficients for e,_2; (j positive integer less than
[m — n|/2) in the right hand side of (3) are factors of py, ,. Using that, one can easily
show that my (FI"™ "1 2)e,, = pyu i i)ey,. Similady, using (2), we get oy (E"™ =" 2)e, =
Pm.n(—A)ey. Whenm < n, thenin an analogous way we can also prove my (E"™="1/2)e, =
P nld ey and JTJ;{FIM_"”I}"-'M = Pmal—Aey.

Lemma 3.1, Let | € LM Gy for some p € [1.2) and m,n € Z7 forsomea € Z7.
Then F’F:f'"{f}l{a'. AV P nUh) is an even analviic function on &p

Proaf Analyticity of .I':“h."I M. A pa (X om &P is clear from the definition of P (L)
and the fact that the Fourier transform of an L” function s analytically extendable onSP.
We have o prowve that it is also even.

Let us first assumem = n. Let g € C2(G ). Then m, n determines a o € M by
m,n £ &%, We wrle F};‘"'{g}{l} for F;_:."'" {g)ia, &). Then, using the relations preceding
the lemma, we have

FJu.Jr{_)'-}'P;; '”{H}'U'-}' = Pmn{—4) frﬂir} {malxdem, enddx

. [ glxmp(x)pm a{—A)ew . ex)dx

- f g ()T (E™ T )ey, e )dx
0
= [ (0@ " (x; EM Ty
S

e [ gix: {_1}|JH—H|.I'1E|JH—Ji‘|.-"l}¢3:..li‘{_r}dr
oG

= F"(h) (),

where h = g(x; (=DM MZEMMZ) € C(G)nn. Thus pmn{—KFgg" (g)(3) is in

C‘x{ﬂ'}”.n. From the charactenzation of the image of C?C{G'} under the Fourier trans-

form (see [3]. Theorem 10.5) it follows that, (=3 F™ @3 is an even function
P g g

on . Therefore, F';;.""{g}l{)-.}ll.-’pm_n{)-.} is also an even function. As C2° (G )y x is dense
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in LG Yy p . For any function f & LP{G)y, x. there exists { i} € CF(G )y such that
Jfi — Fin LP. Now as supy IF"" "{f}{n’ A= A supy g 19 J,:Ilql and as thL

L9 -norm of 43"‘;: is bounded uniformly on S-"" F';:." "{_f‘} — .F"" "{j} uniformly on §e.
Therefore F"" IR Pn(A) 18 even on 8P The case m < n is similar. O

When a function f € L'”{f'}lm « has greater decay so that F'"""{_,f'} (&) can be defined

L

on a bigger domain than S” then by analyticity, Fip ™ ( F)A) P w (L) will be even on the
bigger doman.
Mow we are in a position Lo state the main results:

Theorem 3.2, Let | be a measurable function on G such that

Ifix)] = Ce @ g (x)(1 + a(x))" forall x € G (7
and

IFu (). M| < CoeBA (1 +|AD"  forall (o.4) € M x ia* (8)

where || - || is the operator norm with respect to the norm of Hy = O and v are integers
and o, A, C,Cy ame positive constanis.
Iifa - g =1/4, then
{i) form,n e Z iflm —n|/2 = v, then fiy . =10,
() ifv <0, then f =1,
{iil) fora e M andm.n € 27 with |m —n|/2=uv,

FI(f) (@, 1) = Pg(m,n, e forall ) € af

and F';‘ "{_f}{k} = Pglm,n, .k}u-'ﬁ2 Jor any discrete series mp such that mg|gy =
K- ¥m. where Pg is a polvromial inm, n. & (resp. in m. n, k) which depends on .
In particular if |m — n| /2 = v then Pg(m, n,A) = Cypn P nl(A)

(V) ifv=0,then fiyp = Oform,n e Zwithm #£n,
F" (f)e. )= Cap e forall (o, 1) € M x ar.andn € L7 and
Fﬂ'"{f} (k) =Cgan -uﬁ'kz,ﬁw any discrete series myp such that mp|g 2 ya-

Proof Leto € M and m.n € 7.

Step 1. In this step, we will show that F’F:.""{f}{)-.} 1% an entire function and

IFg™ ()] < CPPP . (1 + a2 (9)
forallh e T
Fiy" (f)le. ) = f fR@lde= [ fla)@ly (a)J (a)da.
G At

Therefore using (7). (6), (3), we have,

Fm Jr{f}{ﬂ_ M=<C- f L—aa[:r)— A [Ing:r]-—-_{ﬂ} {1+a’{ﬂ}}"L‘M"]dﬂ

A
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Now applying (4) we gel
}F;_:.‘ "{j}{cr V<C f ':—.:z-:r[f.-]icj.,j't floga) ,—~2aia) {1+a’{ﬂ}}”_'zl:2aw]dﬂ
At
=C f L—aa[:r] J;:ll,-.’!'l:’n']] (1 +G’{ﬂ}]l"-r_dﬂ
At
=C- fc-“'”'%li‘”] (1 + H)***dH.
a

Heme H = loga, ie.. H £ asuch that exp H = a, dH is the Lebesgue measure on a.
Suppose Hy, corresponds o .I'-.:: via the isomorphism of a* with a through the Killing
form (1.e. .}'-.;:{H} = {H, Hy,) for all H) so that [)-.El = |Hy;|. Then

[FIR () 1) < C - o el Hy |—fc—a-:H—ll,-"Ir::]H;_l.H—ll,-'"-_’a]HAl:_

a
(1 +|H]"dH.
Using translation invariance of Lebesgue measure
|F (f)(o, M) < C - eVelfial® (1 4 |5y )2
xf e~@H1 (1 4 |H|)“+2dH
el () . 3152

” f u—aIHIEU + | HDdH  as I)-.EI = |Ag| = [A]
1]

=C-

2 . 1
C - At asp=—.
Ao

|4

Step 2. Let F(z) = Fy'"(f)z2)/ pm.n(z). Then, from Lemma 4.1, F is an even entire
function.
Consider ¢ (z) = F{ﬁ}.Thi:n ¢ 15 also entire and by (9) and (8) respectively, it satisfies
the inequalitics
()] < CePl 1+ z])  forzeC (10)
and

[¢)] < Coe~ A1 + A  fork e iRY (11}

where 2s = (0 4+ 2 —|m — n|/2) and 25" = v — |m —n|/2.
Let us define 1riz) = ¢{iz). Then from the above two inequalities, we have

I(z)] < Ce®(1 4z farzeC (12)
and
I ix)] = C, e8] +.r}|") forxr e B™ (13)

where 5 and 5" are as above.
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We claim that for 57 = max{s, 5"},
(e = Cl+1z) forzeC. (14)

Let F'iz) = wiz, @0kiz)/iz +f}|"'”_{m De = {re?|0 =8 = B} for 8 & (0, m), where
w(z, B) = w(r.d, 0) = exp[piz- e~ /sin(D)].

Then
lwir, 0, @) =" (15)
Jw(r,®, )] =& F (16)
w(z, 0) — M as® — 7. (17}

From (15) and (13) we have |[F'(x)] = |Fir)| = C[(l +r'}l""f{f +r)f' ] < M. Apain
from (16) and { 12), we get |F'(ré'®)) = CH(1 4+ r)* /(i +r)* | = M for some M = 0.

By Phragmén-Lindelof theorem ([4], IL6.1] we have |F'(z)] = M on Dg. Now from
(17), we conclude that on {z € T |3z = O}, [Wriz)e™ f(z +i)" | = M. Similarly we can
prowe that on the lower half plane |1ﬁr{z}luﬁ:f{z - F}")'I = M. Combination of the above
two results proves the clamm (14).

Step 3. From (14), weget, forz € C.giiz) = Wiz) =C- Ql{z}-c_ﬁ: for some polynomial
( such that deg @ = 5", Therefore,

F(iz) = Cg - e~ 01(22) = Cp - P Qa((iz)?). (18)

Hence, for some polynomial @ with 0 = deg 0 = 5"

F(z) = Cy- ¢ Q(2) (19)
and finally
F'™ (F)(z) = Cg - €% Q(2) - palz) forz e C. (20)

Then from (8), v = deg O+ |m —n| /2. Therefore |m —n| /2 = vimplies that fi, . = 0.
This proves (i).

If v =0, thenv < |m — n|/2 forall m, n € 27 Hence fy,,, = 0 for all m, n and hence
F = 0. Thus (i1} 5 proved.

If v =0, then |m — n|/2 = vonly when m = n. Therefore fi, , = 0 for all m, n with
m 7 n. This proves the first part of (iv).

When m = n then py, , = 1 by definition. Therefore from (20)

F;_:.'"{_f'}l{i}l = Cg _':—.l‘?:2 Q{ZI}- (21)

But if v = 0 then from (8) it is clear that @ can be only constant. This proves the last pan
of (iv) while (1) 18 clear from ( 20). O

Remark 33, From Theorem 3.200) 1t 18 easy to see that if the condition (8) 15 replaced by
Fl(fia, ) is o{u_ﬁl:‘lz}', then f = (). With this observation, the above theorem looks
like an exact analogue of the original result of Hardy (see [10]). Clearly it takes care of
the following Hardy s theorem for §L2(E) (see [17], Theorem 5.1).
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Theorem 3.4. Let | be a measurable function on G such that

Ifix)] = Ceeta)? foral x e G (22)
anel

UFe(F)e, DIl < Coe™  forall (o, 1) € M x ia* (23)
where || - || is the aperator norm with respect to the normof Hy and o, f, C, Cy are positive

constants witho - f = 1/4, then [ =1

In contrast to the above theorem it s shown in Theorem 3.200) thateven when o - f = _%
then also = 0, provided v = 0. On the other hand, from Theorem 3.20iv ) we can show
that if & nonzero function satisfies the estimates with v = 0 then f has nonzero Fourier
transform at every representation relevant for f. That is, if the Fourier transform of f
vanishes al a (unitary or nonunitary ) principal series or a discrete series representation m,
then | g does not contain any of the K-types of £, We notice the sharp contrast between
the cases v = Oand v = (.

Our observation related to the case v = 0 leads w the following consequence.

Let poe [1, 2). Suppose for a function f e LP(G), M{f) is the L'-bimodule (under
convolution) generated by f in LP(G). It is well known that iff M{ ) is dense in L7 {(5)
then fosatisfies these two necessary conditions:

(A) The even and odd parts of f have infinitely many positive and negative K -types.
(B} The bi-mvariant component of f 15 nonzero.

It can be proved that if a function f & LP(G) satisfies these necessary conditions and
decays as in Hardys theorem, then ), in fact, generates a dense L'-bimodule in L™MGY.
Precisely:

Theorem 3.5. Let | be a measurable function on G which satisfies (A) and (B) above.
Assume also that [ and Fy (f) satisfv the E:wqr_d_{a_f_r'_rl_'-{.':-' (7Y and (B) mespectively witha - fi =
/4 and v =10. Then f isan L" function and M{ f) = LP{G).

Proof Take a discrete series representation my. Then fi, % 0 for some integer n of
parity opposite 1o £ with n = kor < & according as & = 0 or < (. It is possible 1o
find such an fi 4. as odd and even parts of § are non-K-finite on both positive and
negative sides and as by Theorem 3.20iv) fiy 0 = 0 almost everywhere for m &£ n. This
n determines a0 € M by n € 27, Now as f and Fi"(f)io, -) satisfy respectively the
mnegqualities (7) and (8) with v = Qand o - § = 1/4, by Theorem 3.2(iv) it s clear that
F',f”{f}{a,}-.} # 0%¥h € T and hence ij,,{f}{a, -} is nonzero on all of the imeducible
subrepresentations of {7, |k € T} containing the vector e,. Therefore, fi , has nonzero
Fourier transform on mp. Because mp is equivalent to the irreducible subrepresentation of
T, k| which contains e, . f has nonzero Fourier tran sform at all principal and discrete series
representations. For similar reason f has nonzero Fourer transform also on the limits of
discrete series.

If fop # 0, then by the same argument fy o has nonzero Fourler transform at
the trivial representation which i a subrepresentation of 7.+ _ . Hence _,IFG fix)de =

fo F@l?  (xdx #£0.
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If fi n %= 0. then by Theorem 3.2(iv) elearly,
limsup [FR (). 3) ¢ |= 0 forall €' > 0.4 €a*.

e
[A|—+ o0

Now the theorem follows from the Wiener-Taubenan theorem for SL2(E) (see [15].
Theorem 1.2). |

MNote that condition (B) above 1s necessary only when p = 1 and can be dropped from
the hypothesis of the theorem when p = 1. We also have the following simpler version
when instead of LP(G) we restrict on a particular K-type on the right. We know that
functions of right K-type n may be considered as sections of certain line bundke on G/K
corresponding to n. Let us call that Iine bundle Ty, Using similar argument as above we
cin show:

Theorem 3.6. Let s be a measwrable LU -section of the line bundle Ty, for somen € Z. If
5 and ity continnous Fourier transform satisfy (7) and (8) respectively witha - § = 1/4
and v = 1), then the left L ! (T )-module genevated by s is dense in LP(T ).

4. Heat kernel on SLa([F)

In this sectuon we will explore possible connection of the Hardy's theorem with the char-
acterization of the heat kernel.

Let us consider a general noncompact, conneeted semisimple Lie group for this discus-
sion and call it . We shall come back again to the particular case of §L2([R) after that.
Let K be a fixed maximal compact subgroup of G. For a function fon G = E7, let { fi}
denote the parnmeterized family of function on & defined by fi{x) = fix, 1),

Nelson (see [13]) constructed the heat kernel k7 (x) .0 on G, which is an analogoe of
the Gauss kernel {1,-’{2\,-"5}”}1:_”'””2'“4’ on [B". This {k7(x ) };~0 constitutes a fundamental
solution of the heat equation (9w /df) = A 7w of a Laplace operator A™ of G, Precisely,
let { X} <i<qy be abasis of the Lie algebra g of 7. Consider the left invanant differential
operator AT = ZI-::I._,I'{n aj Xi X j, where {a;;}is a symmetric positive definite matrix.
Then itis known that {see [ 18], Chapter v, [13], §8)L T, = ¢A" = 0 defines a Semigroup
(heat-diffusion semigroup) of operators such that for any ¢ € C?‘:{G}, Trh 15 a solution
of AT = (du/dt), and Trh — ¢ ae. ast —= 0. Also T; is an integral operator with
kemel k;7, i.e., for any ¢ € C2P(G), Thgp = &7 # b, This kemel &7 (x) is in O™ (G = E7T)
and 1% the fundamental solutionof A™w = (du /it ). Moreover, k7 € L ' (G)NL*{F). The
particular structure of A7 is responsible for the existence of the kernel k7. In fact Magyar
[12] has shown that it is enough w consider a real formally negative elliptic right or lefi
invariant differential operator of second order without constant term for this purpose.

Let us now look back at the situation on /K. Consider the Cartan decomposition
g = £+ p, where Eis the Lie algebra of K and p s the orthogonal complement of Ein g,
with respect to the Killing form. Suppose we choose the basis { X} <=, of g such that
1Xih=izy 15 a basis of € and {X; }, £1<j=y 18 abasis of p. Then one can find two positive
definite symmetric matrices {by;} and {cyb, with 1 = ( f = randr 4+ 1 = &0 = 0
such that 2 = ¥ ey XeXr — ¥ b Xi X is the Casimir operator (see [19]-1 p. 168)
of G. But as ¥ b X; X; annihilates any smooth function on G/ K (regarded as a right-
K -invariant function on G, the action of 2 on G /K s identical with the action of the
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Laplace—Beltrami operator, A on G /K. It can be shown that for suitable {a; ;. there exists
AT = EI 1. j=n a; ;X ;X as above, whose restriction o G/ K is A (see [18], L7). In fact
these {q; ;| corresponds o a K-invariant positive definite quadratic form on the tangent
space of G/ K at o = K and from it we get the G-invariant Riemannian metne on &K
s that A becomes the Laplace—Beltmmi operator of /K Tor that metric. The availability
of such a A7 is behind the existence of the fundamental ht}luliun of the heat equation of
Aoon GFK. Precisely, A also gives rise 1o a semigroup T, = .t = 0 of convolution
operators with kernel k; which is the fundamental solution of LhL heat equation An = '5":" .

Recall that the Casimir operator £2 on the group enjoys the position of the Laplace
operator. 5o, it is natural to consider its “heat equation”

Qu=—.
it

Noife that in the accepted terminology the words *heat eguation’ and *heat kernel” are
associated o an evolution equation whose generator 15 elliptic. The Casimir operator s
not elliptic; in fact it s hyperbolic. Therefore, we shall call the evolution eguation of the
Casimir operator £ as psendo-heat equation and the kemel of the Casimir semigroup as
psendo-heat kernel. Thisconforms to the terminology of the pseudo-Riemannian manifold.
It does not seem o be known if this pseudo-heat equation of £ on G has anice fundamental
solution.

Mevertheless, we will see below that for this pseudo-heat equation of the Casimir oper-
ator on §L3 (), a formal (pseudo) heat kernel emerges rather naturally and its restric-
tion on every finite subset F of K, is a one-parameter family of solutions {.ﬂ.flr e BT}
of the pseudo-heat equation of £2, such that for any left (resp. right) K{F)-finite ¢ =
C®(SLaE), kF + ¢ — ¢ (resp. ¢ + kT — $) in LP. We will also see that this kF
retains all the nice properties of the heat kernel of G /K or for that matter of the original
Gauss kemel on BT,

From here till the end of this aticle, & 1s again SL2([®). The Casimir operator of
G =5Ly(R)is @ = H* + H — YY (see[3], 2.6). Then,

Theorem 4.1. Let p £ [1. 2] be fixed and let hix) £ Cf‘:{ﬂ'}l_ Then thew exists unigue
B (x, 1) € C™G » BT such that the following holds:

@ i é .
Qfh — ThI =0 jforallt =10, (24}
olf
h?{.r} — pix) imL" ast — 0, (253)

W), @), Zhf € LP(G) for all ¢+ = 0 and lims—g |[Ih%.50) — k()6 —
ahy ()|, =

Proof Fort = 0, we define Hy (o, 1) by Hy(g, Mp.n = e 11/ Fi" () (. &) for all
(c.h) e M x Candm,n € Z7. Then it is casy to verify that H (o, L) is in cG) =
NpCP(G) (see [3]. §19). Therefore, by the isomorphism of C%(G) with C%(G), there
exists by € CY(G) such that Fy(h,)(o, 1) = H(o, ) forall (o.4) € M x C.

For proving fi (x) is g solution of (24), it is enough to show that for every integers m, n
of the same parity, fiy g 15 a solution.

Form.n € &7,

Fi® (b )@, %) = Fra(hyma) (0, 1) = €X' =DV FI0 () (g1, 1),
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Therefore,

-+

d D non A =1
Fy ( 2him, ) (0. 1) = o Fy " (h)(o, 1) = —— F" (h) (o, 3).

Since 2 is formally self adjoint and Q@7 (x) = (2 — 1)/4@7 " (x) ([3], 4.7) we have
from earhier discussion,

il
Fy (r..:lfh”" Jr) (o )=
= Fiy (A plx)hla. L)

21

f Bpmon {-r}"pm ”{x}ldt’
G

Similarly on any discrete series representation my with mglg 2 ¥e. Xme Fg{%h; e |
(k) = Fg(Qhy mp)ik) since QU (x) = (k* — 1)/49 " (x) (see [3]. 4.7 and Proposi-
tion 7.3). Hence fiy 15 a C'”{f'}l solution of (24).

MNow as f — 0, H, — ¢ in CP(G). Therefore, h, —» ¢ in O () and hence in

LP{G). It is easy to check that f; satisfies other conditions.

Conversely letus assume that A* = h € C™(G = BT ) is a solution of O = (a8t on
(7 » 7 such that for some p € [1, 2], f,(x) satisfies the hypothesis of Theorem 4.1, N{}[L
that for any function f € LP(G). Fy'"(f)(a, 1) can be defined for all (o, 1) € Mx 8P and
m.n € £7 and IHup}.-ﬂi"‘ 'Fm ”{.-f WA = ||.f”.n IL’up}.EJF”'{I}'m ””q EUF"P'U"L .-'FJ —t JF in
L" Then, since L9-nomm of <I>f{‘ "{.r}lls uniformly bounded on S-"" F';:." "{_,f‘} —_— F"F:.‘ ”{_f}l
uniformly on i[E. Also there are only finitely many discrete series representations m such
that mglx = xu. ¥m. Therefore we can say that the (m, n)-th Fourier transform of f;
converges Lo the Fourier transform of §f uniformly on all unitary representations. Taking
fi = (h¥ () —h{())/8 and f = BhT(-)/t, by the last assumption in Theorem 4.1,
(@/00) [ Frth ) (A)] = Fyldh(-. 1)/or](2) and (3/30)[ Fglh)(k)] = Fgldh(-,r)/or](k)
foralld eiRand ke Z.

Applying Fourier wansform on both sides of (24), we get for each m,n & Z7:
F‘"‘""{ﬂh i) = F"‘"[{EEI,.’EEIr}h,IU-.} {E],.’EEIr}IF‘" "he (k). Also, F‘"'"{ﬂh;}{}.} =
Iz @@ " (x)dx = [(AF — 1)/4]F " (h;)(L). Therefore [{)L-—l}fdllF;;.’ Ry =

L L Al

{f]."rdf}'FH (f )(A). Solving this we get Fiy (i )la, b)) = Cy" (e (=14 for cach
(o, A e M xR

From similar calculation we also get, F';;‘ "U’:,}l{i}l = Cg“" {.k}u:“"‘__”:'“1 for every dis-
crete series g, such that e[ 3 Y. Y- For each pairm_n, 37" and C 5™ are functions

of & and & rLspu_leLly
As L9 -porm of <I><,J_ is uniformly bounded on A ES"" ast — 0, F;:.‘ "h ) (e, L) con-

verges uniformly to F';:.‘ My Ayon Sp by (25). Therefore, F';_:." e h) = PSSR IIFER

Fli™(@)(a, ) for each (0, 1) € M x ia* and Fp" (h,) (k) = e &~ . FI () (k) rnr
every & such that mg| g contains . ¥a.

Due to the unigueness of the solution h? in the above theomem, it s natural o
define {k(x)} =g on G formally by the following data: For o € M and m,n € &7,
F"" (k) (0, 2) = 0 when m # nand Fii"(k)(o. 1) = ¢**~ D74 for all & & C. Then
from the Plancherel theorem (see [19], vol. 2, p. 4210 it s clear that there cannot be any
L7 function which matches with this descrption of & . But the behavior of this virtual &,
is similar to that of the heat kernel:
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{a) k;sy can be thought of as &y * & becanse (kaglpn = (Kdpn * (K)yn and
(hpdn n#ksdn o = O form = n.

{b) We have seen in the proof of Theorem 4.1 that the solution hf 15 formally given by
hf = ke # ¢p = ¢ % k; for any initial function ¢ € T2°(G).

However, whunlustriulud toa K-finite environment, & 15 no longer virtoal. Let F be
a finite subset of K. Suppose .i:f = 3 uer(kidpn and let Hy be the finite dimensional
subspace of H; generated by the vectors which transform according to any of the K -types
in F NE7, Then,

(i) kf(x)isin C®(G xE*) and for every r € B*, kF € C"((G) and hence in particular
ke LHGY N L™(G).
(ii) Ltis easy toverify that k&, = kf # & forr, s e BT
(iii) For every o € M. FH{.kIF}I{ﬂ', +1) = I, the identity operator of Hy. This
generalizes the well-known property of the heat kernel on the symmetric space
GiK: fﬁ-’ﬁ.’ kpixddxy = 1. On G/K, kf 15 (K opp and hence erﬁ.’ kixidy =

0,0 0,0 0,0
S kg @7 (g)dg = F (k) (£1) as @7 (x) = 1.

{iv) For any right (resp. left) K (F )-finile ¢ = Cf*{ﬂ'}, the unigue solution of the inital
value problem (24) and (25) is &Y = ¢ # kT (resp. h? = kT # ¢).

Thus in the subclass of rght or left K (F)-finite functions k' plays the role of the heat
kemel. We have now all the background to offer the following which relates the Hardy's
theorem with the characterization of this pseudo-heat kernel of 22:

Theorem 4.2. Let F be a finite subset of K. Let f be a measurable function on G x R+
such that for each t € B™, f; is K{F)-finite,

Ifi (0)] < Cre~V1Uloeal+30 (| 4 |1op al)*  foratlky, ks € K, a € A™,
(26)

and

2

NFa(fi)a. M| < Croe R forall (o, 3) € M x ia* (27)

for some positive constants C; and C;, and positive integer u. Moreover, if
Fu(fille, £1) = I{ forallo € M then f; :.kIF.

Remark 43, The precise estimate for the heat kemel on SL2(E)/S02([]) is the same
as the estimate (26) (see [1]. p. 66). Relating partial Founer transform of a function f
with the Jacobi transform of f 4. one can in fact show that kf also sausfics the same
estimalte. See also the work of Anker et af [2] in this direction. Estimate (27) says that
the Fourier transform of f; decays faster than the Founer transform of the heat ker-
nel. The condition f wle. £1) = 118 a generalization of fﬁ K Flapde = 1, as noted
above.

FProaf From (26) we have

|.-|FI (r)] = l:';l:_l k:ag:.r|3,-';c—| Ingg.'|“ + |{}Eﬂ|}”-
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Therefore, using estimate (4),
|filx)] = Cr"c" loga|* /1 Ela)(l + I{}gnl}”J for some u” = u.

Mow for fixed ¢, ket = 1/t and f = /4. Then from Theorem 3.2(iv) we have,
{fihnn = Oform #£ n and F';;."r{j}}{a,}-.} = C-L”L,[:,-':HJ.E for all (o, %) € M x ar. and
ne®"NF.

The condition Fy( f;){(a, £1) = I implies Fi" (fi)(a. £1) =1, foralln € Z2° N F,
for all o € M. From this, we el

F;_:.'”{_,IF';}I{G'. A) = cu.-'4][J.—'_I]
and
Fu'(fidla. k) =0  whenm #n,

forall (o, &) € M x apandm.n € £ N F.
Therefore by the definition of .F:IF, fi= .F:IF. O
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