WHITTLE TYPE INEQUALITY FOR DEMISUBMARTINGALES

B. L. 5 PRAKASA RAQ

(Communicated by Claudia M. Meuhauser)

ApTRACT. A Whittle type inequality for demisubmartingales is derived and
a strong law of large numbers for functions of & demisubmartingale is obtained.

1. INTRODUCTION

Whittle ([12]) proved an mequality for real valued random variables generalizing
the Kolmogorov mequality, the inequality of Hajek-Renyi ([3]) and the inequality
of Dufresnoy ([2]). An application of this result for Hilbert space valued random
elements {Z;, k = 1} such that the family {¢(Z).k = 1} is a real valued sub-
martingale & given in Rao ([8]). An application of this result to obtain a lower
bound for the probability of a simultaneous confidence region in multivariate anal-
ysis is given in Rao ([§]) sharpening the bound given in Sen ([10]). Recently Shixin
(1) proved a Hajek-Renyi type inequality for Banach space valued martingales. A
Whittle type inequality for Banach space valued martingales was piven in Prakasa
Rao ([6]) from which the results in Shixin ([11]) follow as special cases.

We now derive a Whittle type inequality for demisubmartingales. This result
pgeneralises the recent results on Hajek-RHenyi type inequality for demimartingales
proved by Christofides ([1]) and the Hajek-Renyi type inequality for associated
sequences proved by Prakasa Rao ([G]).

2. PRELIMINARIES

Let 5;.7i = 1, be a sequence of integrable random variables such that
(2.1) B{(8j+1— 8)f(S1,....8)} 20,5 = 1,

for every componentwise nondecreasing function f such that the expectation is
defined. Then the sequence {S;,7 = 1} is called a demimartingale (cf. Newman
and Wright ([])). If condition (2.1) holds for every componentwise nonnegative
nondecreasing function f such that the expectation is defined, then the sequence
{5,.7 = 1} is called a demisubmartingale.

A collection of random variables X, 1 < 1 < n, & said to be asseciated if

(2.2) Cov( f( X1, ... Xn) g(X1,ee o X)) 2 0
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for any two componentwise nondecreasing functions f and g such that the covari-
ance exists. An infinite sequence of random variables {X,,.n = 1} is said to he
associated if every finite subset of {X,,,n = 1} is associated.

If X;,1 < i< n, & an associated sequence of random variables with E{X;) =
0,1 < i < n, then the sequence of partial sums §; = Xy +---+ X, 1 <4 < n, forms
a demimartingale (cf. Newman and Wright [4]).

For an extensive review of the probabilistic properties of associated sequences of
random variables and related statistical inference problems, see Prakasa Rao and

Dewan ([7]) and Roussas ([9]).

3. WHITTLE TYPE INEQUALITY

Let 8,.,n = 1, be a demisubmartingale and ¢(.) be a nondecreasing convex

function. Then the sequence $(5,), n = 1, is a demisubmartinpgale by Lemma 2.1
of Christofides ([I]).

We now state our main theorem.

Theorem 3.1. Let the sequence of random variables {S,,n = 1} be a demisub-
martingale and o.) be a nonnegative nondecreasing conver function such that (S5,
=10 Let o(u) be a positive nondecreasing function for u > 0. Let A, be the event
that of Sp) < ug), 1 < bk < n, where D =ug < uy < --- < w,. Then

— E[p(Sk)] — Eld(Sk—1)]
a1 PiA ) =1—- -
L )2 1= 3 =)
If, in addition, there evist nonnegative real numbers Ay 1<k <n, such that

0< E[(e(Sk) — ¢ Sk—1)) f(2(S1), .. ¢(Sk_1))]
< ARE[f(#(S1),.... 0(Sk)) 1 k< n,

for all componentwise nonnegative nondecreasing functions [ such that the erpec-
tation is defined and

Plur) = Plug 1)+ A, 1 k<,
then
T ﬂ
(3:2) P(4,) = [Ja-—

o )

Remarks. The above result is an analogue of the inequality in Whittle ([12]) for
real valved random wariables. A version of Theorem 3.1 for a sequence of Hilbert
space valued random elements was proved in Rao ([§]) and an application to Banach
space valued martingales is given in Prakasa Rao ([f]).

Proof. Since the sequence {5,,n = 1} is a demisubmartingale by hypothesis and
the function ¢(.) is a nondecreasing convex function, it follows that the sequence
{#(8,),n = 1} forms a demisubmartingale by Lemma 2.1 of Christofides ([1]).
Henee

(3.3) E{{(#(Su+1) — #(Su))f(@(51),.... (S0))} 2 0n 2 1,

for every nonnegative componentwise nondecreasing function f such that the ex-
pectation is defined.
Let y; be the indicator function of the event [¢(5;) < ¥(u;)| for 1 < j < n.
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Note that

_ #(Sa)
Y {uullj
and hence
P(4,) = E{l‘[ xi) = B({ 1'[ Xi}xn)
> {_H xiH1
Therefore
A Sn-t Sn) — ¢(Sh-1
B[] - o e LI A L

n—l1 S" | S"_]_

i=1

) =0

since the function l—H::ll ¥i 1s & nonnegative componentwise nondecreasing fune-
tion of ¢ 5;),1 < i< n— 1. Hence

n—1

rl 1 E E -l

P(4,) = {Hx} Y k) - 2 }a.»,,{u,jd) .
nw—2 "_1 E S" — E Su—I

= {]._.[}l } L] (T 1:;| - - :I}"';";'{“rjﬁb{ :I}

The last inequality follows from the observation that the sequence ¥{u, ). n = 1, is
positive and nondecreasing.
Applying this mequality repeatedly, we get that

"L El$(Se)] — Elel Sk—1
(3.4) P(A)21-Y o kj]@{ﬂzkg¢{ v ]l]1

k=1

completing the proof of the first part of the theorem.
Note that

—1

E{H D R 1,,{:.: H}L}

ity ) 1ty e

—1
¢'{ Sfl—l:' i
= B{ —————[w(un) — t(un_1) — L] | | x:
w{uujw{u..-ﬂl[ ) H )
and the last term is nonnegative by hypothesis. Hence
n—2

(3.5) P(A,) = (1 {H (1 ASu1)

“’rl “’u 1 :I

Applying this mequality repeatedly, we {:-htum that

(3.6) P(4,) = [[( - -
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4. APPLICATIONS

Suppose {5,.n = 1} is a demisubmartingale. Then {(S;7 ., n = 1} and {(5; )7,
n = 1} are demisubmartingales by Corollary 2.1 of Christofides ([I]). Furthermore
|5 = (S5 + (87 for all p = 1.

(1) Let y{u) =u?.p = 1. Applying Theorem 3.1, we get that

" E{S;i‘:'p_ E{S;-_ij

(4.1) P(S§f <u;1<j<n)> 1—2 =
i=1 i
and
t L E(SY — E(S;
(4.2) P(S; ujl<j<m) 21— (55 p{“)
iy uf
Hence, for every £ = (),
5, Sy®
P sup |—--="—|~2$:| = P sup | ";l, =M
1<i<n U 1<jn Uy
Shw (s
= P{ sup i) p{"jz-ﬂ“j
1<j<n u;
she
= P sup ( "'I_,:I = ;EP:I
1< “’J 2
e
+P{ sup (5;) E%EP:I

[
b
in
|
=
M" |
=
E
L
-
it
=

i
=1 Vi
In particular for p=2, we have
5. » ES:_ES2_
(4.3 P sup 151 iy e i "'—,3"'1,
1<jzn Wi = u;

which is the Hajek-Renyi type inequality for associated sequences derived in Corol-

lary 2.3 of Christofides ([I]).
Suppose p = 1. Let ¢o(x) = mazx(0, ). Then ¢ x) is a nonnegative nondecreasing

convex function and it is clear that 5, < 57 = &(5,,) for every n = 1. Let 17 u) =
Then

5 s’
Plaup — =) < P sup — =g)
I<j=n W) 1<j=n 1t

e + +
ESH - ES},

e
E
1y

=1 G

I
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by Theorem 3.1 which is the Chow type maximal mequality derived in Theorem
2.1 of Christofides ([1]).
(2) Let p=2 apain in the above discussion. If

2 2 2
E(S5; — 5‘_.?_1] <ap — iy

i
for 1 < j < n, then

m B(8}) - B(S3
P{Arlj:_"’]:[{l— ( J:I ; {5:?_ :I:'

U
4

i=1
which is an analogue of the Dufresnoy’s inequality.
{(3) Let {S..n = 1} be a demisubmartingale and ¢(.) be a nommegative nonde-
creasing convex function such that ¢(S5;) = 0. Let ¢»{u) be a positive nondecreasing
function for « > (. Then, for any nondecreasing sequence 1w, n = 1 with ug = 0,

(4.4) P = #(5;) syt rz E[o(Sy)] — Elg(Sk—1)]

12980 ug) = - ()

m

In particular, for any fixed n = 1,

(43)  Pleup ii:ﬂ >e) < e (B

&Sy ) i E¢(Sk)] — El(Sk-1)]

Pt 2 T W

]

We now derive a strong law of large mimbers for functions of demisubmartingales.

Theorem 4.1. Let {5,.n = 1} be a demisubmartingale and ¢{.) be a nonnegative
nondecreasing conver function such that ¢ S) = 0. Let 10(u) be a positive non-

decreasing function for v > 0 such that ¥{u) — 00 as u — oo Further suppose
that

— E[o(Sk)] — Elp(Sk-—
(4.6) Y [¢(5k)] _ [ (Sk-1)] i
e ()
for a nondecreasing sequence w, — o0 asn — oo, Then
(4.7) {i){S":I 220 as n — oo,
LUET

Proof of this result follows by the standard arpuments following the inequality
(4.5) given above. We omit the details.
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