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Abstract

An upper bound for the supremum of the absolute value of the difference of two multivariate probability
density funcuons is obtained. The upper bound involves integrals of the absolute value of suitable transforms
of the characteristic functions of the probability density functions. Results are similar to the work of Gambkre-
lidee (Theory Probab. Appl. 22 (1977) 877-880) on the Esseen’s inequality for multidimensional distribution
functions.
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1. Introduction

Roussas (2001) obtained an upper bound for the supremum of the absolute difference of two
multivariate probability density functions. The upper bound involves integral of the absolute value
of the difference of the corresponding characteristic functions. We now obtain another upper bound
involving integrals of absolute values of suitable transforms of the characteristic functions. Qur
approach is similar to the work in Gamkrelidze (1977) for obtaining upper bounds for the supremum
of the difference of two multidimensional distributions functions.

2. Inequalities for the difference of distribution functions

Let F and & be two distribution functions defined on the real line B and having characteristic
functions f and g, respectively. The one-dimensional Esseen inequality states that

J(r)—g(r) .4
f di’+£1F.. (2.1)

=
sup |[F{x)— G{x)| < C f
X -7
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where T is an arbitrary positive number, C; and C; are absolute constants and 4 = sup {G'(x)}
assuming that the distribution function G has a bounded probability density function G'. Proof of
this inequality can be found in Feller (1966, p. 510). Sadikova (1966) obtained a two-dimensional
version of the inequality (2.1). Let F and G be two distribution functions defined on B* with
characteristic functions f and g, respectively. Suppose that the distribution function G(x, v) has
partial derivatives with respect to x and y on B and

A x, v a0 (x, v
A, = sup ﬁ Ay = M = 5
— o £, VSO0 £ — o £, W OO oy
Let
fls. )= f(s.2) — f(5,0)f(0.2)
and

d(s. 1) =g(s.1) — gls.0)g(0,2).
Then the following inequality holds.

Theorem 2.1 (Sadikova). For any T =0,

2 T T | fs,t) — dis,t
sup  |F(x.3) = G(x, y)| € f f Jiot) =98] g4y
— O XL Y 00 {2“}_ -T -T ":I
+2 sup |F(x,oc)— Gix,oc)

— 00 N =00

+2 sup  |F(oc, y) — Gloc, )|

b)) ;_“42} (3v2 + 43).

Gamkrelidze (1977) generalized Theorem 2.1 to multidimensional distribution functions. We now

introduce some notation following Gamkrelidze (1977).
Let £ and v be A-dimensional random vectors with distribution functions F{x) and G(x) and

characteristic functions f(t) and g(t), respectively, where x=(x.....x¢) and t =(11...., ). Suppose
that the function G{x) is partially differentiable with respect to x; and
G .
Ai=sup — <o, 1€isk
xeRt O

Let i(j)={i1,....i;} where i, <ix <--- <i;, j <k be a combination of size j from the sequence
{1,....k}. For any function y(t), t €[R*, define

Wi (1) = Y Mg, = oo =r, =0
and

-------
¥
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Note that the functions wy;,,(¢) and "/’(t) are defined on (k — j) one-dimensional arguments and
both are functions of (1,..., B s diy41s - o By 1s Byt ls o o2 By 1 B g 100+ -5 B ). W WiTitE

f (o) de
f l,lg""{”{f}df

for integrals of the functions involved over an appropriate (& — j)}-dimensional cube. By the symbol
17 we denote the product of all elements involved in the computation except those which have

the indices iy,..., i;. For any function y(¢), r€R* for any k, we define the transformation
k-1
Ly =) + > (=1 o).
=1 iy
Let

Aty =Lf(r)— Lg(r)
and

Aip(8) =L fip(t) — Lagi jy(r).
The following inequality is due to Gamkrelidze (1977).

Theorem 2.2 (Gamkrelidze). For any T = 0,

1 T A
sup [Flx)—Glx) €24 —— / —| dr
xRt {2?[)": J_r nj_|f,
x |
At}
{2 ;r*— %f e iy,
A
+£{i}?
where
Clhy =2 I;-g; +8(2mlog 4)~13%1"
and

i
Il
e
=
o
Il
w
]
-t
-
Il
.
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3. Ipequalities for the differences of probability density functions

In a recent paper, Roussas (2001), following the ideas in Sadikova (1966), obtained an upper
bound for the supremum of the absolute value of the difference of the probability density functions
of two k-dimensional random vectors. Let £=({),..., &) and £'=(¢&,.... &) be two k-dimensional
random vectors with characteristic functions (Jz and (g, respectively. Suppose the characteristic
functions Oz and ()= are absolutely integrable and the probability density functions f: and fz of
& and &', respectively, are bounded and satisfy the Lipschitz condition of order one, that is, there
exists a constant ¢ such that for every x £ [R* and w = B,

&
felx+m)— fe(x)| < |y
i=1
and
k
felx+m)— fe(x)| < ey |uyl.
=l

Theorem 3.1 (Roussas). There exists constant C = 0 such that for every T, =20, 1 < j <k,

i i 1 Ty i } k 1
0p felx) — falx)| < nf -[—nm.[—n 0:(1) - Qgr(f}ldr+4£ﬁ§ﬁ.

We will now obtain an alternate inequality for the supremum of the absolute value of the difference
of the probability density functions of two A-dimensional random vectors following the ideas in
Gamkrelidze (1977). Let

A(t) = LOs(1) — LOs(1)
and

Aigp(t) = LO¢g i (1) — LO¢ iy p(1)-
Consider the probability density function

4 . x\Vrx
gix) = (; sin E) (E) "
corresponding to the characteristic function
0 for |t| = 1,
Hoy= < 201 — |t» for i g <1,

3
1 -6 +6t for0<t| <

Fal—

It can be checked that

fx Pglx)ydx =12
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and

[E lelg(x)dx < V12 =24/3.

s u}

For T; >0, 1 <j <k, let

Or(x)=Tg(x1)...Tiglx), T=(T...., Ty).

Then Qr is the probability density function of a random wvector £” with independent components.
Further more £” has the characteristic function

W e, 4
H{f}_h(ﬁ) ”(n)

which vanishes outside the cube (—7,7;) x --- x (=T, Ti ). We suppose that £” is independent of
£ and &,

(A1) Assume that the probability density functions f= and fz are bounded and are Lipschitzian of
order one, that is, there exists a constant > 0 such that

&
|fe(x +m) — fz(x)| éCZluﬂ;L uchkt, xeR,
i=1

k
|fe(x +u)— falx) < CZW_.,-L nc R, xecR:
=1

(A2) Assume that the characteristic functions (: and (s are absolutely integrable. From the con-
volution formula, we have

Jfeigrx)= L Je(x — ) fzo(u)du
= f fe(x — w)Or(u) du
[

and similarly

Jeign(x) = [m Je(x — w)Or(n)du.
Hence

)= fpsgr(X) = firvgr(X)
- L Ufe(x — 1) — fa(x — 0)]07(u)du

=f Hx —u)y(n)du,
it
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where

Hx) = felx) = fzl(x).

Following computations given in Roussas (2001), it follows from the inversion formula (cf. Loéve,
1963, p. 188) that, for all x € B,

N i _
(x) = ﬁ f_ , o f_ 0N - Qp (1) dr.

Note that
k-1
LOL(1) — LOz(1) = O() — Oz (1) + 3 (=1Y 3 [0 i(1) — Oz i p(D)]:
J=1 Wi
Therefore

1 N N .,
r@=gor [ [ e 100 — Los (e ar
28, —T} -7

k—1 I T T N
= Z{—] y Z 2n) / s / e Qg i (1) — Qg i y(H (2) dt
=1 i) e sl

1 H n -
=W [T fT e "YA(OH(t)dr

k=1
- (= Z/ P — u)Or(u) du
j=) e

L I

by following the computations in the reverse order on p. 400 of Roussas (2001). We consider the
above relation as a recurrence relation. Then

> [P w0r(u)du
[

W1y e

1 N N i
(2m -t an‘“/_ﬁ e Ay ()H (r) dr

i

k—1
> Y [ P = w0r(u)dn
=2 "

L) B

e,

&
it

T -
f A p(OH(t)e " dr.
_TI
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We obtain an analogous equation for ZI{,,- “+,2 i3+ and so on leading to

i
> [ P40 (e~ u)Qr(ar) du = 5 Z f f Aig—n(DH(e™™ dr.
-N

k—1) ].[,.t
Combining these results, we have

0 T e
r{x)= L Fix —w)O¢(u)du = ﬁ f—n - f_ﬁ Altye " H(r)dr

i B
Z{z Y- :Z[ f_n Aig (e *H(r)dr.

Wi
Hence

1 Ty Ty
sup I (¥)] < (550 f_ e /_ |A{r}|dr+Z o }k = f f_ @) dr.

i

Let 7 = sup{r(x): xcR*} and 3* = sup{|r* {x}|: x<c R*}. Following arguments given in
Roussas (2001, p. 401), it follows that there exists a constant C = 0 such that

k
1
7 2y-4CV3Y o
i §,

A similar bound holds if y = sup{ —r(x), x £R*} as pointed out by Roussas (2001, p. 401). Com-
bining all the above inequalities, we get that

k
~ ; 1
) <y +4Uﬁ§ﬁ’

where y = sup{ I(x)]: x€R*} and y* = lmp{ F*(x)|: x< R'}. But

Ty

Ty
s {Z?r]ﬁ /Tl M{r}ldr-'_Z{z i Z/ -/—T. Aip(r)| de

i
and we have the fulluwing main theorem of this paper.

Theorem 3.2. Suppose conditions (Al) and (A2) hold. Then there exists a constant C = 0 such
that

. 1 T T
: 7 .y T~ Aty d
ﬂ:plfg{x} Jedx)| ok f_n f_ﬂ A )| dr

.t 1 T,
{zﬂ}x "Zfr /;T igp(r)] de

i

k
+4cv’izi‘;. (3.1)
T




19% B L 8 Prakasa Raol Statistics & Probability Letters 60 (2002) 191199

(Mote that the integration is carried out on a (k — f)-dimensional cube in the jfth term in the
second expression on the right-hand side of the above inequality.)

3.1, Special case
Let us consider the case £ =2. Then the inequality given by Theorem 3.2 reduces to

. 1 'E n
sup | fe(x) — fer(x)| < W/r fT A1) de

xeR?
n
—Z/ f (1) d

il
4C
+ v’r( Tz)
where

At)= 0s(t1,12) — Qe(11,0) — Oe(0,12)
—{0z(n.12) = O=:(11.0) — Q= (0,12)}
and
Ai(t) = Qe(t1,0) — Qz1,0) if i(1)= {2},
= 0:(0,) — Q=(0,82) if i(1)={1}.

Hence

. 1 T Fa
sup | fz(6) — ()] < 5 f T f ) ar

xeR?

ZH/ Q:(11,0) = Qg (1n,0) dry

1 2
L [ 10:(0.15) — Os(0.1,)] dry
TJ-n

+4cv*’"( ;__2)

An application of Theorem 3.1 of Roussas (2001) proves that

HE Ty
sup | fe(x) — fa(x)| < f f Qe(t1.12) — Qg (1. 12)|dty dia
xR - J=0

(2m)

+4cv*’"( E)

which gives an alternate bound.
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