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1. INTRODUCTION

The study of statistical inference for diffusion type processes which arise as
the solutions of lo stochastic differential equatons (SDE) is of extreme
importance in view of its large number of applications (cf. [1]). The problem of
drift estimation for diffusion processes observed over a continuous period of time
15 extensively discussed in the hiterature. But the assumption that the process can
be observed continuously throughout a tme mterval 15 generally impossible in
actual practice. In view of this, it is of importance and of interest o know the
asymptotic behaviour of the estimators of the drift and the diffusion parameters
when the process is observed at a discrete set of time points. Let us consider a
subdivision of the interval [0.T] with (=0=n =t =--- =1, =T.
The weak consistency of the least squares estimator (LSE) when A, =
max{|t;r) — £],0=i=n}—0and T — co has been studied in Ref. [2]. Srong
consistency of the LSE under the condition n— o0 and T = (./n) has been
studied in Ref. [3]. The asymptotic normality and asymptotic efficiency of the
LSE have been studied in Ref. [4] when T — co and T/, fn — (). Consistency and
asymptotic efficiency of minimum contrast estimator of the daft parameter in a
nonlinear SDE, when T— 0 and T/n*% — 0, have been studied in Ref. [5].
Maximum contrast estimator of the unknown parameter in the nonlinear drift
coefficient has been studied in Ref. [6]. The estimation of a parameter appearing
lincardy in the diffusion coefficient of the SDE has been studied in Ref. [7] using
the local asymptotic mixed normality property of the model when n — o0 and T is
fixed. Prakasa Rao and Rubin' have studied the limiting properties of a process
related 1o the LSE of the drift parameter and discussed the asymplotic properties
of the maximum likelihood estimator (MLE) derived from the limiting process by
using Fourier analytic methods. Yoshida™' studied the maximum likelihood
estimation of the unknown parameter in the drift coefficient of a diffusion process
based on an approximate likelihood given by the discrete observations. For a
more extensive discussion, see Ref [1].

Approximation of the MLE of the drft parameter based on continuous
observations in a linear SDE by estimation based on discrete data when T is fixed
and A, — 0 as n—co has been studied in Ref. [10] by using that lio type
approximation for a stochastic integral and the “rectangular rule™ of
approzimation for an ordinary integral. Mishra and Bishwal'" studied the
same problem by using the “trapezoidal mule™ of approximation for both the
stochastic and the ordmary mmtegrals when the observations are taken at equally
spaced time points O =1y fy. 1, ..., ty = T. When T is fixed, 1y = Kéy, K =
01,2, .. .N. Obwiously 8y =g — gy and Sy — 0 as N — oo,

In this paper we consider the approximation of the MLE of the parameter in
the nonlinear drifi coefficient of an lo SDE. We have transformed the Lo integral
to a Stratonovich integral and used the “trapezodial rule” of approximation for
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both the stochastic and the omdinary integrals. Further we have shown that the
approximate MLE by the “trapesoidal rule”™ of approximation converges in
probability o the MLE based on the continnous observation of the process over
[0, T] and their difference is bounded in probability with order 0,(8,). The
approximate maximum likelihood estimator for the estimation of & parameter in a
linear SDE obtained by Le Breton""” by using the “rectangular rule”™ of
approximation converges in probability to the MLE based on the continuous
observation over [, T and the error 15 bounded in probability with order
Ol 8_,'\,".') 3. This shows that our method provides a sharper rate of convergence. The
paper is organised as follows. Section 2 contains assumptions, definitions of some
basic notons and preliminaries. Section 3 deals with the connection between the
Stratonovich integral and o integral. In Section 4 we describe the properties of
the approximate log-likelihood function based on discrete sampling. In Section 5
the main results of the paper dealing with the approximation of a MLE have been
discussed. Proofs of lemmas and theorems have been given in the Section 6.

2. ASSUMPTIONS AND PRELIMINARIES

Let (£}, F, P) be a probability space, {F,, t = 0} be a family of sub
o-algebra of T increasing in ¢ so that Ty contains all the P-null sets of . Let [ X,
t =0} be a real valued stochastic process adapted o [T, + = 0} satisfying the
stochastic differential equation

de(t) = fI, X(0d +dWin, X=X, =10 (2.1)

where EX)), < oo, f{#,-) is the drift coefficient and # € @ C [—1, 1]. Let 6, be the
true value of the parameter. Here | Wi, ¢+ = 0} 1s the standard Wiener process
adapted o {F,, t = 0} such that, for 0 = s = ¢, {W(r) — Wis)} is independent of
.. Let us denote by Pythe measure generated, on the measurable space (Cy, By}
of continuous functions on [0, T| with the associated Borel o-algebra By
generated under the supremum norm, by the process X = (XN, 0 =1 =T}
satisfying (2.1). Let Eg be the expectation with respect o the measure Pgand Py
be the measure induced by the standard Wiener process on (Cy, By). Through out
the paper we shall use C, C,, Cy ete. for positive constants and assume that the
following conditions hold.

AL (D 0] =Ll + ) for A28, x € R and

(i) |f.x) —fiavil = Lidhlx — vl forx, vy €E Rand 6 € 0.

It is well known that the equation (2.1) has a unique solution {X(r),
0=t =T} under these two conditons. Further suppose that the process 15 a
stationary process and sufficient conditions for the existence of a stationary
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solution given in [12] are satisfied. In addition, suppose that the following
condinons hold.

(A2) Forall §; # # in ©, Eg{ f(8), X(0)) — f(8. X(O)}* # 0.

(A3 (1) fid, ) is a known real valued continuous function on & % R;

(i) The function fi 8, x ) is thrice differentable with respect o x. In addition,
s fia, and £, denoting the partial derivatives with respect to 6 of £, dffix and
o “ffix = respectively of order i =0, 1,2,3 exist, where the differentiation of
order zero gives the function itself.

(Ad) Eglsupy = f2 (8, X(0)] = (1) for all § € O.

Further assume that the following Lipschite conditions are satisfied for
i=1.2.3, and # and ¢¢ = G, There exists a = 0, such that

(AS) (i) |£5(0,.0) — fU(b.0) = pi0)]8 — " and Eq] (Xp) < o0;

(i) 128,00 — 12 (b, 1) = gi(0l8 — ¢|™ and Epg? (Xp) < 00; and denot-
ing {8, x) by g(#, x).

(i) |g'500.x) — g b, 0| = rix)|8 — H” and Egri(Xy) < o0,

Let the Fourer expansions of {08, ), frd 8, xyand g (8 x) in Ls[— 1.1] and
x & R be given by

oo

_f_-rEH- )= Z ﬂ...f.l.'}em""ﬁ,

n=1

.lf'_-ur{\q. .t::l = Z b“ fT}E" malf;l‘

n=1

and

gd8.x) =" " dulxe ™",
n=1
Under the Lipschite condition (AS) and using Lemma 2 (appendix) of
Ref. [8], it can be shown that for some 0 <<y <0 a,

3 Ela,(X(O)['n ' < oo (22)

n=1

Therefore, using the Borel-Cantelli Lemma, we get that, for sufficiently large n,

C
lanX(OD] = 5 as. (23)

Similarly it can be shown that,

Ca

I o] = a.s. (2.4)

" I+
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and

C
(X)) = - .'ij; as. (2.5)

Under the assumption (A4), it is obvious that Efjﬂ:flfﬂ, Xinur=rcoforT =0
and all # € & by the stationarity of the process. Therefore the measures Py and
Py are equivalent and the Radon-Nikodym derivative of P with respect to Py, is
given by

I:.PH

r 1 T \
o (X{,‘}:.;xp{ L fm_xrrmxrr}—z i f—[H.Xfr}}dr}

T 1 T \
= cxp{ f FO XMW () + 5 f £, xrr}}m} (2.6)
0 =.J0

by using (2.1) and the log likelihood function Lyif) = Ing%fXg} 15 a well
defined measurable function (cf. [13] or [14]).

3. CONNECTION BETWEEN ITO INTEGRAL AND
STRATONOVICH INTEGRAL

Let my be a padition such that wy = {0=1y <1 < --- <ty = T} for

fixed T.K=0.1,2, .. N and 1, = udy. Obwviously Gy — 0 as N — co. The lio
integral is defined in Py-measure as

T N
£IHXMMMH=$m§?Wqummm—quH (3.1
whenever it exists and the Rubin— Fisk —Stratonovich integral is defined as

r
jg JUB X dWir)
0

N

— jim 3 L(OX ) A0 X(0)

Gy = 2

=

(Wit — Wit )) (32)

in Pgmeasure. Here, the limit is interpreted as convergence in probability. Under
the condition { A4) and the existence of f,(#, x), Stratonovich! *! has shown that

r
S5 | fu8 X (). (3.3)
= J0

T T 1
51( F(6, X(1)dW(1) = f FO6,X(ENdW(r) +
0 0
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4. APPROXIMATION OF THE LOG-LIKELIHOOD FUNCTION

Let {my, N = 1} be a sequence of partitions, my = [l =t <n < nh <
cor <ty =T} such that for fixed T.K =12, . N, tp =K&y, ty —ty_1 =
dy = T/N—0as N — o0 as defined above. Let

N i {4}
i (X (e )+ 8 X e
Ly (6= {f
NT — 2

(Witg) —W{rx..,}}}

>3 {gmm'x“x”+£“"£H-X£m_.n

5 }ffk—fx—u}'

j
“E=l

2

N g x 7008 Xt -
Z{Lf ExN+f (0 Xtk '}}}(m—m-ﬂ (4.1)

1
2
K=1

for i=0,1.2.3. The function L_‘,.?T(H}l can be considered as an approximation of
the function

; T ] T ] T .
LYim= é f‘”{ﬂ.X{r}HW{r}+i [ g‘”{ﬂ.X{r}}dr—-j L FNeXxand  (4.2)

]

by using {3.3). We now investigate the difference between Lf,f.:fr{f?} and I.';Tj.:'{f?} and
study their properties in the following theorem.

Theorem 4.1.  Let the conditions (A1)~(A3) hold. Then, for i = 0,1,2, there
exists a sequence of positive random variables Iﬂ_‘,:,:fr,N = 1} such that for all
e |,

(1) Iﬁj:.:f}-,N = 1} is bounded in Poo-measure, and

(ii) SupHEﬂle:,:f}-{H} = L‘]ihfﬂ}l = Si,i‘,:’j Py -almost surely.

We need following lemma to prove the theorem. Let #; be the tue parameter.
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Lemma 4.1.  Let the assumptions (A1)—(AS) hold. Then, in Py -measure, the
SJollowing results are true:

N ~id i)
Q) sup Z‘{f Sl LA {H‘X{”‘"”}rwcm—wmc_.}}
HEB
.
" 55 £O00, X(ndw )| = 808,
(1]

HES 2

N i A4
5 Z‘ {j}_(fi._X(fx}}"i'.fI f“’f_f!f:_'l?}{rk ——

r
= f £, x(ndt| = &V, and
0
i) sip i‘ 0.X() + g0 XD
ER 2 Ko

T
- ﬂ g8, X(ende| = §ZY)

where [UY N =1}, (VY N =1} and |Z)),N = 1} are sequence af random
variables which are bounded in Py -probability.

Proof of this lemma is given in Section 6.

Proof of Theorem 4.1. Using (4.1) and (4.2) and Lemma 4.1 we have,

sup|Ly/(6) — Ly'(8)]
1= T

N 1l X {1l B X B
=SupZ{(j (e, {rx}}+;f (6. X(1x '”){wrm—wrrx-m
1= ] =
1 i BX i) H,X B
+E(S (8, frx}}+zg (8. X1 '”)m gy
10X )+ 008, X (- 1))
_E 2 f-”f _-FK—I::I

T 1 T 1 T
_ { j{ FO0. XMW+ 3 f g (0.X 0t —5 f f_t{ﬂ,xrf}}m}
0 0 0
= & (UY+ VY +Z)) = 5,40,

where Uy + Vi + 24 = AY'; is bounded in P, -probability.
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5. APPROXIMATION OF THE MAXIMUM LIKELIHOOD
ESTIMATOR

We now state the main results of the paper. In addition to the conditions
(AD) 1o (AS), assume that

{A6) Differentiation twice under the stochastic integral sign with respect 1o
& is valid in

r
f FUa X (dWin
0

and in the mtegral

,
f FU8, X (1) et
(1]

Let @y be the MLE of the parameter # based on the observations of the
process [ X(r), 0 = ¢ = T} described by (2.1) over [0, T|.

Theorem 5.1. Let wy assume the conditions (Al)=(A6) In addition, suppose
that (A7) there exists a unigue solution ﬁ-,«- tor the eguation Li,!:'fﬁf} =) and the
[finction L':J.'-ijﬁr}l ix strictly negative Pge-almaost surely whenever |ﬁp o ﬁ'j‘l = 1.
Then there exists a sequence fﬁm-ﬁ N = 1} of random variables satisfving

(1) F]_w 1§ {yemeasurable where §, denotes the o-algebra generated by
(Xir), X(r2), ... X(ay ),
(i) fimy—mP g {Lyy(6y 1) =0} = 1, and
{Iii}l Fﬁ; = ff!ﬂ_.a,'_.mﬂﬁly': 'Hr

for all 8 € @. Further if { 8y, N = 1] is another sequence of random variables
satisfving (i), (if) and (iii) above, then for all 8% € 8,

Jim POy =0vrh=1.
Lastly if { . N = 1} is any sequence of random variables satisfving (i), (i) and
(iii) above, then the sequence [8y'(8yr — Or),N =1} is hounded in
FPu, -measure.
Proof. We wnte for |x] = 1,

Ly +x) = L 06p) + L7005 + x L 8% — L0 ),

where 85 = fr + Ax, A € [0,1].
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Let K= 1 be a given constant. The function L.'. jflq]"" + x) 15 continuous and
differentiable on |x] = 1/K and

Ly (B + x) = XLy b (Br) + x L0 + 27 (L5000 — LPe))).

Mote that L‘ﬁjfﬁr} is almost surely negative by (A7) whenever Iﬁy - ﬁ;l = 1
Hence infj,_ { — L”:'fﬁ' ")} = gr = 0 almost surely and —x L jl(ﬁl ) = qu:'
Therefore .tL_‘,.J}fH} + x) shall be strictly negative for |x] = 1/K |l' |L_“_:I (8] <
(gr)/2K and

i
sup |L37(6') - P <L

|-|:|-L L

Let us consider, for K = 1,

DRy = {a}E ﬂZS_iﬂmrf }{d;:} ﬁqaj}{ ) < rfr{w}' id
[fr(en| = 1 1}
ol ) =
. K
For @ & (y(K), we have
sup 12400, w) — L8, w)| < ZE E;’}'
] = |—-
and since |6;] = 1 — 1/K, we have
12 (B, @) — L6y, w) < ‘*‘-T.{.“’?
Further more,
{2 i griw)
sup |Ly (6, ) — L7 (6, w)| < o,

|8 =1 2
Since |6l = 1 — 1/K, it follows that, for |x] = 1/K,

rfr{w}

sup LS5 (Br +x, w) — LY (fr + x, w)] <

l+l=}

Moreover, for w & Qy(K), L_‘,J_j}-(ﬁr + x) is continuous on |x| = 1/K and for
Il = 1/K,

.rL_‘,J_{,.{ﬁr + x) =< (.
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By using a lemma of Ailchinson and f*]ilw:}.-',“""1 for w = 4(K), we oblain, that
the equation _“_jj-(ﬁf + x, @) = 0 has a solution Xy{ wjsatisfying| X i ew)] < 1/K.

Following the procedure in Ref. [10] and considering the changes in the
scale of x and the parameter # as mentoned above, we can prove the following
resulls.

(i) For |x| = 1/K and w € Q(K),
Lyz(6r + x, @) < Ly (8 + Xy, @).
(i) limg_ liminfy Py (Qx(K)) = 1.
(i)  There exists a sequence of random varables {#y ., N = 1} such that
Nm Py (L) (Byp) = 0) = 1.
(iv) If there is another sequence of random varably Iﬁf».,-.-r, N=1}
satisfying the above conditon (iii), then

a.l-'_.'ﬂ. Pﬁ*f‘q.fﬂ.-.r = Oyr) =1

L JLmol'T sup Py Iﬂ_}.;"lﬁ_ﬂ,_f- — 67l >A)=0.

6. PROOF OF LEMMA 4.1

We now prove the Lemma 4.1 following the techniques in Ref. [17]. Let
be the true parameter. First of all we prove assertion (i). Let

I
S =j£ JUR X dWir)
(]
and

o — i {f’fﬁ'-k’fm}}J_rfm,xrfx_.}}

2o >

}{Wfrk} — W(tg_)) (6.1)

K=1

where y s a partition as defined previously. Let 0 be a panition finer than
obtained by choosing the midpoints fg from cach of the intervals 1 < feoy <
tg, K=12. . N Let 0= <t| <ty <..<ty, =T be the points of
subdivision of the refined partition o Let us define the approximating sum
§%, as

N

L {1

Sy

AN . ! g !
= 3 TOXENHOX - (wiety — Wiee_ ). (62)
. K=1
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Let0 =1ty =1 =1 = T be three equally spaced points over [0, T] and let us
denote X(r, ) and Wit ) by X and Wy respectively for £ =10,1,2.
Define

5 JOKOLD

3 } (W2—Wy)

2 2

0,.X, HxX 18X 16X
_{(ﬂ 2)+f( I}){W_:—W|}+(ﬂ R “}){H".—W“}l}

W, —W, W.—W, .
=T|fm-.xﬂ_f{'ﬁ|~x|”+—|f{H~X::}'_.ffH,X|H’-

)
(6.3)

We know that

HOXD) | (X2 =X, ¥ (0, )

0 Xa ) —Fie X ) =(X>—X
S X —f8 X)) =(X:— X, ox, 5 e

and

AEX)) (Xo—X ) af
af (e, I}'+{ 0 -

k e " il af
FIXg) —FA8.X ) =(Xo—X) ax, 5 HX_-i.fH.l’}

where [X) — p| < |X2— X | and |X) — o] < |X) — Xy|. Substituting these values in
(6.3), we have,

(W — W) BFA.X)) (W) — Wo)(Xa— X P a2f (6, )
Z=—g = X)r—t— 5 T
(Wa—Wyh afid.X)
SR 1y AR B8 e el
G 5 Xo 1) ax,
(Wo— WX, — X P88
: 6.4
+ 2 2 ax; (64)
Mote that

dX(1)=f( 6y, X(1))dt +dWir)
since fy is the true parameter. Let
1241

el Fibh. X(0)dr.

LETS
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Then

T3k
KXo —Xog =f FUB, X dr 4+ (Wag ) — Wag)

LE
=15 (Wag) — Wag) (6.5)

and
Eﬂ.f‘ﬂzMij = Caltagy1— t )’
by (Ad). Similady we wnte
Tag— |
X_J.K-I _XEK:f f.fﬂp.xff}}df+{u'_:k_| _“;M}
13K

= I L (Wag— — Wa) (6.6)
and
Eq () = Csltaw—1 — )™

by (Ad). Now let us define a random vardable Zas in (6.4) for each sub interval of
the subdivision my = {0=1y<"t; <.+ =< fay =T} and denote this for the interval
ltg— 1050 by Zge, K=1,2,...2N_ Then

Zy

War— Wap X — X, >
= (%) {f‘zm'?;m, Xar)+ (M) Ful, ;z_:x}}

) {f‘r’“{r‘;m, wigpnEsl Ry m}}

2

" (WMH — Wag

=7 + 23 (say) (6.7)

where Z)' and Z‘kh are the first and the second expressions in (6.7). Consider

2 2

3 W — Wa 3 Xap—1 — Xap ¥
J?l-:l = (M) {-liﬂ_x:lf.tf'ﬂ-xgx}+Mfﬂ{3-l"§ﬁ'}}
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and the following Fourer expansions:

.-f'x fH,.T}I = Z““ fT}L’ —.|.'|H
=1
and
f.u{ fx)= Zbﬁ{_t}f it
K=l
Then

W ; _ - :
_ Z (M) { ,ﬁ’”f (. ij}+Ljﬂu{ﬂ.wﬂ}

- S (—w”‘*' _w”‘)f‘—"{f (6, Xax)

for some sequence g, K =1. Then

AN N ¥
Wa — Wa
a K+ 2K (2K
> Z§ _—2:(—_’ ){f, (

K=1 k=1

ZHJ.EX 2 )e ™0

k=1

:lej+ﬂﬁh (say).

MW +1— Wa X —Xa
+Z( 1K |j _kji 11 — Xax)? (Z-‘a.fw(}f ,.u)

1321
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Now, for any sequence &, =0 such that Z:; By < 00,

P suplR| =3 &
{HE'E; "ZI:E

< (“" | _wjk){ ’.K':l( :!,.{Xﬁx}lf“"”)}
k=l

AN . r
ﬂ,.szrc}em'"H( (“' —”“"j_ “M)f‘ﬁxh)
1

=Py, { sup

= Py, { sup

K= -

N sz
m(xm}f—mﬁ( (W_’KH_} Wzk)ﬁlth)
k=1 =

2N 5 oo
Wagp — Wag 2K En
3 (T )e| -5

k=1
= :
ZE}U’F using (2.3))
n=|

S C £y
= Z,PH"{H'*T = 2 }

—_ AN
(ZE(H e — wzx}rch"“}r)

—*{n ”‘T} f"

48 X ’ T R
ZU‘JKH‘LKHLK‘NK 1] =Cs Zm NI

%upz

L

ci
Zm W~ “f:x}-'””

” I+'_|r

&
N

=Py, { i e Xax)l
b

AN

chm. — Wag M0

Ms

:4_:.], 3

||ME

K=1

w & S 2 f e | e
(WEKH sz){-’fz.k—lj Ko} (Zm{mk"‘“”)!bzi:}
- n=I1 1 =
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‘f’{w Z"’“*““‘“""”’Z (W_»mj W':x){X_K =k i%}

|a=1 k=1

=1 |

— Warrr = War Y\ (X oo 1= Xan | e 0
=fa3” g3 (o W) s o), S

|'J =

W_x+1 Wag )

{W:\ - W {X'-* =Xz = "
{ Zlbu{"lh}l Z x+1 2 M Xz J2 _A}_‘ Z%}
=1 =

”|+ |

M Kox o1 = Xox P 8,
| -1 k)| En
' E}Zg

’ 1 2
E(TZ{—HJ_‘_?}_ JZ'“J(+J Lag Wiz = P ¥

n=

Applying the following inequality of Gihman and Skorohod,!"”

3

T
Eg(Xak—1 —Xox) = Eg (X1 — Xo)' =CH{Eg Xy +1) (ﬁ)

where O 18 a constant, it follows that

oo

1323

& . ],
P (1= ) =03 it 69

Therefore, combining (6.8) and (6.9), we have

g2

'-‘:I

Y
=1 By

T" = 1
= ZE,,} = ﬁ {ﬁlﬂ}l

Similar estimate can be obtained for the term E{ |Z{ by uwsing the reverse
maringale property of the differences Zj(”' and the stationarity of the process

{Xit), 0=r=T}. Thus

%

Therefore, combining (6.10) and (6.11), we have

:gg v Sy i !|+T} ?_ IENEE"' &

n=l n=1

o0

| 1

73 1
}Zz,,}_ {7N}| ZT‘J}E 6.11)
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Choosing g,=&(1/n " ")#, where 1/2 < 8<3/4 and £ =0, is arbitrary, we gel,

3

r
{qup ISH —.SE“J }EA} - CHW

where A=30 | ater.
Let myd p ) be a sequence of partitions of [0, T] as defined eadier. Then we
have,

#
Py, 4 sup IL‘aH '51 . } g
{ o w= Pk ij}

where $7¢_ px = p. Choosing pe suitably,

%upl‘:” e LR foc B3 CsN 2p i p=0.
=R iy T

Letting p— oo, we have .5" — 5% uniformly in #1i . Py -measure.

Let us now prove [hL assertion (iii). Let f* = g. Let 7, and (1) be
partitions defined exactly as before.

Define

.
M = f (6, X(1)dr,
4]

N
Mt = Z {gm.xm—}}+jgm_mx_.}}.}m g _—
K=l =
and
M, = Z {gm b ()] +ng6| XiEs. |1'1'} ¢t ). (6.1%)
=1 =

WL shall Ilr‘-:.l anpuh: bounds on P| ‘;upHEHIM — MY it IJ| =52, ) Letl =<
-
r“ =t; =i, =T be three equally spaced p-ans in [ﬂ T] and let us denote
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Xitg) by Xe, K =10,1,2. Define

-

g (ng.Xz}+g{H.X(,_})Uj s

_ { (SfH,X_a}+.!3fH.X|})U? B (EfH1X|}+3fH,Xu})UT —r::}}

2 2
S S Ed g
_h T 1
—Tlgfﬂ._}(_:}—gfﬂxu}}+ = {glf Xp)— gt X )}
6.14)
Then
g6, Xa)—g(8. X)) = (X2 — X )@, )
g0, X)) — g8, X)) =(Xop— X1)5(0. v)
where |[X) — ) <[X2— X |, X, — vl < |Xo— X | and B(8.x)=dg(# x)/dx.
Substituting these values in (6.14), it follows that
ES S ES g
_h Ty 1
Y= 3 (X2 — X808, ) + - (X — Xy )06, v (6.15)

Now let us define a random variable analogous to ¥ as in (6.14) for each interval
of the subdivision of my = {0 =1y <1, <.+ < tay = T} and denote this for

the interval [1g— . tx) by Fe, K= 1.2, ..., 2N. Then
by — by- 1 —t
Yg =¥Uﬁx+| — Xog Bl pag) +M
X (Xak-1 — Xax)2(6, vax) = YR + Vi (say) (6.16)

where ¥ and ¥ are the first and second expressions in (6.16).
Consider ]fi” = tag — tag—1/ 20 Xag 11 — Xag g8, pag ) and the Fourier

expansion of

Ex (Bx)= Z ﬂ’“ (e wintl
=1
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Then

K — hg-1|
2

(Xaxi1 = Xox)y  dulpag)e™"

n=|

s
o
IIH

s

o
]
A
Il

(r-.-x zhx '){f‘jx+'j+f“'ax+| W:k}}zduf#_ﬂx}'fﬂm

A
Il

Il
. M.,

AN

3 (’N)MHJ{Z“»% }e"""}

=1

.
+ Z (,erwm. wm}(Zd,.mw”)

n=1

=0+ 03 (say.

Moy

13y En {2K+1 winf)
Pﬁl{:cuglgﬂ.' I’P?} {‘-ﬁ.up Z Nr'i (Zdﬂ'f#_k'}e )

—Fﬁ,l{‘;up

=Py hup Z

2

o0
}Eaa
oo
EE

n=1

}
5]

Zdalf#:'ﬂ'}e mHZer} ?'_K+|:I

dﬂlf“’ff}fﬂ‘llﬁzj”fj-‘-”

=1 n=1

5]

o0 AN
KD
<P Z Z
o :1'+T7N

n=l

=Py, {i‘dﬁ{pax}jNHZﬁ K+H)

> e } (by using 2.5)

Zf’_k'+|:|

]

EZ {n“"f"N
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2

= C-" T2 N

":Z” 3+31w1 Zﬁax+lﬁ

L] 2

—sz;L, Zf,(ﬁ—’“'i},-_i_ Z vflﬂﬁ_xm} E(2eDy

42y2 raand
JI=|” fl“f_N::l K=l

K

= 7 ik i T\ 2
—C”;n“‘l”ﬂﬂw{ (E) +2NI2N — ”(ﬁ) }

-1k T P T i
.l|=|"_-l-_:lrﬂ.'-lfz-'""lr::I {].ﬁ_?}l

Again,

AN

Z 2T;walfc+| —Wag) (id"f g e m"'”) = iz" }

k=1 =1

=F,,"{5up
=6
=-PH.|{

l-q

sup

Zd,.rw}e""”(me. ~Was

=1

T

2N
=Py, di(par)e™ | D (Warc1 = Wa)z o
K=l

)5
)

=Py,

“UPZIII.H{F-’K}I Z{w_k+| ““.IK::I—

n=1

5

ZEMH —wm}—

=Py,

{
S (%)
=>n{(H)

5]

erm. —“?x}l—

3% }

n=I
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3

: a0 [:-3 T -
(by using 2.5)= Zf!! I+'r} z- (ZE(“’WH Wap)* ) (7N)

=1 k=1

oo

ZI :c+'.--_,,f, {_N} . (6.18)
{2.5) Therefore, combining (6.17) and (6.18) we get,

N i 1 T3
o {::;5 Pl } o Gy o
Proceeding as above, it is easy 1o oblain the estimate

oo 1 T3
. {2) - )
PHI{:;E Zr }E"} ELEIZHJ+!T¢:‘£ QN}I‘J- (6.20)

n=1

Therefore combining these two estimates we get,

s g e 1
t y)
O RTINS 3 S5 S

=1 N

Now proceeding as above and defining £, and p in similar manner as above,
iL s casy o show that

Pul{hup MH —Mi II| = p} = CuN 2p7?
HEE

and M” — M? uniformly in # in Py -measure. Considering the Founer
pran%mn of {08 x) and f (6 x) and replacing g by f,, we can prove asserion
().
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