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Linear Codes in Generalized Construction of Resilient
Functions With Very High Nonlinearity

Enes Pasalic and Subhamoy Maitra

Abstraci—In this paper, we provide anew generalized construc-
tion method for highly nonlinear {-resilient functions, F: '} +

~*. The construction is based on the use of linear error-correcting

codes together with highly nonlinear multiple output functions.
Givena linear [u, #7¢, 1 + 1] code we show that it is possible to con-
struct ve-variable, si-output, t-resilient functions with very high
nonlinearity for vz > w. The method provides the currently best
known nonlinearity results for most of the cases.

Index Terms—Correlation immunity, linear codes, nonlinearity,
resilient functions, stream ciphers.

I INTRODUCTION

WELL-KNOWN method for constructing & running
key generator exploits several linear feedback shift
registers (LFSR) combined by a nonlinear Boolean function.
This method s vsed o the design of stream cipher sysiems
where each key stream bit 15 added modulo two o each plan
text bit in order to prodouce the cipher text bit. The Boolean
function used in this scenario must satisfy cerain properties o
prevent the cipher from common attacks, such as Siegenthaler’s
correlation attack [22], the linear synthesis attack of Berlekamp
and Massey [17], and different kinds of approximation attacks
[9]. If we use a multiple-output Boolean function instead of a
single-output one, it 1s possible o get more than one bit at each
clock pulse and this increases the speed of the system. Such a
multiple-output function should possess high values in terms of
order of resiliency, nonlinearity, and algebraic degree.
Research on multiple output binary resilient functions has
received attention since the mud-1980s [8]. [1]. [10], [23].
[2]. [11]. [25] [15]. [14], [6]. [7]. The initial works on mul-
tiple-output binary resilient functions were directed toward
linear resilient functions. The concept of multiple-output
resilient functions had been inroduced independently by Chor
et al. [8] and Bennett er al. [1]. A similar concepl was intro-
duced at the same time for single-output Boolean functions by
Siegenthaler [21] Besides its importance in random sequence
generation for stream cipher systems, these resilient functions
have applications in quantum cryplographic key distnbution,
fauli-tokerant distributed computing, ele.
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The nonlinearity issue for such multiple-output resilient func-
tons was [irst discussed in [24] and 1t has been shown that it is
possible o construct infinite classes of nonlinear resilient func-
tions from Kerdock and Preparata codes [16]. After that, se-
rious attempts wward construction of nonlinear resilient func-
tions have been taken in [25] [15], [14]. [7].

The connection between resilient functons on the binary al-
phabet and a large set of orthogonal arrays was established in
[23]. In [23], the melation between ermor-comecting codes and
resilient functions has also been considered and codes with min-
imum distance ¢ | 1 had been used o construct f-resilient func-
tions. In [1], [10], the following result has been noted. Let (5 be
a generator matrix for an {n, ue, 4+ 1) linear code. Then the
function #: F} — F3, given by #{x) = r(*, is an n-input,
m-output, f-resilient function. This result had also been proved
in [23] using the orthogonal army characterization.

Note that, by B2 we denote the vector space corresponding
to the finite field F ..

In [12], Gopalaknshnan and Stinson introduced three charac-
tertzations of nonbinary comelation-immune (CI) and resilient
functions. They have considered fth-order CI and resilient func-
tions over b, The characterizations were in lenms of 1) strue-
ture of a certain associated matrix, 1) Founer transform, and 111)
large sets of orthogonal amrays. Later, in [4], Camion and Can-
teaut extended the results where they considered functions over
any finite alphabet .4 endowed by the structure of an Abelian
group, e, amapping £7 A" — 4" Moreover, they have iden-
tified some tradeofl between the degree of the algebraic nommal
form and the order of correlation immunity. Note that the con-
ceptof nonlinearity order mentoned in [4] is not the same as the
waiy wi consider the nonlmeanty in this paper. The nonlineanty
order of [4] is the algebraic degree, whereas we define nonlin-
earity as the minimuom distance from the set of affine functions.

In [5], Carlet showed that applying a suitable modification
Lo bent functions enables to construct CI and resibient functions
over Galois fields, in some cases over Galois rings.

We here concentrate on multiplke-output Boolean functions,
i.e., we fix the alphabet A Fa. Then, our construction pro-
vides better results than the existing works [25], [15], [14]. [7].
Given the number of input vardables v, the number of output
variables v, and the order of resiliency ¢, we can construet func-
tons £ FY — [F3° that achieve higher nonlineanty values than
existing constructions for almost all choices of v, v, and £,

The paper is organized as follows. Section 1 provides basic
definitions and notations both for one-output and sn-output
functions, we = 1. In Section 111, we review some important
techniques and results used toward the new construction of
Lresilient functions. Section IV provides the new constructions
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based on the use of linear error-comrecting codes together
with highly nonlinear functions. Some numerical values for
the constructed functons and a companson with previous
constructions are presented in Section V. Section V1 concludes
this paper.

II. PRELIMINARIES

For binary strings &, 55 of the same length A, we denole
by #{591 = &) (respectively, (5 £ &u3), the number of
places where 5] and 5> are equal (respectively, unequal). The
Hamming distance between 8-, 87 is denoted by of (5, 820, 1.e.,

AL 82l = (8 £ Hyl.

Also, the Hamming weight or simply the weight of a binary
string & is the number of 1's in 5. This is denoted by wi (575,

We have already mentioned that by FE we denote the vector
space comresponding to the finite field Fy. . The addition oper-
ator over 3 is denoted by 3, representing addition modulo 2.
By 1, we mean the set of all Boolean functions on » variables,
ie.. ¥, corresponds wo all possible mappings IS — [y, Wein-
terpret a Boolean function {1, ..., &, as the output column
of its truth table, that is, a binary string of length 2 having the
form

[_."f[J, O, .00, .."fl, Ll N
(L) OO . T |

.

An n-variable function [ is said 0 be balanced if its outpul
column in the truth table contains an equal number of (s and
1's (ie, wi[f) = 22 1),

An n-variable Boolean function fixq, ..., 2.} can be con-
sidered to be a mulivarate polynomial over [y, This polyno-
mial can be expressed as a sumof products representation of all
distinet Ath-order product tenms [0 <0 & < ) of the variables.

More precisely, ,."f;,';_, v aay Dy s can be wrillen as

=t
@ (g
r=1

& @ [EE S R L U B R IR o)
L ld 2ol
where the coefficients ag. ey, oo @ree, € {0 11 This rep-

resentation of [ is called the algebraic normal form (ANF) of .
The number of variables in the highest order product term with
nonzero coefficient is called the afgebraic degree, or simply de-
gree of .

Functions of degree at most one are called affine functions.
An affine function with constant term equal to zero is called
a linear function. The set of all n-vadable affine (respectively,
linear) functions is denoted by A, (respectively, L., ). The non-
finearity of an p-vardable function [ is

nl(f) = min (d{f. o1}

1., the distance from the set of all w-vadable affine functions.
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Letr = (o, ..., #n0and w = (wy. ..., wy] both belong
to [%. The dot product of « and w is defined as

Leow =mun -, w,.

For a Boolean function § =V, the Walsh transform of iz is
a real-valued function over I8 defined as

Wi = 3 ¢

- E F ;I

]}I“H.*T-w_ “}

Next we define corvelation immunity in terms of the char-
acterization provided in [13] A function f{z-. .... r.} is
Hh-order CLiff its Walsh transform Wy satisfies

HWoelwh =0, forall w & By such that T = sf {w) < ¢
If f is balanced then W {0y = 0. Balanced tth-order CI
functions are called #-resifient functions. Thus, a function
SHETT
fies

-1 @) is Foresilient iff its Walsh transform Wy satis-

W el =10 forall w = B35 such that 0 < st {w) <t (2)

Given all these definitions we now mtroduce the concepls
with respect to the multiple-output Boolean functions TS —
FY'. In this case, the truth table contains v different output
columns, each of length 2%, Let us consider the function #'9{x):
Foo— T4 osuchthat Fle) = (fi0eh, o0, Saule)) Then the
nonlinearity of £ is defined as

L

@ T .II-_r' :.TI

i=L

wib = min nl

PR
r_fz

Here, F§*" = Fy\Oand T = {7, ...
gebraic degree of & is defined as

v Ton ). S1milarly, the al-

i

degi Fi= min deg @ i fila

| X
aLE: i=L

Now we define an ne-vanable, we-output, #-resilient func-
tion, denoted by (n, e, 1), as follows. A function £ is an
{n, m. #)-resilient function, iff EBL”_ mfilwlis an (n, 1, 8)
function (n-variable, {-resilient Boolean function) for any
choice of + = F5* . Since we are also interested in nonlinearity,
we provide the notation (. wee, £} for an [, v, #)-resilient
function with nonlineanty w. In this paper, we concentrale
on the nonlinearity value and given the mpul parameters »,
we, f, we construct the functions with currently best known
nonlinearity.

II. UsEFUL TECHNIQUES

In this section, we will describe a few existing techniques
that will be used later. First, we recapitulate one result related 1o
linear error-comrecting codes. The following lemma was proved
in [ 14]. We will use it frequently in our construction, and, there-
fore, it is stated with the proof. Throughout the paper we con-
sider O to be a binary linear [, we, t + 1] code with a set of

basis veclors o, Ol vee - Tim_1.
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Proposition I (14]: Letey. ..., &, ¢ be abasis of a binary
[1, v, t+ 1] linear code . Let 3 be a pamitive elementin [ o
and {1, o A< be a polynomial basis of Fae . Define a
bijection ¢ l-g= — € by
dlan o d+- a3

ey 6] - ey — 1 e 1

Consider the matnx

i1 ) a1
4= iy ld il )
ql.}l:‘ll.ﬂf"—_. 4 l;"-'[_l_] E-J{Ii-j.-;+—2;|

For any linear combination of columns (not all zero) of the ma-
trix A", each nonzero codeword of C will appear exactly once.

FProaf: Since s a bijection, it 1s enough o show that the
malx

1 .5.-:'[ s _.':1:n1_1'
.;.-3 52 :131||.
e B s B

has the property that each element in .., will appear once in
any nonzero linear combination of columns of the above matrix.
Any nonzero linear combination of columns can be writlen as

1
T i el Bl SRR 2N gty :
,i'iT::_
for some my. oy, -, e = Fa, and this gives the proof. O
There are 27 — 1 rows in the matnx A" For convenience,

we use 8 standard index notation to identify the elements of
A% That 15, oy ; denotes the element m the #th row and jih
columnof A" ford — 1, ..., 2% —2and j — 0,
Since each entry oz ; of A* is a nonzero codeword of a linear
[1, ru. t + 1] linear code 7, the corresponding linear function
i, Jr.xl = r o ; on L 1.=.|II be nondegenerale on at least
#— 1 variables. This linear funLllt}n is t-resilient from the Walsh
transform chamctenzaton in (2).

According 1o Proposition 1, any column of the matrix A" can
be seen as a column vector of 2 — 1 distinet #-resilient linear
functions on -« varables. In [14], it was proved that the exis-
tence of a set & of linear 2, me. ¢+ 1] nonintersecting codes of
cardinality |C|
for the construction of an {n, m, § 2% Yy function. A
setof linear [, v, ¢+ 1] codes C = {5, €y, ..., €.} such
that € NG = (01,1 ¢ < 7 = &, is called a set of linear
[1t, . t -} 1] nonintersecting codes.

The results in [ 14] were obtained using a computer search for
the set 7. Good results could be obtained only for small size of
re, thus not providing a good construction for arbitrary n.

In this initiative our approach is different. We do not try o
search for nonintersecting hinear codes. We only consider a
single linear code with given parameters and use a repetition of
the codewords in a specific manner.

R | A

An—a 20 1| was necessary and sufficient
b Lt

[EEE TRANSACTIONS ON INFORMATION THEORY, MOL. 48, NO. 8, AUGUST X2

Now we analyze the assertion of Proposition 1 even if some
rows of the matrix A* are discarded. Let us only concentrate

on the first 27 rows of A" for b =< ¢ < m 1. More for-
mally, we mtroduce the matnx £ with entres f{{_j =
=0, .. 2 =1 and y =1, ..., e — 1. Note that the en-

tries of [J are elements from F} given by 4; ; = #7175 In
view of Proposition 1, for any linear combination of columns
(not all zero) of the matrix L7, each nonzero codeword of €
will either appear exacty once or not appear at all. Let the set
Terts oov st b of Boolean functions on w + « variables be de-
fined as

Hittlt: €] = @ Gy e

Tk

by By ) ([E[T::i . .'.[';I

where 7] denotes the integer representation of vector -+, and
J=0, ..., —1 That is, to the jth column of I} we associale
the function gy ).

Propaosition 2: Any nonzero linear combination of the func-
HOns g1, ..., oy, 15 8 f-resilient function.
FProof: Let

fre

ol = =P

for some © € F3' . We have to prove that W,{w) = 0 for
any w with wi (w) < £ Then, for any (. 2) € F3 x [} with
whi{D, al = & we have

a5 e : RR R It LT T
Wyl el =3 (1)

Y. x

> (-1
a.w

vty f—11 heoa)-lw,

(3}

Z lf;—ljh'y Z (_ljg(y..r.j Saea
Bl

For any fixed ¢, by Proposition 1, the function

rm—1

gy, )= EB* L),

15 4 linear function nondegenerate on at least # | 1 vanables.
(Here, «; 0, oo, — L) Now wi (b, w) = ¢
implies that w1 (a) < £, and, consequently, the right-hand sum
is zero, completing the proof. O

T+ for §

Next we have the following result on nonlinearity.

Propaosition 3: Any nonzero linear combination of the func-
HONS 1, +.. . fwm has the nonlinearity 34+ — v L
Proof: From [20], we have nlig;) = 2#T171 — 2v~1 for

Kl 1, ..., we. Moreover, from Proposition 1, it is clear that
any nonzero linear combination of these functions o, ... 4,
will have the same property. |

Henee we get the following result related o multiple output
functions.



PASALIC AND MAITRA: LINEAR CODES [N GENERALIZED CONSTRUCTION OF RESILIENT FUNCTIONS

Proposition4: Givena [i, m. t- 1] lincar code, it is possible
to construct (i — ¢, rm, £, 247970 — 2971 regilient functions,
for < ¢ << w1,

Throughout this paper, the functions constructed by means
of Proposition 4 will be denoted by g;. We immediately get the
following corollary conceming the construction of l-resilient
functions.

Corpdlary I 1U1s possible 1o construct an

§ B, e, 1ol L)
i g 4y LAY

function I,
Proof: There exists an 7 | 1. we. 2] linear code. Putting

v =me+ land ¢ = m — L owe get (n. o, 1, 2071 — 2m
resilient funcions. O
Thus, using Corollary 1 with i = 16, we can construct a

L-resilient function #'{=): F% — 3" with

1

ni{F) =27 1 - 2% — 39 _ 216,

This function can be used in a stream cipher system where at
each clock pulse it 1s possible 1o get 2-byte outpul.

Next we look into a more involved techmique. For this, we
present a set of technical results. The following proposition is
well known [20] and therefore stated without proof.

Proposition 5: Let by} £ Vi and glo) € ¥, Then the
nonlinearity of fiy, «) = flyl & gle] is given by

ali f3 = 2¥lig) + 2" 0l — 2ol gind(h,

Next we present the following corollaries which will be useful
in the sequel.

Corollary 2: Let by be a bent function on Ve, & = 2Zm. Let
glay e Vi, with ndig) 270 —25=2 fiyr g < py . Then the
nonlinearity of [y, &1 = hly) D gz is given by

i =gnudinl, g gusl,

Proof: Put nl{l) = 2%L — 2% in Proposidon 5. O
Corollary 3: Let B'(3') be a bent functions on Vi, & = 2,
and let h{y) be a function on ¥y, given by byl = 200 &
iy Letgia) € ¥, withnl{g) = 2~ 2L forw < ny.
Then the nonlinearity of [y, &) = Aiy) L gl is given by

AN

ni(f) =am—F 1 _ptyr

pi—1 r)u—l—l

Proaf: Put nlili) — 3¢ 27 in Proposition 5. O

Corolfary 4: Let iy} be a constant function on ¥y, & =
Let gz} € V,, withndigd =2 L 2* 1 for w < n). Then
the nonlinearity of fy, =) = iy} &l is given by

nl{ )

Proof: Put nlil)

21l.1+.t' 1 _ ghga-1

[} in Proposition 5. O

Thus, using the composition of bent functions with resilient
funcuons, one may construct highly nonlinear resilient Bookean
functions on a higher number of variables. The question is if we
may use the same technique for the construction of multiple-
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output functions. In other words, we want o find a binary vector
space of bent functions of dimension ri.

We discuss this construction in more detail (seealso [ 18]). Let
A be of size 2 x m given by A = f__%}, where A" 1s 2 matnx
constructed by means of Proposition 1 using e, ..., o,,— 1, that
spans an [m, . 1] code € with the unity matrix f as the gen-
erator matrix. Now each column of the matrix A can be seen
as a concatenation of 27 distinet linear functions on e vari-
ables. This is a Maiorana—McFarland-type bent function in 2
varibles. Also using Proposinon 1, it is clear that any nonzero
linear combination of these bent functions will provide a bent
function. The algebraic degree of this class of bent functions is
equal to . Thus, we have the following result.

FProposition 6; 1L 1s possible 1o obtain a binary vector space
of bent functions on 2re vanables of dimension m. Also,

e
ileg @ T Tl
i=1
where by, Do, ..., by, is the basis and v € T§* .

Example 1: Let e = 2and oo = (010, ¢ = {10% We use

an irreducible polynomial p{z) = 2% + z + 1 to create the field
[Nz, Then it can be shown that the matrix A is given by
i ¥
A i vl
e el
o+ [

In the truth table notation, let us consider the four-variable
bent function Ay () as the concaenation of the two-variable
linear functions (0, oy, we. oy = s and, similady, Feafo)
as concatenation of 0, #-, &) O @e. ). Then the function
B fa) & hela) is also bent, which is a concatenation of
(h ) & o, o, T3

Also note the following update of Proposition 6.

Propasition 7: 1L is possible 1o obtain #¢ distinet bent func-
tions on 2p variables (p = m), say by, oo, Py, such that any

nonzero linear combination of these bent functions will provide
a bent function. Also,

Wi

69 =h | =

f=L

des for r & 5.
With these results, we present our construction method in the
following section.

IV, NEW CONSTRUCTION

In this section, we will first provide the general construction
idea using a [w, v, § + 1] linear code and then we will use spe-
cific codes toward construction of resilient functions of specific
orders. Let us first discuss the idea informally. We will use the
matrix {7 as deseribed eadier. Now it is clear that each column
of I can be seen as a (w + ¢)-variable function with order of
resiliency { and nonlinearity 2%~77- — 2%~ Aq a consequence
of the discussion in the previous section, these functions are re-
ferred 1o as g1, ... g, From Proposition 4, it is known that any
nonzero linear combination of these functions will provide a



2186

{2 -+ gi-variable function g with order of resiliency t and non-
lingarity 2274—L — 2u—-,

Now we concentrale on #-variable functions. It is clear that
the {1+ gl-varable function needs 1o be repeated 277 times
to make an ve-variable funcion. We will thus use an (w — w —
gi-varable function and XOR it with the {1 | ¢)-varable func-
tion to get an n-varable function. Also, to get the maximum
possible nonlinearity by this method, the (n — 1w — «)-variable
function must be of maximum possible nonlinearity. We will
use v different functions foy, ..., B, and use the compositions
fi=hiPa oo f = B T, o get m different »n-variable
functions. Thus, any nonzero linear combination of fy, ..., f.
can be seen as the X0R of linear combinations of By, oo Fgs
and linear combinations of gy, .. -, g,... Inorder to get high non-
linearity of the vector output function we will need high nonlin-
earity of the functions f». ... b, and also high nonlinearity
for their lingar combinations.

If (e — w— o) s even, we can use bent functions By . ... fu.
Importantly, we require s different bent functions {as in Propo-
sition 6) such that the nonzero hinear combinations will also pro-
duce bent functions. For this, we need 0 w4 = 2y (see
Proposition 7). 1f (n — w — ) is odd, we can use bent functions
bi of in — w— 4 — 1} varables and take n; = & & ;. This
requires the condition n — u« — g — 1 2= 25 o get m distingt
bent functions as in Proposition 7.

It may very well happenthat the value of o 4 may be less
than 2rre and in such a scenarw it 1s not possible 1o get 2 bent
functions with the desired property. We formalize the results in
the following theorem. For convenience, throughout this section
we denote mo— no—w—o 4+ 1

Theorem 1: Given a linear [, ue, £+ 1] code, it is possible

2 fL o 1 —

to construct an (. #e, &.owf{F) function = (f. ..., fal
where
an 2 L wE RS | 1
ATt i QR TR W s e < n—2m 2
{719 0 B GLE e e s w3
4

gn-L_4

-

\ a4t —1, weven

_1-“4_ o4 e, modd, 5
Proaf: We consider different cases separately. We will use
functions gy, ..., g, on (1w + q) variables which are basically
concatenations of ¢ distinet linear functions on @ variables.
These linear functions are nondegenerale on at least £ + 1
variables. From Proposition 3, we get that for any + ¢ FJ*

m

il @ iy | = giehe=l _ gusl

i=l

Next we consider w different functions iy, ... f onn o)
vanables. We will choose these functions in such a manner that
forany + £ F* | 'ILEl:LG};-lL 7;h 37 1s high. Mostly, we will use
bent functions as in Propositions 6 and 7. Now we construct the

vector output function & (fi, o0, S ) where [ By &g,
For any + ¢ F§* EB?;L w5 f7ir can be wrillen as
I rr

& ity 1 Do

[EEE TRANSACTIONS ON INFORMATION THEORY, MOL. 48, NO. 8, AUGUST X2

This can be done since the set of variables are distinet. The input
variables of g; arewy, ..., w4, and the input variables of &,
dIe Wy Ls r =m0 e

I. Here, w < w <0 4w | . By Proposition 4, we construct
(= a4 o oaee, t, 2071 — 2971 fupetion I,

20 Lets 4 <o <0 1+ 2vo, Here we take the first =l

rows of A in Propositon 1, i.e, g =m 1. The functions
gy are of w4+ we — 1 variables, Thus, we need to repeat
each function 2 times. We will use functions Fij of
in —u—m — 1 variables which are constant functions.
We know that wl{g;) 4

gufresd . ousl Hence,

?urp__‘:lz.-}l'L Ll })J\.Ilr’r]‘tl]ﬁ? T o

Ly _an L an
LE N, }—2 2

as in Corollary 4.

3o Letw | e < no< 4 | e We take gsuchthatn o 5
Zre. Inthis case, the g;"sare of w4 vadables. We take v
bent functions M5, each of 2wt variables as in Proposition
6. We know that

nlig] = gukent_gmel
and
nil S 2‘1:-:-:- I _ am
Thus, if we consider the function &= {1, ..., Sl we
get nl{ £y = 2=t — 2u+m=1 gg in Corollary 2.
4. Forn = wdbn—1 n—u—vrn—1even, weuse g — wr—1
and a set of bent functions on % % i | 1 vanables.
Mote that in this case, v —n—me—1 2 2ne Thus, we wall
zet a set of wre bent funcions as in Proposition 7. Here,
I’J.II:::’_I_-.;} — g fm 1 _ an
and
i) = (AL R o
Thus, we get

Al Fy =20l ol

as i Corollary 2.
A5 Forow = a—+dve,n —a —ae— 1 odd, weuse g = e — 1
and a set of bent functions on » 1w - m variables, say

by, ..., by as in Proposition 7. Note that in this case,
mo— o — i = 2. We construct iy = a8 by Thus,
we gel
Tli':_l'_f_:l; Ji= LAl Sk S L
and

ni(hy) = 2t % ) 1 _ glessmpeuat

In this case, the nonlineanty 1s
aliFy =27 ' —2% %
as in Corollary 3. -

Note that Corollary 1 in Section 11 is a special case of item
I in the above theorem. Next we consider the algebraic degree
of functions constructed by means of Theorem 1.
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Thearem 2: In reference to Theorem 1, the algebraic degree
of the function I is given by

2 degF1<n —uwtl, wE o bm 1

2 <l dee( Y =i, to— TR R i+ 2 2

T, T VT PR T SV E 1) 3

dewl( #) = Bouomel syt dm—1, 7 even 4
Lot ro a4 dm, moodd 5

Proaf: Let us consider any nonzero linear combination f
of (f1, ..., £ Also, we denote any nonzero linear combina-
tiom of ;s as 1 and that of ;"5 as g IUis clear that

deg{ ) — degi f)

as f, are functions on distinet set of input variables.

e degi i), degiol)

1. Here, fcanbe seen as the concatenation of 27 linear func-
tions {0 < g <2 wre) of wvariables each. The exact caleula-
tion of the algebraic degree will depend in a complicated
way on the choice of the codewords from 7. However,
it is clear that the function is always nonlinear and hence
the algebraic degree must be = 2. Also, the function [
will have degree at most ¢ + 1. Heme o
gives the result.

n — i, which
2. Inthis case, 4 = v 1. Now { can be seen as the 3¢ % 7
times repetition of function g, where g is the concatena-
tion of 2% linear functions {0 = g < n) of u vanables
each. The exact caleulation of the algebraic degree will
depend in a complicated way on the choice of the code-
words (rom 7. However, it 1s clear that the function is
always nonlinear and hence degl ) = 2. Futhermore,
the function g will have degree at most ¢ + 1. Thus the
result.

3. In this case
degi 1 = maxi{desikl, deglai,
Now, degih) = m as we consider 2m-vardable bent fune-
tons with property as described in Proposition 6. Also,
degigiis atmost g | 1. Now, e | 2m = 0 < w | 3on
which gives ¢ < wn. Henee deg(f) = m

4. In this case
p n—wu—rih—1
degihl = —————
i) 5
ifrom Proposition 7) and
degiph < g+ 1 =m.

Here v =

w4 g —1one, n —u—vin 4 1 2 deee, which

gives 2=2zutl >, Thus degf f) = 2=sgeetl
5. In this case
L T i
degih) =

2
and

dewigl < g+ 1 =
Here n = w | Son L @

P T ] : : X
B=0= > . Thus deg( f)

e = dm, which gives

L — L1
s O

Next we provide results toward further improvement of non-
linearity.
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A. Further Impimvements

In this subsection, we like to point out that the results of items
2 and 3 in Theorem 1 can be improved further. First we concen-
trate on the item 2. In the construction, we have considered all
the &y's as {n — 1 — m + |-variable constant functions, thus
without getting any nonlinearity for the %, "s and the linear com-
binations of them. We explain this with an example. Consider
the construction of a (4. 3, L}-resilient function. We start with
1, 3, 2] linear code. Thus, we land into item 2 of Theorem |
sinee

ut+m=1+3<n=%<u—2m=41+40

Hence we get the nonlinearity 21 —2%=% — 192 Thus we can
construct a 9. 3, 1. 192 function. This is because we consider
the functions - . ha, fsoas constant functions on o — 1w — e+
1 = 3 variables. The functions g, 2, g5 are on w -+ o — 1 =
44+ 3 — 1 = 6 variables and the nonlinearity of any linear
combination of them is
21}.' e 2 g T ab g 24
However, we can very well use the functions
i, w2, wa) = wivz & us
falpin, dre, B} = daws &
and
Falo, we, wal = wawL & w2
instead of the constant functions. Note that any nonzero linear
combination of these three functions will provide nonlinearity
2. Hence using Proposition 5, we get the nonlineanty
2*.2442%.2-2.29.2=124
for any linear combination of fy, f», fa. This provides
{9, 3, 1. 224 functions. This example makes it clear that there
is room Lo improve item 2 of Theorem 1.

Similarly, in item 3 of Theorem 1, we select the value of ¢
such that » — w — ¢ = 2m without choosing ¢ = m — 1.
Let us consider the construction of a {36, ¥, 5} function using
a [17, 8, §] linear code. This falls under item 3 of Theorem |
sinee

At Zm =17+ 2-8<n=3<utdm=17+3 &

The nonlinearity in this case is 2% 1 — 2v4m - = 235 _ 224
In this case
Zm=36 17 2.8=1
That is, we have used the functions 1; of 2 = 16 variables
and the functions g, of « + g = 20 variables.
Let us now consider the following construction. We will use
g = L ie, we will be using the functions g; on u |
= 24 variables and the functions 1oy on e —uw —m — 1 =

g=n @

12 wvariables. According o Proposition 3, any nonzero linear
combination of ;s has the nonlinearity 2¥12 17— 2* 1 Now
consider the mapping II': » — »~! where v € [}, and p is
even. It s known that the nonlinearity of the function H' is
e—1_ak [19]. Thus. it 1s clear that we can construct a function
H:F%—F} for even p and + < p with nonlinearity 20~- — 2%,
In this case, we need to consider eight-output functions on 12
variables. Thus, it is possible to get v functions iy, ..., oy, on
it—w—ii—1 variables such that any nonzero linear combination
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of the functions f; has the nonlinearity 2% ™ ™ 2
Using Proposition 5, we get that the nonlinearity of u_nz' Ii_nmlir
combination of the functions f; = b, g, is 2771 =257 .
Hence we get a {36, %, 3} function with nonlinearity 23 — 229
which improves on Theorem 1.

For odd p, we first consider a function Ji: ' — F3 with
r = p— 1. Since p — 1is even, we get nl(h) 22 — i
[19]. Let us denote the v outputs of the function fras by, ..., T,
MNow we take the function H: F] — F} with » output columns
as :.L'},.%.'rn'-l“, ﬂ;r,:'ﬁfr,g, vowy il DS casy to see that el H ) =
gr=- — 2% Thus, we can summarize the following technical
resull.

Proposition 8: 1Lis possible o construct afunction H:FL —
I'-;é for » = prespectivily, :5 o — 1y with nonlinearity 2~! —
27 (respectively, 28—1 — 2777 for p even (respectively, odd).

Now we update items 2 and 3 of Theorem 1 in the following

theorem. Onee again nole that s = » — e —m + 1.

Theorem 3: Given a linear [, m. ¢ + 1] code, it is possible

to construct an [z, ve, £, vl () function I7 = 0 f, .., Sl
where
, 2:1 | 2‘?’. 1m
A e —2m — 1 1

= — |

=Ll _ 9=y even,
mt+2m—1l<n<nun+dIm—3 1u
gr—l _ 9™ radd,
wt2mEn<su—3n- 3
2:"—1 - Eu+m—11

\ 'u+3:;¢—3§?1{'u+31;¢, v

ll T = 4

—

Proof: For the cases 1 and 1v, we keep the same resull as
in Theorem 1. For case u, it1s clear that m =< o w o wr | 1.
In this case, we use g = m — L. The g;'s are on o + e — 1
vardables and k"5 are onv —w — vie — 1 variables. Then, using
Froposition 8 we get the result. The result is similar for case 1.

MNote that we could use the same strategy as in items i and 1 in
item iv. However, for the range of # in ilemiv , the nonlinearity
ae=1 — gutm=l gupersedes the nonlinearity achievable using

|

the approach of items ii and iii.

We further like 1o concentrate on itlem i of Theorem 3. In this
case.nt+mE<n < u+2m - Lie.l S n—n—m+1 < m
If we like to use the strategy as in items ii and iii of Theorem
3. we need to construct some function H: FY — F5 forr = p
with some nonlinearity. As far as we know, there is no general
strategy o construct such a function. Also, it is clear that for the
cases no o de 1 =1, 2 there 15 no possibility to get any
nonlinearity. So we can update item i of Theorem 3 as follows.

Proposition 9: Given alinear [«, ne, (4+1] code, it is possible
Lo construct an (. #e, &owdF) function B = (f. ..., Sl
where

an-—1 _ e

Wl F w42 1
Rl .211. 1 2:!'.' m | E.’l i'flLH. 1 in - J . 'ﬂ?-_:l :
w—rn—3 S —2m— 1, 11

Here wip, v} is the maximum possible nonlinearity of a p-input
r-outpul function with 3 < p < .
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Proaf: ltem 1 is same as item i of Theorem 3. 1o item 11,
we consider that we will get [ —w—w4 1) -varable functions
fe. ... hy such that any linear combination of them will pro-

e >

vide nonlinearity at least a(m — o —m — 1, m).

Next we summanze our results combining Theorem 1, The-
orem 3, and Proposition 9.

Theorem 4: Given a linear [w. v, £+ 1] code, it is possible

to construct an (n, m. *, nd( £7) function & = (fi. ... fi.).
where
[ L ou-L
[T R T S T 1
2.'-:_—1 — yf—in
HlmEan < m] 2 2
gul _gmee Lot —u— e+ 1, ml,
e+ 2 S w4 2 -1 3
2”_1 _ 3= uE'r.'l L
w4 A — L=<l u 4 e — 3, meven 4
(I =4 .y S !
W 2 = on < w4 S — 3, 0 odd 5
arn—1 __ -'}u+1||.—'.
A A — A4S =l a4 v ]
Sl i
i3 2 E ;
noE a4 dwm — 1w even f)
cpra—1 o 2 o] 1:: w1
L re 2 e, w odd. 8

V. RESULTS aND COMPARISON

First let us concentrale on l-resilient functions. Let £ be an
[+ 1, . 2] linear code in systematic form, i.e., £ = (f|1),
where f is an identity matrix of size m x m, and 1 is a column
vector of all ones. In this case, we have @ = v+ 1. Then we
can apply Theorem 1 on this [m + 1. we. 2] code. Thus, we get
the following corollary.

Corollary 5: 1t is possible o construct an (v, we, L, nd{FY)
function #' = { {1, .... fin ), where

2:*—1 - 2:.-.:

pe— L opre—rm
2 —d ;

m+1l<n<2m+1 1
D4l = dvn—1 2
amtl<n<dm- 3
4
A

nl{f) = ¢ 27 1 g%
rh—_ z (T
gnoli 2w, o2 dm, reeven
o A=
2=l 2757 = dm+ Lonoodd,

We now provide some examples with respect o Corollary
5 and then compare our results with [14]. In Table 1 we
present the nonlinearity of wre-output, 1-resilient functions for
=" 10. 11, 12, Beside the nonlinearity, we refer to the item
number of Corollary 5 in parentheses which is used to caleulate
the nonlinearity. Also in some entries of the table we provide
an improved value of nonlinearity after the / sign. This we
explain as follows.

MNote that the linear code used for the construction of the
P, m, L, ndiFY) is an [+ L, m, 2] code.

Let us take a closer look at Table 1 Consider the construc-
tion of B-vardable, 3-output, 1-resilient function. If we construct
the function using the linear code (4, 34, 2|, then using item 2
of Corollary 5 we get the nonlinearity 192, On the other hand,
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TABLE 1 TABLE 11
NONLINEARITY OF | -RESILIENT FUNCTIONS COMPARISON OF RESULTS FOR |-RESILIENT FUNCTIONS
T n="% e =10 =11 n=12 m n=14 n = 1{ n=11 n=12
z 22 (3) %0 (4) 960 (5) 1084 (4) Gur | [13] | Our | [14] | Our | [13] | Our | [14]
3 | 192 (2)/221 | 448 (3)/480 960 {1} 1984 {1} T | 2w [ 2400 480 450 | 960 [ 992 1984 1934
4 224 (2) 445 {2)/480 | B96 {2)/960 | 1792 (2)/1984 3 [ 3 234 480 450 [ 960 | 992 1984 1984
5 221 (1) 380 (1) 360 (2] 1920 (2)/1084 4 | 224 | 224 | 460 | 448 | 960 | %60 | 1984F | 1920
6 192 1) 448 (1} g6 (1] 1081 (2) 5 | 274 | 224 | 480% [ 448 | 960 | 60 | 1984% [ 1920
B 182 152 448 448 | 960 D60 | 1eRd¥ | 1a20
if we use the linear code 3, 4. 2], we can construct a #-varni- - .
B | radiliant Bl an ik nanBnenes o0 TABLE Il
ADAA, <~OWIPNT, 1-Tes1Ient MNCHON WIT NONIMEANTY 2o 1AKINE COMPARISON OF RESULTS FOR - RESILIENT FUNCTIONS
into consideration ilem EIUI'CumIIury &, Nt}'f.i.' Wi Cin di.ufurd an o =3 =0 =1 Py
output of a {9, 4, 1, 224 function to get a {9, 3, 1, 224} func- Crur | [14] | Our [ [14] | Our [ [14] | CGur | [19]
tion. Henee we should use the [3. 4, 2] linear code instead of 2 | 18z ] 2407 ] 448 | 480" | 896 | go2* | 1900 | 10847
the 4, 3. 2] linear code to construct a J-output function. That L L N B R
ik Ty p g e s : s 4 | 192% | 128 | 445% | 364 | 596 | 8e6 | lyoz | 19207
is, if we get an [ve, we, O-resilient function, then just by dis- % ] ] R TEG | TRE | TnE | 1752 | 1797
carding some output columns of the function it is possible 1o get B 1 ) ] 1] 512 | 512 [ 1636 [ 1536
an {n, mz. ) function with the same nonlinearnty for me- < e
Henee, we present the improved nonlinearity for some entries TABLE IV
in Table 1 after the / sign. CoMPARISON OF RESULTS FOR 3-RESILIENT FUNCTIONS
It was demonstrated that for a low order of resiliency and a s = = ‘?14] - = 1?14] - = 1114] - = 1[51 ]
— v oof 3 ariahlas the o i - ur ur ur ui 4]
[Ti{HjL.nllL number of mpul hlrl.;lhll_h the construcion in | 1.4t 1.!...15 =1 1oz T i59 T 384 | iim 56 T Sor | o2 | Thad=
superior o the other constructions, namely, the constructions in 3 152 | 192 3R4 3Rd FOG [T 1792 | 1920~
[15]. [25]. However, the main disadvantage of the construction 4 [ vza [ 123 [ 3a4%F | 256 [ &96% | 7ed | 1792 [ 17E2
in [ 14] 18 the necessity of linding a set of nomintersecting linear 5 0 0 256 | 2956 | 512 | 512 | 1536 | 1536
[ [1] 1] 0 [ [ 012 | 1024 | 1024

codes of certaim dimension. This may cause a large complexity
for the search programs, since there 15 no theoretical basis for
finding such aset In Tables 1I-1V, we compare our results with
those of [14] for small values of .

In the cases marked with = (in Tables [H-IV), the results of
[14] are better than our results, whereas in the cases marked
with# our results are better. In the other cases, the quality of the
results are the same.

The companson for l-resihent functions is presented in
Table . Next we ook into the construction of 2-resilient func-
tions. From the theory of error-comecting codes we know that
for any { = Jthereexistsalinear v =2 1.m=2" [ 1. 3
Hamming code. The codewords from such a code provide the
construction of (w, rre, 2, vl 71} nonlinear resilient functions
FoAlso, given £, 1L s possible 1o oblain a sequence of hinear
codes of different length and dimension. In other words, given
alinear 28 1.2° [ 1, 3] Hamming code the generated
sequence of codes 1s
[ 1 2oz

#2001 13,

This code can be used with Theorem 1 to construct 2-resilient
functions with high nonlinearity. Note that this constroction of
2-resilient functions 15 not the best wsing this technigque doe o
the existence of better linear [, me. 3] codes than those pro-
vided by the Hamming design.

Further we compare our results for 2-resilient functions with
the results of [ 14] in Table 111, For this purpose we vse the linear
codes |3, 2, 3], |6, 35, 3], |74, 8], |9, 5. 3, and |10, &, 3.

Now we provide the comparison for 3-resilient functions in
Table IV, We use the linear codes [6. 2, 4], [7. .3, 4], [%. 4. 4],
[10, 3, 4], and 10, G, 4].

Griven Tables H-IV, it 1s clear that our results are not as good
as the results of [ 14] in some cases. However, we like Lo mention
once again that the main problem of [14] is the need to obtain

for 1 =0.1, ...,

a setof nonintersecting linear codes of a cerain dimension. So
far, to the best of our knowledge, there 15 no general algorithm
for finding such a setin low time complexity. For this reason, the
only strategy 15 Lo use search programs, which 1s not feasible as
ninereases. On the other hand, our method provides a determin-
1stic techmgue in this direction. For moderate-wo-large values of
iv. the techmique of [14] will not work, whereas our method will
provide functions with very high nonlinearity. Moreover, even
for a small number of variables, we get better results than those
of [14] in some cases.

MNext we show that our resulls are superior in companson Lo
the generalized constructions provided in [25], [15], and [7].
Note that the construction of [ 15] gives higher nonlinearity than
that in [25], whereas the construction of [25] provides a higher
order of resihency than that of [15]. For the comparison with
[25], [13]. [7] we use Theorem 1 and show that our results are
better.

Theorem 5 [25, Coroflary 6]: Il there exists a linear
{n, m. fl-resilient functon, then there exists a nonlinear
{n, m, & 2* L — 2" % function whose algebraic degree is
m— 1.

Note that given any |n. we, #4 1] code, it is casy to construct

a linear {u. e, L1 function. Thus, using the method of [25] it
is possible to construct a nonlinear (. »e, ¢} function as well,
Consequently, for n i, the mesult of [25] provides the cur-
rently best known parameters. Note that there are some cases
(when the value of noas very close o w, which falls under item
1 of Theorem 1) where the results of [ 23] are better than ours,
This s whenw — 1 =0 2, e, n < w1 2 1. However,
1, our

if we hix the values of w, t, then for n, o >
nonlinearity in Theorem | supersedes that of [25]. Hence, as we

T

'1[—2
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choose » significantly larger than @, » =« — ™ 1, the ad-
vantage of [25] decreases and our method pmvidi;s better result.
Moreover, items 3-5 of Theorem 2 show that the algebraic de-
eree of our construction is better than (v — 1) given in [25]. We
present an example here for comparison.

We know of the existence of a [36. 8, 16] linear code. Hence,
1L 15 easy o gel a linear {256,
method of [25] it 1s possible 1o get a

%, 1ad-resilient functoon. Using the

aps - i —1 BE— ry i Hor]
I o . S L

funcuon. Moreover, it has been mentoned m [15, Proposition
19] how to get a {36, 8, 15, 2% — 221 function using the tech-
nigque of [25]. Ow method cannot provide a function with these
parameters. Let us now construct a function on a larger number
of input vanables, say n = 43, for same m and . For n =
44 and # = 15 the best known hinecar code have the parm-
elers [-'.l:i, 12, l{}]. Then, with construction in [25], it 18 pos-
sible to construct a {43, 12, 13.2°% — 2%7) and consequently a
{43, 8. 15, 2% —2%7) function using a smaller number of output
columns. In our construction we start with a [36. &, 16] code and
applyingitem 1 of Theorem 1 we obtain a (43, 8. 15, 21 — 2%
funcuon, which provides better nonlinearity.

Theawem 6 |15, Theorem 18] Forany even I such that [ =
e, if there exists an (n — §, m. t) function {2}, then there

N - = f . 5 &
exisls an {x, om, #, 2 - 27 1) resilient funcion.

Note that if there exists a linear v = n — I m, ¢ — 1] code,
then by the above theorem [15] 1tis possible w get the nonlin-
earity

now g

2“—1 i En—' =

gL g

lems 4 and 5 of our Theorem 1 provide better nonlinearity than
[15]. Also, a closer look reveals thal our construction oulper-
forms the result of [15] for any = 5, with same quality result
w2

MNext we compare our result with a very recent work [7].

for n

Theawem 7 {7, Theorem 5]: Givena linear [’-!.!.: e, T 1] code
(00 = m = ), for any nonnegative integer A, there exists a
(o + & + 1, v, deresilient function with algebraic degree &,
whose nonlineanty 15 greater than or equal Lo

211.+2¢ - | .-'2_-1__14_1] + L 1 :

Thus, it is clear that given a linear [w. w1, ¢
the above provides
g | o M-resilient function. Note that the construc-
tion provides some nonlinearity only when . — 1 = B2
ie, v = Zu 4+ 2 It is very clear that our construction
of (v, 270 — E-w-}-msilium functions for
oo ot b Gev presents a omuch better nonlineanty than that
of [7]. However, companng our result in Theorem 2 with [7,
Theorem 5], 1t s clear that i terms of algebraie degree the
result of [7] is superior o our result. It will be of interest to
construct functions with nonlinearity as good as our mesults
with better algebric degree than that i [7].

Construction of resihent functions wsing simplex codes
has been  discussed [7]. A simplex code [16] is a

1] code,
zr.—l

construction an (e b

in
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TABLE W
NOMLINEARITY OF {55, 5. t1-RESILIENT FUNCTIONS
(A) Order of resiliency t i fi 5
{B) Nonhnranity of [15] | 20 — 227 = L
¢ [} Nonlinearity of [14 27 2 - 235 _ o
(13 Qur Nonlinertity QU _ A _ Il _ g
E1 The codes TG0, 5.8 | %57 | 1756
TA) ] 3 7 L
{H} odl _ ol 255 _ g odl _ okl g _ qfd
[y | 255 — 9% | 2% — 3% | 8% _ il | 35 _gel
f]}:l 23'5 — o 23'5 — pon o35 _ glF 235 _ I8
(E) | [16,8,5 | [13,8.4] | [12.8,3] 3,8,3]
[2% — 1, ya, 2! linear code, whose minimal distance

15 maximal. By concalenating each codeword » tmes, one can
get a |27 — 1), o, 027 linear code. Given Theorem 1,
one can use such codes for the construction of functions with
order of resiliency 2= — 1. Also, in this case, our method
will provide better nonlinearity than that of [7].

Let us consider some linear [, w1, ¢+ 1] code, where u. m
are fixed. Then we wish to maximize t4 1, since this in turn wall
maximize the order of resihiency of the constructed funcuon. A
table with maximum value of £ 4+ 1 for w, m < 127 15 available
in [3], which we will use n the next subsection.

A. Examples

MNext we compare the results with specific examples. Let us
start with the construction of a {2-1, 1. 2, nl( 71} function 0],
Given m = 4, 1L 15 possible o construct a nonlinear function
I’ using the technique in [25] with nl{Fi = 228 — 222
We know the existence of a :'F._ 4. 3] linear Hamming code [16].
This gives a {7, 4, 2} resilient function. Using the construction
in [15], we obtain a function £} with wf{ ) = 273 — 2-3,

In our notation, w = 7, me = 4. # = 2, In this case,

n—u—vn+1 24d—-T7T—-44+1 14

and

n=234Fuldm 1=I15

Thus, from item 4 of Theorem 1, we get the nonlinearity
2°% _ 2% Thus, our technique provides the currently best
known nonlinearity.

Starting with a |7. 4, 3] code, if we use the construction of [ 7],
we will get a {24, 4.2, 2% 2 1 2% resilient function. To
obtain the same value of nonlinearity using the construction in
[14], one is forced to find |C| = [2"—* pi2™ —1Y] = [219/15]
nonintersecting linear [14, 4. 3] codes, and this is computation-
ally an extremely hard problem o solve.

In[15], the construction of a (36, 8, 3 ol 47 function was
discussed. Using a linear [1%, . 6] code, the authors proved
the existence of a {36, %, 5, wl{ ]} function, where wli [} =

243 2%6 We use a linear [17. &, 6] code (see [3]) and item 11 of
Theorem 3 to construct a (36, 8, 5, 2% — 223 function. Using

the same linear code, we can obtain a (10. &, 3, 2% — 2% func-
tion (item 4, Theorem 1),

The nonlinearity of {36, %, {7 resilient functions has been
used as important examples in [15], [14]. In Table ¥, we com-
pare our esults with existing ones. The values from [15] are
the existing best known constructon results and our technigues



clearly supersede these [15]. The results of [ 14] are not construc-
tion results. They show that resilient functions with such param-
eters exist. However, the construction of functions with such pa-
ramelers are not available in [ 14]. Note that for resiliency of or-
ders 23, 2, and 1, our construction provides better results than
the existential bound in [ 14]. For resiliency of order 5 we could
construct functions achieving the existential bound of [14]. For
resiliency of orders 1 and 7, we could not achieve the existen-
tial bound of [ 14]. However, it should be noted that in all cases
we provide the construction with currently best known nonlin-
carity. In the last row of Table V, we describe the linear codes
(see [3]) that we use for our construction.

Remark 1: From the discussion in this subsection, it is clear
that except in very few specific cases, our construction provides
the best known nonlinearity in general. The result of [25, The-
orem 5] provides better result than ours for a small range when
#o< no+ 4F — | There are also a few cases for low values of
1, when the results based on exhaustive search in [ 14] are better
than ours. Apart from these specific cases, our technigue clearly
presents the best possible construction results.

VI. CONCLUSION

In this paper, we consider multiple-output Boolean functions.
A new generalized construction of highly nonlinear resilient
functions has been provided. The construction is based on the
use of lingar codes together with a specific set of highly non-
linear functions. We show that our construction outperforms all
previous constructions for almost all choices of inpul paramelers
ae, e, 40 Many examples are provided demonstrating the better
nonlinearity attained using this new construcion in comparison
to the previous ones. [t will be of interest Lo construct functions
with better nonlinearity than in our method or to show that some
of our constructions provide optimal nonlinearity which cannot
be improved further.
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