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Covariantly quantized spinning particle and its possible connection to noncommutative space-time
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Covariant quantization of the Nambu-Goto spinning particle in 2+1 dimensions is studied. The model is
relevant in the context of recent activities in noncommutative space-time. From a technical point of view also
covariant quantization of the model poses an interesting problem: the set of second class constraints (in the
Dirac classification scheme) is reducible. The reducibility problem is analyzed from two contrasting ap-
proaches: (i} the auxiliary variable method and (ii} the projection operator method. Finally in the former
scheme, a Batalin-Tyutin quantization has been done. This induces a mapping between the non-commutative
and the ordinary space-time. The Becchi-Rouet-Stora-Tyutin (BRST) quantization program in the latter scheme

has also been discussed,
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L INTRODUCTION

The recent activity in noncommutative (NC) field theory
[1], and more generally concemning NC space-time [2], has
recreated a lot of interest in the study of physically motivated
models, where the NC featre appears naturally. The well-
known Landau problem (of a charged particle confined in a
plane in the presence of a magnetic field in the perpendicular
direction), is one such example. In an eardier paper [3] we
pointed out that the bosonic spinning particle model (SPM),
orginally proposed by Hanson and Regge [4], is relevant for
theories in NC space-time. As we shall show in detail (this
was also pointed out briefly in [3]), the SPM can provide a
direct mapping between ordinary (that s commuting) and
NC space-lime.

The Nambu-Goto construction of the SPM [4], by itself,
is an interesting example of a relativistic theory having a
nonlinear and non-Abehan constramnt structure. An added
featre is that the system of second class constraints [5] is
reducible in nature if manifest Lorentz covanance is 1o be
maintained. The present work focuses on the last point since
some of the corresponding results in a noncovariant setup
have already been presented by us in [3]. Quite obviously the
non-covariant results are somewhat inelegant and will be dif-
ficult to use in a relativistic theory. We will discuss the pre-
liminary steps leading towards a Beechi-Rouet-Stora-Tyutin
(BRST) guantization of the SPM in a manifestly covariant
way, along the lines of [6.7].

According to the Dirmc classification scheme of Hamil-
tonian analysis of a constraint system [5], the SPM has both
first class constraints (FCC) and a reducible systiem of sec-
ond class constraints (SCC). The former generate gauge in-
varance whereas the latter restrict the phase space manifold
along with a modification in the canonical symplectic struc-
wre. Reducibility in a non-linear SCC system is a novel fea-
re and possibly the present work is the first example where
a nonlinear reducible SCC system is quantized. The reduc-
ihility problem for the SCCs of the SPM in a covariant
framework has o be addressed first before one can embark
upon a conventional BRST guantization of a set of reducible
FCCs. The problem of reducibility will be handled by two
very distinet approaches: ne., the auxibary variable method
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[8] and the Projection Operator method [9].

The BRST program [6.7]. in the auxiliary vanable method
[8]. proceeds in three stages: In stage (i) the reducibility in
the SCC system is taken care of by introducing a set of
auxiliary degrees of freedom. This enlargement of the phase
space modifies the original reducible SCCs and convers
them in to an irreducible (or independent) set. However, care
should be taken w see that the extension does not affect the
physical (Le. original) phase space. In stage (ii), the set of
irreducible SCCs are further modified by bringing in the
Batalin-Tyutin (BT) [7] variables so that the SCCs are trans-
formed o FCCs. Subsequently in stage (iii), the conventional
BRST quantization is 1o be perdformed. Note that no ghost for
ghosts appear here (as is customary in any reducible theory),
since the reducibility is removed in stage (i).

In the projection operator formalism [9], the reducibility
problem is solved by the construction of a projection opera-
tor which projects out a maximal set of weakly involutive
constraints, ie. FOCs ifrom the SCC system), with which a
generalization of the standard BRST quantization is possible.
In this scheme, ghost for ghosts do appear. It might be inter-
esting to see if the auxiliary variables of the former method
and secondary ghosts of the latter method are related. Indeed,
the inherent nonlinearity and non-Abelian nature of the SPM
constraint system is a real test of the viability of the above
schemes [8.9] in arbitrary models.

The connection between SPM and NC space-time is dis-
cussed here in the auxiliary varable method. After the sec-
ond stage of extension of the phase space (where the BT
varables appear), we demonsirate the existence of a map-
ping between the NC space-time coordimate and the normal
one, via the auxiliary BT degrees of freedom [7]. The analo-
zous resulls ina manifestly non-covardant setup were derived
in [3]. Following the BT prescription [ 7] in the SPM, the NC
space-time coordinate operators are expressible as normal
space-time coordinates, approprately extended by BT con-
tributions. This provides the mapping between the NC and
ordinary space-times in the exiended phase space. As has
been noticed in earlier studies of nonlinear theories [10,3],
the possibility of an infinite number of higher order Batalin-
Tyutin vardable contributions in some of the physically rel-
evanl operators manifests here also.
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The paper is organized as follows. In Sec. 11 a brief re-
sumé of the SPM is provided, which also helps us 1o fix the
notations. Section 111 deals with the application of the auxil-
tary variable method in SPM. In Sec. IV the relevant formu-
las for the BT guantization are provided and subsequently
the method is applied to the ireducible set of SCCs in SPM,
obtained in the previous section. The connection with the NC
space-time 15 also elucidated here. In Sec. Vo the projection
operator in the context of SPM is derived. Necessary steps
for the subsequent BRST gquantization in the present case has
been provided. Determination of the explicit structure of the
projection operator in a complex model 1s very important
since its existence was only suggested in [9]. Sections 11-V
comprise the main body of the work. The paper is concluded
with a discussion in Sec. V1L

IL. SPINNING PARTICLE MODEL: A BRIEF RESUME

The (3+1)-dimensional Nambu-Gow Lagrangian of the
SPM. originally proposed by Hanson and Regge [4]. is
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In order to discuss the Hamiltonian formulation, we define
the canonically conjugale momenta as
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One immediately finds the primary constraints,
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This particle model is somewhat unconventional because of
the operator valued “‘mass™ which can only reduce o the
standard form for a,=0. However, we have shown [11,3]
that in 241 dimensions, this complication can be avoided
with the Lagmngian posited by us,
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we oblain the constraints as
=, 2 MG — 2
P*‘PF—M T .EF,—EJ : (9

Serp =0 (10}
Equation (9) constitutes the Casimir operators. This model
has been suceessfully used [11.3] in the context of anyvons,
i.e. excitations in 2+ 1 dimensions, having arbitrary spin and
statistics [12]. Since the NC feature of the resulting space-
time coordinates is also preserved in 2+1 dimensions from
now on we will work in 2+ 1 dimensions. An additional set
of constraints are ntroduced (for a detailed discussion see
[4.11]) and the full set of constraints are'

P =PEp M2, USSP 018, (11)

'Mote that instead of W, as above, one can equivalently use ¥,
=e""5 P, —MJ, which incidentally defines the Pauli-Lubanski
scalar.

(45031-2



COVARIANTLY QUANTIZED SPINNING PARTICLE AND . ..
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With the help of the following canonical Poisson brackets
iPB):
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we compule the constraint algebra, where W wivially com-

mutes with all the constraints and the rest of the non-zero
PBs between the constraints are
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One can see that the constraint algebm for ¥ ia=172),
closes whereas, Af; being non-trivial even on the constraint
surface, indicates the presence of SCCs. Hence, according to
the Dirac classification scheme [5], ¥, and ©* constitute
FCCs and SCCs, respectively. Demanding time persistence
of the FCCs will generate no further constraints since the
theory being reparametrization invadant, its Hamiltonian
will be a combination of FCCs only.

It is not possible to compute the Dirac brackets (DB) [5]
from the SCCs since the system of SCC is reducible (ie. not
independent) due to the following identity:

£, 07=0. i(18)
MNote also the presence of the relation
/ P afr
0 & I .
| A+ EJ of=——. (19)

However, since Eq. (19) involves a FCC, this is not a reduc-
ihility condition [13] and only restricts the number of inde-
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pendent degrees of freedom on the constraint manifold. Also,
this system is first stage reducible since higher order reduc-
ihility conditions are absent.

The Hamilwonian of the system twrns oul 1o be that of a
free particle due to the so-called “ngidity™ property of the
particle [14,11] meaning that when the SCCs are enforced
strongly, the spin vector becomes proportional o the mo-
mentum vector. As stated before, the Hamilonian being a
combination of the FCCs (9), due to the above reason, il 1s
sufficient o consider only the mass shell condition W | in Eq.
(9). One has to fix the time scale by choosing a gauge for the
FCC W, which can simply be

Xp=T.

Subsequenty one has to construct the DBs for the above
SCC pair and the Hamiltonian is obtained from W, =0,

H=pP,= PP+ M". (200

Indeed, one can obtain the DBs by considering an irreduc-
ible set from 4 (eg. taking only the spatial components
€' . as in [3]), but this destroys the manifest covariance of
the model. We now follow the method prescribed by Baner-
jee and Barcelos-Neto [8] to obtain the DBs without losing
manifest covariance.

IL COVARIANT QUANTIZATION: AUXILIARY FIELD
METHOD

In the formalism proposed in [8)], the reducible SCCs
(&) are modified in an appropriate way by introducing aux-
iliary degrees of freedom, such that the modified SCCs (@)
become imeducible. At the same tme, one has o ensure that
the extension does not affect the physical phase space. In a
practical sense, this means that the resulting DBs between
the physical (ie. original) degrees of freedom will have 1o be
independent of the auxiliary variables or any parameters con-
nected to them. The reducibility condition plays a crucial
role in determining the structures of the modification erms
iin the SCCs), which have to be such that on imposition of
the reducibility conditions on the SCCs, the auxiliary vari-
ables vanish exactly.

The phase space is extended by introducing a canonical
pair of auxiliary varables ¢ and 7 that satisfy {¢ 7}=1
and PB commute with the rest of the physical varables. The
SCCs 8] are modified in the way as shown below:

Or=5r"P +k Ptm,
! P | PEy
Bi=| A% ——|+k| A%+ —| o, 21
! || M] 3|, M Jqﬁ I: )

where £ and k2 denote two arbitrary parameters. The con-
strainl matnx s computed o be

(Kt By
Key={6%.03)-| |

a3
L v
'-_‘?jlf fz.
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with | and r, given by
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In the above, we have used

- o H
pou_ = 1IP*

— 24
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which follows directly from @4=0.
Let the inverse of ﬂﬁ; be defined as
RERL= 857 (25)
and we consider a general form of the inverse matrix to be
[0 —a,,!
ﬂ:f= (26)
\ ﬂp.ik bp.ik !
with the entries
HPAEHIPP'FA-'_HE-?J'AF b#lEb("iH}pl' (2?}
The parameters a,, a, and b are found to be
1 —k3*+ 2k k, 1
IMk kol —kath) T2

(28)

The DBs [5] are now caleulated for any two generic vari-
ables A and B from the defining equation

{A.B}ps={A.B}—{A.OA5{6,.B).  (29)

where A7 is defined in (25).
After a long and guite involved algebra we recover the
DBs of the original (physical) variables in a covariant form:

S

{x*x tna=— T {PEx toa=g"",

{P*. P} pu={P* A"} pa={P*.5" }pp=0, (30)
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It is very important to note that the DBs between the physical
degrees of freedom are totally independent of k| and k1, the
parameters that appeared in conjunction with the auxiliary
variables ¢ and w. There is no need 1o take a vanishing limit
of k; and k,. This feawre ensures that the phase space ex-
tension has not disturbed the sector of physical variables.
The importance of this has been repeatedly stressed in [8].

Notice that the DBs involving P remain unchanged from
the PBs bul the noncommutativity in configuration space is
reflected in the non-zero {x*.x " pg .

Quite naturally, the DBs consttuting an auxiliary variable,
such as the one given below,

(1—heaeb)( 1+ ks ch)

2k M? (33)

{-'fF= qﬁ'}ﬁﬂ' e

will involve k| or ks, Moreover, they will be undefined for
the zero limil of these parameters. This completes the first
stage extension and with this ireducible as well as covarnant
set of SCCs (21) we now proceed to the second stage exten-
sion in the Batalin-Tyutin formalism [7].

IV. BATALIN-TYUTIN EXTENSION AND
NONCOMMUTATIVE SPACE-TIME

The basic idea behind the BT scheme [7.6] is to introduce
additional phase space variables (BT variables) ¢, besides
the existing degrees of freedom, such that aff the constraints
in the extended system are convered o BCCs. The advan-
tage is that the FOU system, being a gauge theory, enjoys
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more freedom in the form of choice of gauge in quantization
and the quantization procedure itselfl is well understood for a
zauge theory in a canonical phase space. This means that one
has 1o modify the original constraints and Hamiltonian ac-
cordingly by putting BT-extension temms in them. The way 1o
achieve this at the classical kevel has been provided in [7].
The main results of the BT prescription [7] relevant for our
purpose are hsted below.

Let us consider a set of constraints (@4 % ) and a Hamil-
onian operator H with the following PB relations:

{0%q). Dﬁ':ff J} = Jr,ﬁfq}#ﬂ,
[0%(q). ¥, (g)}=0,

[Wig)¥,ig)}=0, [{¥iqg)Hig)}=0

(34)

In the above (g) collectively refers to the set of vanables
present prior o the BT extension and =" means that the
equality holds on the constraint surface. Clearly 8% and W,
are SCC and FCC [5), respectively. These constraints are
actually the ones we have been working with, ie. @ are
ziven in Eg. (21) and ¥, of the starting FCCs (9) remains
unchanged, whereas W, can be modified to make it a FCC
iat least up to low order in the auxiliary variables). However,
this restriction is nol imporant for our present discussion.
In systems with non-linear SCCs isuch as the present
one), in general the DBs can become dynamical variable
dependent [10,3] due to the {4,604} and ._I.f:g terms, leading
o problems for the quantization program. To cure this type
of pathology, BT formalism is a systematic framework where
one introduces the BT variables ¢, obeying
(0. 08 = wih=— wh

P

(35)

where w"ﬁ 15 a4 constant (or al most a c-number function)

matrix, with the aim of modifying the SCC &%(g) 1o
lf'jf:fq,qﬁr;:} such that,

{04(q.6).04(q.0)} =0,
6%4(q.4)=0%4(q)+37_,64"(q. ).
B~ 0(¢"). (36)

This means that ©* are now FOCs and in particular Abelian
[7]. A simple choice, obviously not unigue, is

”'H_.?Fp n:r,B’ el2=1. (37)
The explicit terms in the above expansion are [7]

13 r .
ljlm _X:rﬂ ’ "Errﬁ-’_ rrri'wll.rxﬁ]- 0 (38}

':‘j'_.l.u:l:.u I i q&ﬁ'mulxyﬁﬂgﬂ::uj n=1
n

(39)
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E;;Hfl {ﬁw:i?fl l"j;-tﬂl"} _{ﬁﬁti??,lﬂjgll}

ig) i (40)
BI=3a (60 G100,
+ 3ol mLas N
n=2. (41)
In the above, we have defined
XEX L= wtswlf= 08¢ . “2)

A very useful idea is to introduce the improved variable f(q)
[7] corresponding to each fig),

Fla.d)=f@=fla)+ ;. Jlq.4)".
FV==dwlpx 0351} (43)

lapd

: 1
.F" IJ=_H+1¢"_: :rﬂxﬁﬁf (f}M”] n=l1

(44)
GUAE" =25 ol0F" ™ T
RN e T
+{85D V) @s)

which have the property {@%(g,d).flg.¢#)}=0. Thus the
improved variables are FC or equivalently gange invanant.
The subscripts ( ¢¢) and (g) in the PBs indicate the variables
with respect to which the PBs are 1o be taken. It can be
proved that extensions of the original FCC W, and Hamil-
tonian H are simply

V=Wig). HA=Hg). (46)

One can also reexpress the converted SCCs as @
=6*(g). The following identification theorem:

{A.B}={A.Blps.

{Esﬁ}lnb—ir={"d‘s3}})ﬂs 0=0, (47)

plays a crucial role in this scheme in making contact with the
DBs. Hence the outcome of the BT extension is the closed
system of FCCs with the FC Hamiltonian given below,

{05, 051={0L. ¥ }={6].A}=0,
{1]}.1'!'1];"}
~0, {¥,.H}~0. (48)

We will see that due w the non-linearity in the SCCs, the
extensions in the improved variables (and subsequently in
the FCCs and FC Hamiltonian), turn out to be infinile series.
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This type of situation has been encountered before [10,3]. In

the present case, the solution for X7 5 in Eq. (38) is obtained
s

(49)

xes- |
@7\ 2gm 0

The inverse of the above matnx, as defined in Eq. (42), is

i ﬂ
S it ( (50)
2

jf ':ﬂ I'F_.'.:Fp-'—ﬂ_:'g;.w} )
Ty

L =8 g ﬂzfﬂll};.w

The parameters @, and a, have already been defined in Eq.
(28). Using Eqg. (38), the one-¢b BT extensions in the SCCs
are

Or =Xt B+ X1 =~ ElrL+ b,
640Xt o, + X8 =280 ), (51)

It is easy to convince oneself that the BY 5 functions defined
in Egs. (39),(40),(41) are in general non-vanishing, giving
nse o terms having higher powers in BT vanables. Let us
now compute the one-db extension in the IF,

proved variable corresponding to x, . the canonical coordi-
nate variable. Simplifying Eqg. (43), we get

1.¢. the im-

b [} e AT
.l:L =— (") e‘,ﬂXﬁT{ﬁT,.tF}m

! ) .
= 2|:S‘.F+.£.'|ngﬁ}+ Hl:k_:'q&_ l}ﬂjl:lill}p,u:

1
X'+ ﬁf 1—kyp)a P P, +arg, )"

(52)

Henee, up o unu-q&; BT extension, it is straightforward to
check the following relation:
i FH¥
[xextVe prp 0 = — 7 + (" —terms). (33)

In the above calculation, one has w remember that the BT
extended expressions for the FCCs has to be used. The PB
between the full .FF (ie. to all orders in &™), will satisfy
— Ser
fx e (54)
M2
To ascertain the one-gb, term in the right-hand side of the
above PB, one has to compule extensions up 1o two-¢b; in
.TF . Thus, we have explicitly derived the following relation:

g =1} x - ' R 2 =
X, =x,tx, '+ (higher @ — lerms), (55)
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with .FF” given by Eqg. (52). This is the cherished mapping
between the NC space-time coomdinate .FF and the usual
space-time coordinate x, . A similar type of mapping be-
tween a NC coordinate and a canonical coordinate was also
proposed (in a non-relativistic framework), in [14]. However,
it should be pointed out that x, in the above mapping (55) is
truly the vsual space-time coordinate with comect Lomentz
transformation properties, whereas the canonical coordinate
introduced in [14] is not. The BRST quantization of this
irreducible SCC system does nol pose any technical compli-
cations.

The presence of noncommutativity has made a strong im-
pact in recent years in high energy physics, ever since the
appearance of the seminal work of Seiberg and Witten [15].
Noncommutativity is induced in the open string boundaries,
when the string moves in a constant two-form background
Neveu-Schwarz field (or equivalently a magnetic field). The
noncommultativity parameter is identified with the inverse of
the constant magnetic field. Recently we have shown [16]
that contrary to previous works [17] involving constraints,
the non-trivial mixed boundary conditions are responsible for
this noncommutativity. However, the issue of noncommulta-
tivity is quite alive and different avenues have o be explored
to obtain the above feature. Exploiting the observation that
noncommultativity appears in a paricular choice of regular-
ization in sting theory, Seiberg and Witten [15] have pro-
vided an explicit map (1o the lowest nontrivial order in the
noncommulativity parameter), connecling noncommutalive
and ordinary gauge fields. The idea of equivalence between
gauge orbils i ordinary and noncommutative space-lime
plays a pivolal role in establishing the map. Apparently, the
noncommutativity of space-time is not exploited directly
since one stays in omdinary the space-time and introduces
extra mteraction terms in the original model as noncommu-
tative effects.

On the other hand, in [18] we have shown a new way of
interpreting the Seiberg-Witten map [ 15] which is more geo-
metric in nature and rests directly on space-1ime noncomimu-
tativity. In [18] the Seiberg-Witlen map appears as one
changes the argument of the gauge field from ordinary 1o
noncommutative space-tme in a partcular way., This means
that without going in to the concept of identifying gauge
equivalence between noncommutative and  commutalive
space-times, it 15 possible 1o recover the Seiberg-Witlen map
in a geometrical way. The spinning particle lives in an ex-
tended space having noncommutative and commultative sec-
tors and gauge fields in these sectors can be connected by the
Seiberg-Witten map. Precisely i this context the above spin-
ning particle model can become relevant since they provide a
natural framework for introducing noncommutalivily in
space-lime, without any need to bring in external interac-
tions. The details of this mechanism will be reporied else-
where.

V. PROJECTION OPERATOR METHOD

Recently a new scheme, the projection operator method,
has been proposed by Bataling, Lyakhovich and Mamelius
[9]. where one is able to quantize a constrained system, hav-
ing a set of reducible SCCs and FCCs, in a manifestly cova-
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rant framework. A generalized BRST operator has also been
posited in [9]. The formalism is in complete contrast to the
auxiliary varable approach [8] and BT extension [7] dis-
cussed in the previous sections. Hem no non-physical de-
grees of freedom are introduced. Instead, the major ask is
the construction of an invariant projection operator that
projects out the maximal subset of constraints in involution
(1.e. FCCs), from the full (reducible) set of constraints. With
this set of reducible FCCs one can attempt a BRST guanti-
zation. However, the presence of SCCs causes an obstruc-
tion, which requires a generalization of the BRST operator
[9]. In [9] the authors make the crucial assumption that for a
ireducible) set of constraints, with the PB algebra,
{0,.0}=U,:60,+4,;, (56)

one can construct a suitable projection matrix P¥ satisfying
P2A, PI=0, PEPI=P]. (57)

This will project out the reducible set of FCCs,
0,=P;0;5. {0,.0}~0. (58)

It s imperative o show that the above assumption works in
a non-trivial model and the present work is probably the first
one where its validity is demonstrated explicitly. The formal-
ism [9] is applicable even in systems where one cannol sepa-
rate out the FOCs and SCCs without spoiling manifest cova-
nance. However, as shown in Sec. I, in our model this
separation is possible. This slightly simplifies the problem
since we have to consider only the reducible SCCs 84 in Eg.
i12).

The all important projection operator is given by the fol-
lowing matnx:

l1
M'-' “;F”'FUPP L
. 159)

o i Y

1 1
_JP_.'-I:PJ" gl.'.l:ln'_'_ _JP_.'.I:S‘I'UP”
| M= | M- /

This will lead to the FCCs B:r=PﬁBﬁ whose closure prop-
ety can be directly checked. Now one muost enlarge the
phase space by introducing ghosts, ghosts for ghosts, ete. We
follow the prescription of [9] and for a generic L’th stage
reducible theory introduce the ghosts P

. and secondary

ghosts &', P, where r=1,....L and the ghosts satsfy
elCy=e(P,)=¢€,+1,

L

B

(C ) =e(F, ) =€, +r+1, r=1,..
{COP =8 (0P }=8,. r=1....L,

ghlCy=—ghiP,)=1,

gh(C'“)=—gh(P, )=r+1. (60)
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Here e A) and ghi.A) denote the parity and ghost number of
A and in the above e(T,)=¢, ., where T, represents the full
sel of constraints. Let us now construct the following odd

real function £ with ghost number 1:

Q=C'T,+C"1Z P~ 1)

L

+ 2 CIRZTEUR, {3k (1) EAERAP,
r=32 B r=

X{=1)tk(—1)C AL P {— 1) %,

H{=1) St Jef et AT LT (= 1) e, {61)

In the above we have defined the constraint algebra as

1T, TR} =Cut AL,T

ak bt e
and the reducibility conditions as

Z2T,=0, r=1,....L.

The higher order reducibility conditions are of the form

2-" ]Zﬂ

it

=),

1

and so on. The higher order structure function ,i:;’ﬂ follows
r

from the requirement
{TII :Z: T.'r} =ﬂs
wheras A' s induced by the Jacobi identity

“”Tﬂ FT.'; !'Tr}E {{T

Tl T eyelic terms =10,

The rest of the stucwre functions will follow from still
higher order Poisson brackets. For a detailed discussion see
for example [19].

In the present case, T, =¥ ¥, @ 83 in Egs. (11),
(12) and our model is single stage reducible with L=1 (18).
One can ascertain that A)! =0 from {T, . P*©,}=0. A’

/‘]ll [
contributes only from the non-trivial Jacobi identity expres-
S101,

l
J(O4,07.07)= (g Pr—g ™ PV,
+(g7OE—g ™ ONY . (62)

We drop the second term since it is guadratic in the con-
straints and hence is strongly vanishing. The rest of the
higher order structure functions are zero. With the above
inputs, the function (1 is
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SUBIE GHOSH
I1=CI"'F| +c21]!2+c|#ﬂlp: +E.' ZF'-:JE_.'.:+£IPF‘F‘IF

+ 1%y

| ERF,P4,_3F4,F,}‘?§¥

|

+Eg"”‘rjl ]}H— :’I'Clﬁclpsﬁwﬂl"'cmf:pc I"T’w

1
+ 2370 G C PP (63)

MNext an even real functon 1T with ghost number zero is

posited to be

L

M=CPiPy(— 1)%+ 23, (—1)CHP'2 B, (—1)%,

r=1
4o (64}

where the dots indicate higher powers of ghost terms. The
i Ny ; : s
functions P :’ are yel 1o be determined from the following
I

relations [9):
{IT{I1.Q}}={I1.0}.
{IL{TL{Q.0}} ={I1.10. Q}}. (65)

This leads to the cherished form of the generalized BRST
charge

0'={I1,0} (66)
which obeys the milpolency property
[, 0%=0. (67)

In the present case, using Eq. (39), we get,

1
M=C'P+C*Pat+—C 48, PP +C'*S T
ye.
]' a
- E'C-J‘PFP 5T

1
+ EEFPFS""P”‘?-"_;,—C'P“?-"'. (68)
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Computation of the last term is straightforward but tedious
and is not pursued bere. Just as in the imeducible case, in
general one has o modify the Hamiltonian so that it has
vanishing PB with the BRST charge {1'. However, in the
present case the Hamiltonian remains the same as in Eg. (20)
due 1o its simple structure. In the subsequent quantization
these functions are elevated o quantum operators and obvi-
ously they have to be properly ordered.

VL CONCLUSIONS

The covariant quantization of the Nambu-Goto spinning
particle model is analyzed and the relevance of this model in
inducing & noncommultative space-time is demonstrated. The
technical problem of covadant guantization in the present
maodel is very subtle since the set of constminls comprise
reducible second class constraints apart from first class con-
straints. (The above classification follows from the prescrip-
tion of Dimc [5]) Special methods have been devised o
tackle the above-mentioned reducibility problem. We have
discussed here two schemes: (i) the auxiliary varable
method [8] where the phase space is enlarged in an appro-
priate way and (i) the projection operator method [9], where
a (reducible) set of first class constraints is projected out
from the set of second class constraints. The latter formalism
has been proposed very recently and the present work con-
stitutes a non-trivial application of the same. Construction of
the projection operator as well as the necessary steps for the
BRST guantization has been provided.

A number of projects to be pursued further immediately
come to mind: firstly a thorough appraisal of the mapping
between noncommuting and omdinary space-tume that has
been exhibited here, in the light of [18], and secondly a
quantum BRST analysis of the model in the projection op-
erator formalism, taking inlo account the operalor ordering
problems. Also it has been suggested [20] that the Faddeev-
Jackiw [21] method of symplectic quantization may be use-
ful in the context of covariant quantization of the spinning
particle model. Work is in progress in this direction as well.
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