Magnus force on quantum Hall skyrmions and vortices
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Ahstract

We have discussed here the Magnus force acting on the vortices and skyrmions in the quantum Hall systems. We have
found that it is generated by the chirality of the system which is associated with the Berry phase and is same for both the
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In recent times, the wpological excitalions near
the filling factor v = 1 in guantum Hall effect have
drawn much attention [1-3]. There are two kKinds
of topological excitations in single layer guantum
Hall systems. When the system is fully polarized
the relevant charged quasiparticles are topological
vartices. Al v = 1“'—_[ the charge and spin of such
a vortex is 55y and "iizirl'—'i']' respectively. Inoa
remarkable paper Sondhietal. [1] have argued that for
a weik Zeeman coupling the lowest energy charged
quasiparticle 15 a tepological soliton or skyemion.
The charge is still 555 but the total spin can be
substantially larger. This large spin with moderate
charge explains the observed depolanzation when the

filling factor slightly deviates from v = ﬁ Indeed,
the difference between a vortex and a skyrmion s that,
a vortex 15 fully polanzed while inside the skyrmmion
core there 15 some number of electrons with reversed
spims. It may be noted that there s an mterplay of two
factors, namely the Zeeman and the Coulomb energy.
Vortex solutions exists for any value of the Zeeman
coupling and s well known from the studies on the
vortices in the Gineburg-Landau model of the fully
polarized quantum Hall effect [4]. For weak Zeeman
coupling the relevant quasiparticles are the skyrmions.
In this Letter, we have studied the Magnus foree acting
on these skyrmions and vortices from their wpological
propertics when it 5 studied in terms of (3 4+ 1)-
dimensional nonlinear sigma model and found that
they are the same.

To investigate the dynamics of vortices and skyrmi-
ons we begin with the Landau-Ginzburg theory of
the Hall effect introduced by Zhang, Hansson and
Kivelson [5] and maodified by Lee and Kane [6]
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to incorporate the effect of the spin. For spin 1/2
particles if we set i = ¢ = ¢ =1, the Lagrangian can
be written as

L=,[d —ilao+eAo)|¥
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Here ¥, is a two-component Bose field with effective
mass m* and shot-range repulsive interaction 2,
which couples to the extemnal and statistical gauge
fields A; and a; (i =0.1, 2). Here pp s the uniform
density [¢hy |1+|¢1|1 at filling factor v = ﬁ In order
to separate the charge and spin degree of freedom, we
explicitly separate the magnitude and U7 (1) and SU(2)
phases of ¥, ¥, — /odzy with i =Zpzs = 1.
By direct substitution and keeping the keading-omder
gradient terms we oblain
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We now note that we have the identity
A : = P
2"’!*[hau-:f,|I + (Zsthza)’] = g (Vn)~. (3

where Vo= (0, d:n) with n = Z,0,874. 9. being
Pauli matrices. We now introduce Hubbard-Stratono-
vich fields J w decouple the second werm of Eq. (2) 1o
obtain
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where J 15 the three vector p = (Jy. J1, J2). After in-
tegrating out the longitudinal Quctuations in 1, we
have the conserved current relation Jya, = 0, which
can be satisfied by taking J,, as the curl of a three-

; : ; 0
dimensional vector ficld. We can now sel J}L] =

{pn, 0, 0) equal to f;n-J.HL-AE]] and

B = I =gy Bl (5)

MNow, following Stone [7], we integrate out the
Chern-Simons field ay, and using the relation 280, =
e B, we can wrile

L =2x[ 7} (Au+ AR) + T (Au + AP)]

— U Ay + 38— (2

- ;“ ©— ). (6)
where
J:F = 2; f‘-"xn'lf']u'f'fhé, (7)
fo = %ﬁwlﬂufaﬂaza (8)

are the skyrmion and vortex three curments, mespec-
tively. It 15 observed that the skyrmion current can be
writlen in the familiar form
s_ |1 . .
JII = Er-m.ln.{dun ). (9
MNow setting o = gy in the kinetic energy lerm and
adjusting the units of length and time such that ¢ =
W App/m*, the velocity of density wave in the absence
of the magnetic ficld becomes unity and defining the
ficld strength tensor Fu, = .4y — 4., we can
wrile

L =2a[ T (Ax+ AD) + T (A +AD)]

- %Hfumf‘iufua = %FHL'FI“I = ;—l{vﬂ}'z-
(1)

It is observed that here A, is a topologically
massive gauge field and A}?] Just represents the
background field.

To study the Magnus force on these vortices and
skyrmions, we now lake resort o the spherical geom-
etry. In a recent paper [8], we have studied quantum
Hall skyrmions in terms of the (3 + 1)-dimensional
nonlinear sigma model where we have taken a sys-
tem of 2D electron gas residing on the surface of a
3D sphere with 4 monopoke at the centre. We note that
taking the spin vanable 2 = Uz where 2 = {El]} and
LF e SU2), we may wrile the nonlinear sigma model
Lagrangian in wermms of L7, The (3 + 1)-dimensional
generalization of the skyrmion current can now be de-
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fined as

1
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=R 247l Ll

x Te[(U~'a,U) (U~ 'au) (U a,U0)]. (1)

where it 1s associated with an @{4) nonlinear sigma
model with L7 defined as

U=m+in.a, UesSU(2), 12)

where o are Pauli matrices and 7 are chiral boson

ficlds, satisfying the constraint

mp+At=1 (13)
The (3 4 1)-dimensional generalization of the vor-

tex current can be writlen as

Ty = €puno hphdis . (14)

In a pure gauge, we can take a gange field By, such that

B, =d,0. (15)

MNow noting that vortex—antivortex pair can be taken
as an SU(2) doublet, we may consider By, as an 5U(2)
gauge field and write

B, =U'a,U, UesuQ). (16)

In view of this, we can write the vortex current taking
into account proper normalization

1
247 -
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et ST Vg

Thus companing Eq. (11) and Eq. (17} we note that
the skyrmion current and vortex cumrent can be writlen
in 4 similar form which is also shown by Duan et al.
[9].

In 3 4+ 1 dimensions we can gencralize the La-
grangian (10}  with non-Abelian  gange  field
«4;1[,4“]][ = SU(2) and the #-term in the form

L=2x[T (A + A + 7V (A, + A

M'
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Here # = g/c” with g = ve™/ h as Hall conductivity
and *F,, is 1 Hodge dual given by
1

*F;n' = T,f,'wl-:rfla- (19)

The third term in Eg. (18) 15 the &-term which
15 the (3 4+ 1)-dimensional relative to the (2 + 1)-
dimensional Chern-Simons term. It is noted that the
H-term 15 related to chiral anomaly and Berry phase
[10]. Indeed, it 1s a four divergence and we can wrile

1 " :
—HTL' FrwFrp = 082, {200
where £2,, is the Chern-Simons characteristic class
given by
1 2
2, = —Ff;n-.‘w TT(AL-FM =+ iAl'AlAG)- (21)
T = :

When a fermionic chiral current mteracts with a
gauge field, we may define
B =Jitoa, (22)
where J‘.'I 15 the axial vector current so that @}«'F}ﬁ'ﬂ,
we have d, fI:’ = Owhereas i, JJ,-:’ # 0. Indeed, we have
the chiral anomaly given by
5 g3 or 1 . 7
‘]III;: = 28,82, = ETL’ }-J-“.;rfw. (23)

The Pontryagin index is given by

g=2u=—

lam? fTr“Fﬂl"Frmd-‘-r
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Here p represents a magnetic charge. The Berry phase
P s associated with the chiral anomaly [10,11]
through the relation

aﬂ s, (24)

dig=2mp. {25)
In Euclidean space-time if we demand ,?-}“. =),
then the gauge polential tends o a pure gauge in the
limiting case towards the boundary, Le.. we can ke

Ay =U"8,U, UeSU@). (26)
This gives

1
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Companng this with Eq. (11) we note that £2, can
be related to the skyrmion current. It is noted that on
the boundary 5% where ,FJ.“. =), we have d,£2, =0
as 15 evident from Eq. (23). However, inside the vol-
ume V4 where ,?:}“. #=0, £2y is associated with Berry
phase as follows from Eq. (24). On the boundary 5 of
a volume V¥, the term e i the Lagrangian (18)
gives rise to the Skyrme term [3, UU~ ! 8,00
in this limiting case. This ensures the stability of the
skyrmion 5o that it does not shrink to zero size. Here
also A, appears as a topologically massive gauge field
as it has been shown elsewhere that when a gange field
interacts with a chiral current it acquires mass lopolog-
wcally through chiral anomaly [12].

If we take the compactified 3-sphere we hawve
the winding number associated with the homotopy
M8 =Z

1
g=2u= = fdsfxfmuﬂ
- ot
x Te[(U~ ' a,U) (U™ 8. U) (U~ 8sU) ]

(28)

This effectively mepresents the geometric phase
associated with the #-term in the nonlinear sigma
maodel action.

The configuration of a skyrmion is such that spins
wrap an unit sphere with a Dirac flux quanta within it
and the resultant spin ansing out of spin reversals will
zive rise to a specific chirality. When a skyrmion of
charge o (o= ﬁ}l moves around a closed path, the
Bermry phase is given by 2maN where NV s the number
of skyrmions enclosed by the path as is evident from
Eq. (25). The Magnus foree [13] 18 now given by

F=2raNcx v, {zg}

where ¢ represents the axis of resultant chirality and
¥V is the velocity of the skyrmion with respect to the
quantum Hall fluid.

When the Zeeman energy is large, e, the vor-
tices are the dominant excitations in the system, these
vortices will also experience a similar Magnus force.
Since the two currents are of similar form, the vortex
current can also be associated with the chiral anom-
aly giving nse o the Berry phase. We know that opo-
logically a vortex is equivalent o a magnetic flux, so
when a vortex moves in a ¢losed path, the Berry phase
15 given by 2maN where o = 1;—_| 15 the charge of the

vortex and N is the number of vortices enclosed by the
loop. The Magnus force is given by the vector product
of the vorticity and the velocity relative to the guantum
Hall fluid

F=+2ma NI x Vionex. (30

where £ corresponds to a vortex paralke] (antiparallel)
to the z-directon and Vyane 15 the vortex velocity.
Thus a comparison between Eg. (29) and Eg. (30)
suggests that the Magnos foree experienced by a
vortex and a skyrmion in a quantum Hall fluid is the
sami. This 15 consistent with the resull oblained by
Deziarmaga [14].

This analysis supports the Ao-Thoubkess theory [13]
of Magnus force which associates the Magnus force
with the Berry phase. In this scenario, the skymmion
current as well as the vortex current effectively rep-
resents o chiral current which is associated with the
chiral anomaly when it inleracts with a topologically
massive gauge field. The Magnus force is generated
by the background field associated with the chirality
of the system. Finally, we may mention that in a re-
cent paper [15] we have analyzed the Magnus foree
acting on vortices in high temperature superconduc-
tivity and is also found 1o be generated by the back-
ground field associated with the chirality of the sys-
tem. We observe here that if we study the Magnus
force from the topological properties of the excita-
tions concerned the Magnus force acting on vortices
and skyrmions in quantum Hall fluid as well as on
vortices in high T, superconductivity 15 of similar ori-
gin.
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