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We have studied here the influence of the Berry phase generated due to a cvelic evolution of an
entangled state of two spin 1/2 particles. It is shown that the measure of formation of entanglement
is related to the cyelic geometric phase of the individual spins.
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In the last few years Berry phase in a single particle system has been studied very well, both the-
oretically and experimentally. However, the study of Berry phase in an entangled state has become a
topic of interest very recently LL EH _Sr., _LL., _’,-] A= entanglement is a striking feature of quantum systems
and iz a nseful resource to realize quantum information, quantum teleportation, quantum cryptography
or quantum computation, the study of entangled state has absorbed much attention. We have to be
careful about two aspects of Berry phase of an entangled state. One is how it changes due to interparticle
interaction [1, 2,3 and the other is how it affects [4] the biparticle states. The motivation of this letter
is to see the effect of the Berry phase on an entangled system of two spin-1/2 particles. As a result we
have also found a connection between it and the concurrence (which is the measure of of entanglement )
for different spin chains.

It is well known that a fermion which is a spin 1/2 particle can be realized when a scalar particle is
attached with a magnetic flux quantum. The attachment of the mapnetic flue quantum changes the spin
and statistics of the scalar particle. The effect of the flux quantum & to induce an appropriate Aharanov-
Bohm phase which simulates the statistical phase factor. For one complete rotation the wave function
of a fermion acquires an extra geometric phase known as Berry phase besides the dynamical phase. The
attachment of mapnetic flux quantum to a scalar particle & also equivalent to the motion of a charged
particle in the field of a magnetic monopole of strenpgth 2b where bis a half integer or integer. The anpular
momentum of the particle can be written as

J=rxp-br (1)
This produces a mapnetic field L(';]
= e &
normal to the surface where ¢ = 'lf is the flux quantum and R i the radius of the sphere. For one
complete rotation, wave function of the particle will acquire an extra geometric phase as [7
e = 2T h (3)

besides the dynamical phase. b is called the Berry phase factor and in this letter we shall show how this
factor is related to the concurrence of an entangled state. As b= 1/2 corresponds to one flux qw-mtum,
when a scalar field traverses a closed path with one flux quantum, we have the phase as ¢27" = ¢7. In
general, the Berry phase H.()l%:lll'{b{l by a fermion when it encircles N number of mapnetic fux quunta in a
closed path is given by e
To study the Berry phase effect of an entangled system of two spin-1/2 particles (at A and B) we may
start with the state describing the two spins in the standard basis as

P = V,,_[ml L= +ag| |15 +ag| 11> +aq| 11>] (4)
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where a;'s are the complex coefficients and M = ZLI |a:|2. We have to be careful about the influence
of one particle on the other. The magnetic flux line of a said fermion will change its direction due to
the presence of the other. This may be considered as the magnetic field B(#) rotating with an anpular
velocity w around the z-axds under an arbitrary angle ¢, We may consider the time dependent mapnetic
field given by

B(t) = Bn(s, ) (5)

when the unit vector n{o, #) may be depicted as

sing  cos{wyt)
g t) = | sing sinfwyt) (6]

COE

The field B(t) acts as an external parameter and let us assume that the system at A is driven by the
external fields. Let vs now write the instantaneows eigenstates of a spin operator in direction nfo, )
expanded in the g.-basis (where 7 are Pauli matrices) are given by

| T}= | T‘I'I:f = 008 %I’ Tz:‘} + =in %Eiwtl lz:}
(7)
| l}= | lrl;f- == Si"%l T:-} + cos %Hiwll lz}
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For the time evolution from = 0 to t = 7 where T = — each eigenstate will pick up a geometric
tut
phase {Berry phase) apart from the dynamical phase which & of the form @

| Tn;f- -0 >—s | tat=T> = wT I[T:I _ f:,:".f+|:¢'] Eéﬂ+| T";E = = E:'".r+l:l:f'] EEH+,¢T{U:|
| l,.:f=ﬂ}—>| lu;f=7:} = t,l'-"j_{le =H'¢"."_|:¢'] Ew_ll";f=u}=ﬁ,i'¥_w‘] HEH_T}'-.-‘]_{U:' {S:I
where vy & the Berry phase which is half of the solid angle swept out by the magnetic flux line and

4 & the dynamical phase. The dynamical phase 84 can be eliminated by using the so-called spin-echo
method E and henceforth we shall concentrate on the effect of the Berry phase. We can then write

Pi(r) = € @lyp(0) = ey, ¢ (7) =7 4y (0) = g (9)
The explicit values of the Berry phase is given by ~4 as

(@) = —a(l —cosg)
(10)
T-(¢) = —w(1l+cosg)

This result can be explained as the system B that evolves freely has no effect on any behaviour of the
system A as long as the whole system is initially prepared in a separable state.

We can now construct an entangled state n terms of eqos. ). To illistrate the effect of the Berry
phase factor v, _, on an entangled state let us consider the state

¥ = ——(al ||> +0] 11>) (11)
lal® + 18]

which can be written as
Yr = s (@ iy >+ iy >)
ViaF +|5]° '

after evolution of a time period from t=0 to 7. Here we have assumed that the geometric phase i
penerated due to the cyclic motion of the particle A, under the influence of the particle B. The geometric
phase of this initial entangled state is controlled by the geometric phase of the subsystem only. If we have

(12)
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a cyclic evolution of this entangled state the total phase penerated will be different. The Berry phase I
of this entangled state will be given by

el = o eB7- 4 3 2+ — g e~ B+ 4§ 250+ (13

The Berry phase of this entangled state can also be caleulated from its definition as
- =j£~—-:w|vw::~d¢ (14)

where 10 = 14(t) is given by the equ.{II) and the integration is over the angle ¢ which pives the deviation
of the magnetic flux line from the quatization axis.

We can also construct the symmetric{ antisymmetric) Bell state from the cyclic evolution (from t=0
to t=7) of one single spin state with respect to the other as

i 1 . T —4 Jsn
s > = \,-_"i{ﬁ Ty > ke ey ) (15)

We note that v+ is diagonal in |17 > or [tf] > basis but it is not diagonal in [¢1 >. If we choose

v o ({5{]@5"‘“. —t':iin"l.-_,.) (16)

18I0y COS Y4

we have

("*'?‘+}) EE(|‘*'?'+}) (17)
>/ [ >

for the time evolution from t=0 to t=7. We can then say that ¥ is the matrix phase factor{geometric)
which explains the cyelic evolution of the symmteric and antisymmetric entangled Bell state. This
explains why the symmetric Bell state is not returned to the symmetric or antisymmetric Bell state after
one compelte rotation.

We would now like to make a comment on the entanglement of formation or the concurrence of these

entanpled states and show its relation with the Berry phase. For an entanpled Bell state given by (11),
the complex concurrence O is given by

C = 2a8 (18]

and its norm equals the standard concwrrence. O extracts the information about the entanglement
between the two spins from the probabilities and phases relative to specific two-spin states. Comparison
of eqns. (8), (10) with eqn. @) we find

1) — b=—5(1—cosg), (19)

which shows that in an entanpgled state the the anple ¢ is dependent on the factor b which produces the
field B and ~,; depends on it. Thus the weights of the entangled state (11) ie. the coefficients o and
3 will be the finctions of the angle ¢ ie. the deviation of the magnetic fux line from the quantization
axis. It is easily understood that the change of the angle ¢ will change the amount of entanglement of
formation or concurrence of the two-spin state. Now let us choose the coefficients o and 3 such that the
positive definite norms |« and |3] are given by

()= (jﬂfig ) (20)

O(6) = 2la] 18] = sin® £ =

Then the concurrence is

(1 —cosg) = [b] (21)

b | —



Thus it is found that the norm of the complex concurrence of an entangled state is related with its Berry
phase. The relation is given by

= b= =(1 —cosg) (22)

B3| =

The Berry phase factor | b |= 3{1—cos @) gives the measure of formation of entanglement which is usually
given by the concurrence. The comparison of this result with eqn.{[0) shows that the cyclic geometric
phase of the entanpled state becomes nontrivial B, it is dependent on the phase factor of the single
spin only. But this result helps us to study pairwize entanpglement in Heisenberg spin models. It follows
that the measure of entanglement between two states in a multi-spin state is dependent on the angle ¢
which may vary with the change of temperature and/or the external magnetic field on the spin system.
We may mention here that entanglement in a state has been computed both at zero temperature and
finite temperature (thermal entanglement) for a variety of spin models . Before proceeding further a
comment regarding the value of |b| is pertinent. As |b| depends on the angle ¢, |b] lies within the range
0= |bl < 1, but all the continmous values of ¢ will not correspond to the physical fixed walues of [b]. We
have to be careful about this point. It is easy to see that for some known values of the angle ¢ we arrive
at different spin modek and can also achieve the correct measure of entanplement C'.

(i) For ¢ = 0 (ie. mapnetic flnx line is along the z-axis)

we have

C=|b=0 (23)

indicating that the system is disentangled. This is the case for a sotropic ferromagnet where it is found
that there is no entanglement at any temperature or magnetic field strength .

(ii) For the angle ¢ = 7/2 we arrive at the next physical fived value of [b| = 1/2 .
It is noted that in this case the spin axis and the direction of the magnetic flux is orthopgonal to each
other. This happens in a frustrated spin system of an antiferromapnetic chain. Indeed a frustrated spin
system is characterized by a resonating valence hond (BVB)pair of singlets @ and we note that all
nearest neiphbour pairs are entangled with

C=|b=1/2 (24)

The frustration in an antiferromagnetic system may ocour either due to the topology of the spin lattice
such as a trianpular lattice or by the next nearest neighbour interaction (NNN) and the resonating valence
bond is formed by singlets of nearest neighbour spin pairs.

(iii) For ¢ = 7, we get the next physical fixed wvalue of [b]. In this spin singlet system the concurrence
is given by

C=|bf=1 (25)

which denotes the maxdmum entanglement .

If we can caleulate the Berry phase of an entanpled system we can infer about the concurrence of that
particular spin system. The plot of C versus ¢ may show the variation of the concurrence with the angle
between the quantization axis and the direction of the mapnetic flux line attached with the spinor. This
feature ako helps us to reveal the critical behaviour of spin models @,E

In the same method we can also study the Berry phase effect on the three particle entanpled state of
spin-1/2 particles. Let us assume that there are three spin-1/2 particles in a chain at three equidistant
points A, B and C. The Berry phase of the 3-particle entangled state will be given by

TABCY _ o PYABLINE) | o VA EBC) | et Bl i (CA) (26)

With the help of the Berry phase of the two particle states, already known, and from the knowledge of
relative probabilities a;'s we can caleulate ~(ABC. This will give us the measure of entanglement or the
concurrence of this J-spin system. If the spins at A and B are maximally entangled then the entanglement
of AC & zero. The maximality of entanglement is a specific factor of quantum phase transition and at
this critical point correlations develop on all length scales and in some sense at this point the state i
delocalized and the spin pair local entanglement is shared by all the spins.



In a many body system the existence of a quantum phase transition strongly influences the behavior
of the system near the critical point with the development of long range correlation. It is expected that
entanglement is responsible for the existence of such correlation . The first order quantum phase
transitions can bring about macroscopic changes in the amount of pairwise entanglement in spin systems.
To study the role of entanglement in a eritical phenomenon ‘ in a spin system, we consider the nearest
neighbour (NN} spin pairs and the associated concurrence with each pair. We may now consider the
entanglement between one spin and the rest (n — 1) spins in the total lattice. [t is expected that the
total one-versus-rest entanglement is larger than the individual sum of the two-spin nearest neighbour
entanglements []:a This sugpests the inequality

(n—1)Cia = Cyag3,. .. (27)
or,

Ciias. ) ]
n—11 “n-1

Cila = (28)

where the second inequality follows from the fact that the maximum entanglement between the one spin
and the rest is equal to 1. Indeed, apart from one spin, the rest of the spin system may be viewed as a
block spin in terms of the block wvariable renormalization scheme. At the critical point we will have the
maximum entanglement so that at this point

C? i I TR Y A g
! {n—1) n—1 @)

This implies that the two-spin entanglement s now shared by all spins and the bipartite entanglement
decreases as < = - for large n. In the thermodynamic limit the bipartite entanglement vanishes and

the entanglement that survives is the entanglement of the total lattice. The sharing of the bipartite
entanplement is responsible for the long ranpe correlation which develops at the critical point.
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