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1. INTRODUGTION

Let G be a connected weighted praph — ie., a graph with vertex set
V={1,2,...,n} and edge set E such that ¢ach cdge i3 associated with
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a positive number, the weight of the edge. (In the caze that all of the
weights are equal to 1, we refer to G as an unweighted graph.) For a
weighted graph G, the corresponding adjacency matrix A(fF) is given
by A{G)={ay), where

— #, if (i,/) €E and the weight of the edge is 8,
10, otherwise.

Given g real diagonal mateix D, we deflne the perturbed Laplacian
matrix of G, denoted by £{G), to be given by £(G) = D — A(G). (In the
sequel we will use 2 instead of £() when G is clear from the context.)
Observe that if dy;=3 . ay for each 1< i< n, then i[G} coincides
with the usual Laplacian maltrix for G, while when D is 0, 2(G) is
just — A(GF).

For 5 weighted graph G, the eigenvalues of both the Laplacian
matrix and the adjacency matrix have been studied extensively (see [12]
end [13], for exemple). Given that 2(G) encompasses both the
Laplacian and adjacency matrices, it is natural to consider the spectral
properties of that matrix as well.

Our results in the present paper deal primarnly with the second
smallest eigenvalue of £{G) and the corresponding eigenspacs, and
thus serve to show how the corresponding results for both Laplacian
and adjacency matrices fit into a more general framework., It follows
readily from Perron—Frobenius theory that since ¢ is connected, the
smallest eigenvalue of £(G) is simple and has a corresponding
eigenvector with all entries positive (we will consistently use Z to
denote that positive eigenvector). In keeping with the extensive
litcrature on Laplacian matrices, we will refer to the second smallest
cigenvalue of £(G) as its algebraic connectivity and to the correspond-
ing eigenvectors as Fiedler vectors. In this paper, we focus on the
algebraic connectivity of £{G) and on the structure of the correspond-
ing Fiedler vectors, and provide 2 number of generalizations of known
results for (ordinary) Laplacian matrices. We then apply these results
to discuss a problem on interval praphs,

Throughout the paper, we will occasionally appeal to standard ideas
and remults from the theory of matrices and the theory of graphs. We
refer the reader to [9] for the fundamentals of the former and to [3] for
the basics of the latter.
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2. PRELIMINARY RESULTS

We begin with some notation. Given a connected weighted graph &
and a diagonal matrix D, we let 4 denote the second smallest sigen-
value of #{7) (G and D will be clear from the context). For a vector X,
Xtv), will denote the coordimate of X corrcsponding 1o the vertex »
An edge between two vertices v and w in & is denoted by [v,w]. Let ¥
be a Fiedler vector of £, Then the efgencondition at a vertex v is the
equation

Y 2w () = (- £ IE(),

el

where F i the edge set of G. Finally, given a symmetnic matsix 8, we
denote its smallest eigenvalue by 7(B), and its larpest eigenvalue by
A BY; in the event that 8 is entrywise nonnegative, we denote its Perron
value by o( B).

Let ¥ be a Fiedler vector of £. A vertex v of G i5 called a
eharaecteristic vertex of G if F{v)=0 and if there is a vertex w, adjacent
to ¥, such that ¥{w)#0. An edge e=[u,w] is called a characteristic
edge of & if ¥(u)¥(w) <. By (G, D, Y) we denote the characteristic
set of G which is defined as the collection of all characteristic vertices
and characteristic edges of G with respect to the Fiedler vector Y of £.
Observe that this notation emphasizes the fact that the characteristic
get depends on:

(i) The graph structure. For example, let D=0, ¢ be the unweighted
path on 4 vertices and A be the unweighted star on 4 vertices.
Let ¥ be a Tiedler vector of £(G) and ¥ be a Fredler vector of
£(H). It is not hard to show that

ClG. D, YG} # C(H,D, YH:I

fii) The matrix P. To see this let & be the unweighted path on 4
vertices, First let D be the degree matrix diag{1,2.2, 1) so that £is
the ordinary Laplacian matrix. Let ¥ be the Fiedler vector. Tt can
be shown that £{G, D, ¥) contains the middle edge.

Now, let D=diage(l,2,3,4) and let ¥ be a Fiedler vector of £. It
can be shown that C(G, D, F) does not contain the middle edge.
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(iti} The Fiedler vector ¥ {if the multiplicity of 3 is more than one). To
see this take the anweighted complete graph on 4 vertices. Let D
be the depree matrix. So ? is the ordinary Laplacian matrix.

One can check that ¥y =[1,1, ~ I, — 1] and ¥>=[0,1, - 1, 0] are
two Fiedler vectors of £. Notice that £(G,D, ¥1)} has 4 elements
and C{G, D, ¥a} hag 3 elements.

When D is the diagonal degree matmix, so that B is the ordinary
Laplacian matrix, we denote the characteristic set by C(G,Y); this
notation follows that in [2)].

Nate 1 Let & be a connected graph and D be any diagonal matrix.
Let ¥ be a Fiedler vector of £. If v is a characteristic vertex of G then
the eigencondition for ¥ at v implies that there are at least two vertices
u, win {7, adjacent to v such that ¥{u) > 0 and ¥{w) <0,

The following is well known in the case of Laplacian and adjacency
matrices (see, for example, [5, 12])

Levama 1 Let G be a connected graph and D be any diagonal matrix.
Let ¥ be a Fiedler vector of R. Then the subgraph induced by the veriices
v in {7 for which ¥{¥) = 0 is connected. Similarly the subgraph induced by
the verfices v in G for which ¥(¥) <0 is comnected.

Proof Let L=% —+(R) and & = pu — +{R), where I is the identity
matrix. Without loss of generality, suppose that the subgraph induced
by the set of vertices v for which ¥(») >0 is not connected. By per-
forming a permuration similarity transformartion if necessary, we pet

tr=yr=y|y], M

whera ¥ and ¥ _ are the subvectors of ¥ containing ali the nonnepgative
and negative entries, respectively. The matrix L can be partitioned as

Ly 0 Ly
L=10 Lz Ln|,
Iy Ly Ly

L
0 L
Partition ¥ conformally as ¥ = [¥¥7y_T]".

where corresponds to Y. and L, corresponds to ¥Y_,
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From Eq. (1) we have L, ¥! + LY. = ¢'¥!, so that (Ly — 'l
Y! = —L;3¥_. Note that each entry of L, is nonpositive and each
entry of ¥_ is negative. Further, since  is connected, at least one entry
of Liz is negative, 50 that — L1 ¥ _5£ 0. In particular, ¥} # 0, noris ¥}
a &' eigenvector for Lyy. We find that

(P17 (Ln - #N¥} = —(Z1) LY <0, 2)

so at teast one elgenvalue of Ly — u'f is nonpositive. Further, if every
eigenvalue of Z,,—y'f is nonnegative, then in fact ¢’ =+(L), with
Y! as a y' eigenvector for L, a contradiction, We conclude that
Ly = u/'T has a negative eigenvalue, and similarly that Ls— T also
has & negalive cigenvalue. By the Cauchy interlacing theorem we find
that at least two eigenvalues of L—p'7 are negative. Since p' is the
gecond smallest eigenvalue of L, +(L) must have multiplicity two, a
contradiction. B

Remark In the above lemma, keeping the graph unchanged, suppose
we replace the diagonal matrix D by another diagonal matrix 1y and
let ¥, be the new Fiedler vector. Then the subgraph of G induced
by the vertices {v: ¥;(v) > 0}, may be a different connected subgraph
than the subgraph induced by {v: ¥{v} > 0}. For exumple, consider
the unweighted path £=[1, 2, 3,4] on 4 vertices. When D is the degree
matrix diap(1,2,2, 1), the connected components of Lemma | arc in-
duced by {1,2} and {3,4}. When D, =dliag{1, 2, 3,4), those connected
components are induced by {1} and {2,3,4}.

The following is a generalization of Lemma & of [2].

LeMMa 2 Let & be o connected graph and D be any diagonal matrix.
Consider £ and p. Let W be a set of vertices of & such that G—W is
disconnecied. Let Gy, Gy be two components of G— W and Ly, Ly be
the principal submatrices of L corresponding to Gy, Oy respectively.
Suppose (L) € 1(La). Then either T(La) > g or T(L)=r(l)=p.
In particular, we always have T(Ly) = 1.

Proof 1t suffices to prove that if v (L;) < g then r{L)=r{Lz}=p, s0
we aasume that 7{L;) < u. For i=1,2, let U, be a positive cigenvector
of L; corresponding to {L,). After a permutation similarity operation
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we have
L, 0O 0 1
0 Ls 0
¥
= ': :
g 0 Ly
;2 C |
where each L, i=1,...,k corresponds to one of the connected

compovents of G—-W. Let ¥ be a vector of the form V=
[UT —xUT O7-.. 07|, where x is chosen so that Z7¥=0. Then
VILY = (L) UTU + (L)@t Uy < uVTV, with strict inequality if
and only if either v{L,} < or T{L;) < u. We thus conclude that
(L)) = r{L2) = p, as desired.

The following iz an interesting application of Lemma 2, ]

Levma 3 Let G be a connected graph and D be any diagonal matrix.
Let Y be a Fiedler vector of ¥.. Let W be a nonempty set of vertices of G
such that Y(u)= 0, for all we W and suppose G— W is disconnected with
£ 2 components G|, Gy, ..., G, such that ¥(G)£0,i=1,...,t Ler I,
and Y, be the principal submatrix of ® and the subvector of Y
carresponding to G, i=1,2,...,t. Then each ¥Yoie{l,..., ¢} is either
all positive, or all negative, with T{L)= g in either case. In particular,
ClGDYICW.

Proof Wote that for 1 <i<y, L, s irreducible, From the facts that
¥ = ¥ and Y() =0, for all ue W, it follows that L,Y,=uY,
for each 1<i<{ Note that if 7{L)> p, then necessarily ¥;=0.
By hypothesis, ¥, is nonzero, as is T; for each 2<7/<t Hence
T{L), T{L) = u, for each such {, and we deduce from Lemma 2 that
"L =r(L)=pu. In particular, for each 1<i<¢, Y; iz either all
positive or all negative. [ |

I iz proved in Lemma 1 that when ¥ is a Fiedler vecior of &
connected praph & then the vertices v such that ¥{v} >0 induce a
connected subgraph. In particular when ¥ contains no zero entry we
find that the vertices v such that ¥{¥) > 0 induce a connected subgraph,
It is natural to wonder whether there are other conditions whichk imply



PERTURBED LAPLACIAN MATRIX 225

the existence of such a subgraph. The following lemma answers that
question in the affirmative,

Lemma & Let 3 be connected. Let Y be a Fiedler vector of 2. Suppase
that C(G,D,¥) contains an edge (u, w]. Then the vertices v such that
¥(¥) > 0 induce a conneeted subgraph.

Proof The result is immediate from Lemma 1 if ¥ has no zero entries,
s0 we assume heneeforth that the set B = {¥|¥(¥) = 0} is nonempty. If
we have two components €, Ca of G— W such that ¥{C,), ¥{C) £ 0,
then by Lemma 3, &(G, D, F) ¢ W aand thus (G, D, ¥) cannot have
an edge, contrary to the hypothesis. Thus &— # has exactly one
component C such that ¥{C)#£0. Let L; be the principal submatrix
of £ corresponding to C. Clearly L, ¥{C)= u ¥{C). Since we know that
the eigenvector corresponding to #(L,) is positive, it follows that the
second smallest eigenvaluc of L) is at most g, On the other hand since
L is a principal submatrix of £, j¢is at most the second smallest eigen-
value of L. Thus we sce that ¥{() is a Fiedler vector for L, and ¥F{C)
does not contain any zero entry. Applying Lemma 1, yields the result,

u

The following resull discusses the characteristic set of & graph in
relation to the structure of its blocks and cntpoints.

Lemma 5 Let G be o connected graph and D be any diagonal matrix.
Consider a Fiedler vector Y of L and let § =C(G.D,Y). Then

(i) Any two characteristic elements lie on a simple cycle which contains
no ofher characteristic elements and
(ii) Either § is a single vertex or § s contained in a block of G.

Proof To prove (i), first suppose that § containg only vertices and let
¥, ¥ 5. Delete all characteristic wertices from G except vy, By
Lemma 3, in the resulting praph there is only one component, say H,
such that F{H}#£(. Lel u and w be vertices adjacent to »» such that
¥{t) = 0 and ¥({w) < 0. Since both &, w are in H, there is a path, say P,
joining them in H. Since & has no characteristic edge, at least one
vertex on P has to be a zero vertex. Thus P contains a characteristic
vertex. Since all characteristic vertices except vy have been deleted, v,
is the only characteristic vertex on P Note that the edpes [w,w]
and [v, u] along with the path P form a simple cycle with just two
characteristic elements, ¥ and w.
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In the case that § contains at least one edge, by Lemma 4, the
vertices v such that ¥{v) < 0 induce a connecied snbgraph ¢_ while
the vertices v such that ¥{u) > 0 induce a connected subgraph v, .
Now since any characteristic vertex i3 adjacent to a vertexin G_ and a
vertex in ¢, and any characteristic edge iz incident with 2 vertex in
G _ and a vertex in &, the desired cycle is readily constructed.

Now we prove item {ii). Suppose that S is oot a single vertex.
If §={e} for some edpe e, then trivially § is contained in a block
of G. If & has at least two elements, then from item (i), we see thar
for any two elements in 5, there exists a simple cycle in @ containing
both of them. Thus a block which contains one element of S must
contain all of §. ]

From Lemma 5 we see that if' ¥; and ¥> are Fiedler vectors of 2,
then each of C(G,D, Y1) and C(G, D, Y,) is either a single vertex or
i3 contained in a single block. In the next section we will show that in
fact the vertex or block identified by ¥, coincides with that identified
b}' Y;.

3. FIEDLER VECTORS

Lt G be a connected graph, P be a dizgonal matrix, and u be the
algebraic connectivity of 2. Suppose that v is a cutpoint of G, with
components &,..., & as the vonnecled components of G—v. For
i=1,...,k, let L; be the principal submatrix of ¥ corresponding
to G A component G, is called a Perron componeni at v if T(L;) is
the minimum among all (L), We remark that for the ordinary
Laplacian matrix, this notion coincides with that of [10]; in that paper,
it is observed that each £;! is an entrywise positive matrix, and Gy is
said to be a Perroa component at v if p{,[:,-‘lj is maximum among all
plL).

The following result gives a connection between Perron components
and algebraic connectivity.

Lemma & Let G be a conmnected graph and fef 1 be the algebraic
conmectivity of L. Suppose that v is a cutpoint, with componenis
G, Gy at v. Then G, is a Perron component at v iff and only if
(L) < p, where Ly is the principal submatrix of L corresponding 1o G,.
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Proof If ; is a Perron component then by the Cauchy interlacing
theorem (L) < p. Conversely, if & is a component with (L) < u,
and if G; is another component at v, it follows from Lemma 2 that
(L) = p. Thus +(L;) {3 the smallest among all (L), which means that
(7; is 2 Perron component. [ |

The following result is one of the important ones and has many uses.

Tueorem 7 Let v be a cut point of the commected graph G. The
follawing are eguivalent:

(i) For same Fiedler vector Y of £, ClG,0.Y) = {v}.
{ii) There is a component Cy ai v with corresponding principal sub-
matrix Ly of B, such that 7{L1)= u.
(ili) For every Fiedler vector X, ({G, D, X) = {v}.
{(iv) There are two or more Perron components at v.

FProof Suppose that (i) holds and let Ly, £a, ..., L be the principal
submatrices and ¥y, ¥a, ..., ¥i be the subvectors of ¥ corresponding
to the connected components @1, &z, ..., Gy at v. Observe that since
no G; containg a characteristic element, each ¥; is either all positive,
all nepative, or 0. Since ZTY =0, at least two ¥;'s must be nonzero, say
Y, and ¥y Now ¥(v)=0, so we find that L, F;= ¥, ¥i Thos #{L},
L)<y, and so by Lemma 3 we have v(L)=1{Ls)=p, so {ii)
holds.

Now suppose (ii) holds and that X is a Fiedler vector. Let L, be the
principal submatrix of £ and X, be the subvector of X corresponding
to . Then p=7{L); let B, be a positive vector such that L) =
oWy We also have L&) — L{C,, X(») = uX,, where L{C|,v) is the
part of the vth column of £ corresponding to €, and X{¥) is the vth
entry of X. MNotice that all the entries of L{C1,+) are nonpositive. It
follows by multiplying the vector W from left that X{v) =0, and hence
thal X, is a scalar multiple of . Since ZTX must be 0, there is
another component €' such that A7C' )= 0. Thus, applying Lemma 3
we see that for each component G, at v, X{((7) is either all positive all
negative, or all zero, and it now follows that (iii) holds.

Suppose that (iii) holds and let X be a Fiedler vector. As in the
proof that (i) implies (ii), we find that there are at least two Perron
components at v, so that (iv) holds,
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Finally, if (iv) holds, then there are at least two Perron components
at v, with corresponding principal submatrices of £ given by L; and
L, say. Applying Lemmas 6 and 2 we find that (L)) =+(L)= .
Letting B and W, be correaponding positive eigenvectors, respec-
tively, we readily construct a Fiedler vector ¥ which can be reordered
te have the form [WF —xWI 07 ...07]", where x is chosen so that
ZT¥ = 0. Observe now that the characteristic set for ¥ is v, so that
{i) holds. [ ]

CoroLLaryY 8 Lot G de connected and suppose that there are 122
Pervon components at a vertex v. Then the multiplicity of the algebraic
comnectivity Iy exactly 1 — L.

Proof Let Gy,....G, be the Perron components at v, let Ly, ... L, be
the corresponding principal submatrices of ¥, and let Wy, ..., W, be
the corresponding positive eigenvectors. Consider the vectots Y,
i=12,...,t where

{ W (x) if xehy

Fi{x) = ¢ =Wi(x} if xeG;,

0 else

where 7, is chosen so that Z7¥,=0, i=2, ..., It is readily verified
that ¥,..., ¥;is a lincarly independent set of Fiedler vectors for 2. It
remains only to show that every Fiedler vector is a linear combination
of ¥/'s. Let X be a Fiedler vector; by Theorem 7, (G, D X) = {v}.
Thus for any component C at v with corresponding principal
submatrix L~ of 2, we have L-X(C)y=pX(C). If € is not a Perron
component at ¥, then m{Lg) > w4, 50 that necessanly X(C) =10, while if
C is a Perron component at v, say G, then r(Lo)=p and X(C) is a
scalar multiple of W, Applying the fact that Z7X =0, it now follows
that X is a linear combination of ¥'s. [ ]

We now turn to the case that for some Fiedler vector ¥, C(G, D, Y) is
not a single vertex.

THeoREM 9 Let & be connected and Y, X be Fiedler vectors of L.
Suppose thet C{G, D, ¥) is contained in a block B. Then C(G, D, X) &
alse contained in the same block B,
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Progf” If & itsclf i3 only one block then we have nothing to prove.
Let B,, 8, be the blocks containing the characteristic sets C(G, D, F),
C(G, D, X) respectively. Suppose that v is a cutpoint such that G—v has
two different components G, and G, containing at least one vertex of
B, and B,, respectively.

Note that thete is only one Perron compoenent at v, for if there were
two or more Perron components at v then by Theorem 7 O(G, D, X) =
{v}, for every Fiedler vector X, contrary to the assumption. Similarly,
for any component ¢ at v with corresponding principal submatrix L;
of &, T(Ly) # p

Select @ and & so that the vector IV=aX—bY has a zero in the
position corresponding to v, If there are at least two components O,
3 such that T(C,) and L{C;) are nonzero, then by Lemmas 3 and 6,
C, and C; are Perron components at v, a contradiction, Thus there
iz just one component C at v such that U(C) is nonzero. As a result,
either aX{(G,)=5b¥(G,) or aX(G,)=5b¥(G,), in the former case we
see that 2 must be zere and that ¥{G,) =0, while in the latter case, we
have 5=0 and X(G,}=0. 8o suppose without loss of generality that
X(G,}=0. Then for a sufficiently small £ >0 we see that the Fiedler
vector X+¢Y has characteristic elements in both G, and G,, con-
tradicting Lemma 3. |

The following corollary is a generalization of Corollary 2.5 of [8].

CoroLLary 10 Let G be connected and ¥ be a Fiedler vector of L.
Suppose that C(G.D,Y)={[u,v]}. Then p is a simple eigenvalue of £, so
that in particular for any Fiedler vector X, C(G,D,X)={ju,+]}.

Proafl Wo claitm that [w, ] is not on a cycle. To see the claim, note
that if [u, ¥] is on a cycle, then & —[u, v] is connected and thus there is
a path joining » and v Thiz path nccessarily contains another
characteristic element, contradicting the fact that (G, D, ¥) congists
of a single edge. Thus the claim holds. By Theorem 9, it follows that
for any Fiedler vector X, C(, D, X) is contained in the block [, v], and
by Theorem 7 C(G,D,X} cannot be a vertex. Thus C(G D, X) =
{[ee, ¥]}. In particular, if z is not a simple eigenvalue, then there is a
Fiedler vector X such that ¥(u) =0, a contradiction. Hence p must be
simple. ]
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Remark 1o view of Theorems 7 and 9, a connected graph G either has
a particular vertex as a characteristic vertex for cvery Fiedler vector or
it has a particular block which contains the characteristic elements of
7 for every Ficdler vector.

Let G be connected, ¥ be a Fiedler vector and suppose that
¥iu) =0, where u is a cut point of G. Let v{C(G, I, ¥}) denote the set
consisting of the characteristic vertices and end points of characteristic
edges of C(G, D, Y). We claim that there is exactly cne component at
u containing & vertex in v(C{G,D,¥}). To see the claim, note that
if C(G, D, ¥) is a singleton vertex w, it cannot be x since ¥u) > 0, so
that w belongs to exactly one component al w, If & has a single
characteristic block, say C, suppose C; and C, are two components at
i, each of which has a negatively valuated vertex. Thus both the graph
induced by €| J{x} and the graph induced by Ca[J{v} must contain
characleristic elements, say 5, s2. Il follows from Lemma 5 that 5, 5
must lie on a cycle, a contradiction. Thus at i there is exactly one
component, say, € which has a negatively valuated vertex. Further,
the other components st # are necessarily positive (otherwise, thers
would be a characieristic element cutside of €. Thus in cach com-
ponent at » which iz distingt from O, the vertices are neither
characteristic vertices nor adjacent to any negative vertex, so no such
component can contain a vertex from v(C(G, D, ¥)).

A similar argument shows that if & is connected. ¥ is a Fiedler
vector and Flu)=0 but u¢ C(G, 0, Y), then there is exactly one
component at u which comtains vertices from w(C{G, D, F)).

We summarize these observations in the following,

Lemma 11 Let & be commected, Y be a Fiedler vecior and suppase that
u is a cut point of G and ug C(G,D,Y). Then there is exactly one
component C ai & which cortains vertices from v(C(G, D, ¥)).

We niote that when u is a cut point which is not a charactenistic
vertex for some Fiedler vector, it is not a characteristic vertex for any
Fiedler vector. And since C(&, B, V) is either always a unique singleton
vertex or lies in a unique block independent of the choice of the Fiedler
vector, it follows that the componest at « in the above lemma, which
contains some vertices from v(C{G, D, ¥)}, remains unchanged for
any choice of the Fiedler vector ¥. Also, we know from Theorem 7
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that there is exactly one Perron component at u. Theorem 12 asserts
that these two components coincide.

Henceforth we assume that the smallest eigenvalue of £1s 0. Gbserve
that this amounts to considering £ — +(2)7 instead of Z; in particular,
both matrices have the same Fiedler vectoirs, and the same Perron
components at each vertex of . For a connected componcnt C at a
vertex v of @, the boitleneck matrix of € is the inverse of the principal
submatrix of 2 corresponding to C; observe that since £ is an
irreducible singular M-matrix, the bottleneck matrix of € i$ an entry-
wise positive matnx,

TusoreMm 12 Let ¥ be a Fledler vector and fet Cp be the unigue
component al v contginimg  some entries of v(C(G, D, ¥Y). Let

Cy=6G—Cy Partition ¥ accordingly as [M] and ¥ as
¥ ~fe, Ly

[;_— ] Let Ay, .. ., Ay Be the bottleneck matrives for the components at v
i

without Cy. Then there exists a unigque =~ > 0 such that
A D0

1
FBZ] | = ML ~BZg) =,

=g - = ]

0 a
0 Ak
0 ]
Zi] . . . . e
where Z = [Z_g] is partitioned conformally with ¥ and is the positive

eigenvector af L corresponding to the eigenvalue 0. Further Yy is a (1] p)
eigenvector for £5' — vZyZ], and ¥, has the form ({(Z] Yo) /(ZTU))(=U),

A 0 -0

where U is a Perron vector for 0 - 0 I'D + ¥, 27,
g ... A (0
o .- 0 Jo

Proof MNote that ¥, is positive, negative or zero according as ¥i{v) is
pasitive, negative or zero. Suppose first that ¥{v) > {, so that ¥, > G as
well. We have ZTY, + ZI¥; = 0, L. Z, = (8" Zgle, and LoZy=Z(¥)8.
Li ¥ —e,{BTYg} =¥ and L, ¥, — ¥{v)8 = p ¥ Premultiplying the first
by Z7 yields ZTLi ¥y — Z(¥)(87¥y) = p2TY) and hence (87Z;)¥(v)—
Z(V(#TYy) = pZ]¥y. Since ZTY1 >0, we have (87 Zp)¥(v}—Z(v)
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(#7Yp) > 0 as well. Now

&Y,

T AR
#h—Ll 4 J:Ll 61,-(& = L| Yit+——— [ﬂTZ{}]I

s SHER 1 ”
=L Tz, (tﬂ*'zﬁ}v{v} {m'v.;}?:{v:u)z'z' 3

= (07 ¥)Z 'r") 1
'L'1Y1+((ﬂfzu ¥ — (P H)Z Iiv}) F2jz0) 2o

Let A;, ...,y be the bottleneck matrices for the components at v not
containing Cg. It is straightforward to show that

0
0
o| TEzzm
0

. (67 ¥o)Z(¥) i
e ({"Fzﬂ"{”} - Ynlziv}) (T Z)Z(y) ad

¥{v)
(FTZ0)Y(¥) = (BTY)Z(v) Z( v} 2z,

which iz a positive matrix. In particular the Perron value of that matrix
is {1/w) and ¥} is a comesponding Perron vector.
Let v= T@'E_n}?ﬁggmfﬁ Then we also have

1 F{v)
B2V

L= L+ YO 0= 15
cepmdg Y{v} _
=L o= F Iz T0) — P r)Z0)]
= Lg' Yo — vZaZ] ¥y

I

AYA8 18
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- |0
0 o |0
0

In particular, p +~Z1Z] | is an cigenvalue of

15t — 4Z,Z%, with corresponding eigenvector ¥p. We thus find that Cy
i the unique Perron component at v. As in Lemmas 2.1, 2.2 of [4], it
now follows that in fact

1
+~ZZ] | =AMLy —Z2]) = 7

Finally, suppose that Y(¥)=0, so that ¥, =0 as well. Then £5'¥; =
{1/p)¥y, E?T}’.;,:ﬂ and ZEFD ={, so for any ~+>0, {ljs} is an
eigenvalue of L' — 4Z,Z] with corresponding eigenvector ¥, Hence
MLyY — 4ZZE) = (1) p), ¥y > 0. Since 1(Lg) < p, we find that Cy is the
unigque Perron component at v. Conseqoently, there ¢xists a unique
= 2 0 such that

A O

o0 0] gt | el gy = L
p oa o] TYRE (Ly' = v7%Z]) 7
00

L=0~]

=

CororLary 13 Let v be as in Theorem 12 and let W\,... Wy be a
basis for the eigenspace of MLy — vZZ} ), and et ¥, be a Perron
A0 -0

o LA ~F
vector for g . 0 g +~Z\Z]. Then the vecmrs%—l] are

O e D
a basis for the Fiedler eigenspace.

FProof By our arguments given in Theorem 12, these vectors are all
Fiedler vectors and span the p-sigenspace. Their independence follows
from that of A7,..., W [ |
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Corovrary 14 The muftiplicity of p is the same as the nmiftiplicity of
(1/u) as an eigenvatue of L' — vZZ].

We now consider a couple of interesting applications of Theorem
12,

CorovLrary 15 Let G be connected. Let u be a cutpoint which is not
a characteristic vertex for some (and hence ary) Fiedler vecior. Then
there i o unigue component af u, namely the Pervon component, which
contains vertices fram v(C(G, D, ¥)) for every Figdler vector ¥. Thus for
any Fiedler vecror ¥, all non-Perron components at u do not contain any
vertices from v(C(G, D, F)).

Proof There exists 2 unique component (namely Cy in Theorem 12)
which contains vertices from v(0(G,D,¥)) for every ¥ and by
Theorern 12 7(Ly) < p. By Lemma 2, il C is any other component
at u with corresponding principal submatrix L of 2, then ~(L) > u
Hence Cy is the unique Perron component at w. |

CoroLLARY 16 Let v be a cut point of G and C be a component at v.
Assume thar ¥(C) > 0 for some Fiedler vector Y. Let Z be the unique
positive eigenvector corresponding to the smallest eigenvalue of ¥. Let u
be any vertex in C. Then

X))
Z) - Zwy

Progf If ¥(v) <0 we have nothing to prove. So let ¥{v) > 0 and this
ensures that £ is not the component which contains some vertices of
WC(G, D, T)).

Let Cp be the component at v which contains some vertices from
v{C(7, D, ¥)). Then by Theorem 12, we have a v > 0 such that ¥, =
¥{G — ) 15 the Perron vector of

A0

+ Tziz:ir!

]
]
]
0

where the A4,'s are the bottleneck matrices of components at v distinct
from C, 7 is the part of Z corresponding to 7 — ), and where the
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last row and column correspond to vertex v. Observe that ¥{v) is the

last entry of ¥y, while ¥{i) is some othet entry of that vector.
Since

1
+4LZ | = P (3)

and since each A4, 15 a positive matrx, we have {1/)¥1(v) = vZi(¥)
ZTy, and (1/p)¥1(2) > +vZ, (1) ZT ¥1. The result now follows. B

We now show how Corollary 16 can be used to obtain & more
general version of the well known monotonicity result for Fiedler
vectors when (7 is a tree.

THeoREM 17 Lef T be a tree with vertices 1,2, ..., 0 and let D be any
diagonal matrix. Consider g Fiedler vector Y of T(T) and let Z be the
eigenvector of L(T) corresponding to T(R(T)). Let

¥ [¥(l) ¥(2) ¥in) "
15 53 -

“lziny zmy T Zmy
Then one of the following cases occur.

{@) No entry of Y ix zero. Fn this case, there iv a unigue pair of verlices i
and j such that [ and j are adiacent in T with ¥(i) > 0 and Y(j) < 0.
Further, the entries of % increase along any path in T which staris
at i and does not contain j, while the entries of £ decrease along
any path in T which starts at § and does not contain i,

(1) Some entry of ¥ is zerp. In this case the subgraph of T induiced by the
set of vertices corresponding to the O's in Y is connected. Moreover,
there it a ynfque vertex k such that Y(k)=0 and k is adjacent to
vertex m such that Y(m)70. The entries of § elther increase, decrease
or are identically zero aiong any paik in T which starts at k.

Proof In view of Lemma 5 we know that C(T,D,¥) is either a
singleton vertex or a block {which is an edge here).

First we prove case (a). Herc there is only one characteristic edge,
e=[i, jlwith, say, ¥(i > 0. Consider any edge &' =[v, u] ona path Pwhich
starts from i and does not contain j. At the vertex v the component
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which conlains w is positively valuated, Thus ( Y(¥)/Z(¥)} < ( ¥{u)/Z{u)}.
The rest of the proof of the case (a) is routine.

Next we prove the case (b). Here we have only one characteristic
vertex, say, k. The graph T—&, obtained by deleting & from 7 has at
least two Perron components, and for each component Cat &, FiC)is
either all positive, all nepative or all zero. Thus a path starting from &
is either a zero path or a positive path (except the starting vertex) ora
nepalive palth (except the starling verlex). The resl of the proof is
gimilar to that of the case (a). [ |

Example I8 Here we give two weighted trees and consider the
negative adjacency matrix to fflustrate Theorem 17,

Case ! Negative adjacency matrix and characteristic edge.

(See Fig. 1). The weights are given according to the following
dezcription:

Bipr=4, Oy 7=1,0,=7,012=6, br3=8, O 4=T7, 039=1, 1 5=9
and fsg=35. Here L= -A, n(—4)=-157994, p=—76442. The
vectors Z, ¥ and © are given below; observe that [1, 2] is the character-
igtic edge.

2= {.3255 07685 3426 2997 4283 1355 1547

0098 0428 .0392]7
F=[5241 -.1219 -.1276 -.1117 —-.2509 -.1641

A769 0886 — 0160 .3542]T
§={1.61{}4 —.1803 — 3726 — 3726 —.5859 -—1.2110

43744 90412 - 3726 9.D412JT

& I
4
lh 5
et 1 1 2T ——
B o
Characteristic edge

FIGURE T Cascl,
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Case 2 Negative adjacency matrix and characteristic vertex,

(See Fig. 2. This trec is unweighted. Here £= -4, A — 4=
—2.0743 and ji= — 1.618. The vectors Z, ¥ and £ are given below. We
see that vertex 5 is the characteristic vertex,

Z= [.{}83'? 735 2763 3996 3526 L3996

2763 1735 0837 3470 ,lﬁ?i]r,
Y= [—.1629 — 4253 — 4253 - 12629 ¢ 2629

4253 4253 2629 0 0],

§=[—3.l4}!3 — 24511 =1.5394 = 6578 0 6578

1.5394 24511 3.1423 0 0]
|

Consider a tree T, and a diagonal matrix D, and let ¥ be a Fiedler
vector for 2(T). From the results above we see that |C(T, D, ¥)| =1
and indeed that O[T, D, F) is indepcndenl of the choice of ¥, The
following result presents an upper bound on the cardinality of the
characteristic set for & gencral graph & For completeness we include
the proof, though it iz the same as the proof of the corresponding
result i [2] for Laplacian matrices,

Consider a connected graph . By Az denote the number of chords
in ¢ {(with respect to some spanming tree). Thus Ng=m—n+1,
where m and n are the number of edges and vertices in the graph.

Tueowem 19 Let G be a connected graph and D be any diagonal
matrix. Consider &, ¥. Let 8§ = C(G, D, ¥). Suppose S lies in the block B.
Then 1 < |S| < Ng + 1, where |S| is the number of elements in 8.

11

10

1 2 3 4 5 6 T 8 9
FIGURE 2 Case 2
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Proof 1f |8)=1 there is nothing to prove. Let S={s.%.....5},
r> 1. By Lemma 5 we know that for any iwo ¢lements of § there is a
simple eyele in & which containg these two elements and contains no
more elements of §. Denote by T';, a eycle of the above type which
contains 5, 5 i=1,...,r— 1. From the definition of a block it 15 clear
that these cycles are contained in 8. For i=1,2,...,¢—1, defing

e if & is an edge,
g; = ¢ the edge on I';,, joining
5; and a positive vertex, If 5 is a vertex.

Let us delete the edge ¢, from B to obtain B,. Note thal none of the
cycles Ty, i=2,...,r—1 contain e, because otherwise they have to
comlain gy, which is not possible (by Lemma 5). Let ua delete the edge
ey from B, to obtain B, None of the eycles T';,, i=3,...,r—1 contain
23, because otherwise they have to contain 5., which is not possible (by
Lemma 5). Thus repeating this process some more times, we conclude
that the deletion of ep,...,e._1 will result in the graph, say B,_;,
which iz connectad (becanse gach time we are deleting an edge from a
cycle only), Let T,_, be a spanning tree of 8, _,, thus of B. The edges
€1y...,2,_ are chords of B with respect to 7._ . Hence r — 1 <A
and the proof is complete. B

We note here that the reader can find a class of examples in [Z],
where the inequality given by the abowve theorem is an equality, The
characterization of the graphs for which the equality holds remains
open,

The following result presents a situation parallel o that for trees,

Prorosition 20 Fet G be a conmectfed graph such that each hlock is
either an edge or a cycle. Let X, ¥ be two Fiedler vectors of £. Then
IC{G, B, Y})| = |C{G, D, X))

Proof Tf IC(G,D,Y})| =1, then by Theorem 7, and Corollary 10,
(G, D, X) = {(G,D.¥) and thus both the characteristic sets have the
same cardinality, 1T |C{G, D, ¥}} = 2, then gecessarly C{G, D, ¥) lics ona
cyele. By Theorem 9, C(G, D, X) also lies on the same cyele, and cannot
have cardinality 1, by our discussion in the preceding paragraph.
Thus |C(G, B, X)| is also 2. n
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4. INTERVAL GRAPHS

In this section we apply some of our results above to a certain class
of praphs. An fnterval graph iz a collection of complete graphs
{K;:i=1,...,n} such that KN K1 #0 for 1 Si<n-1. We note
that some properties of the Laplacian matrices of intcrval graphs have
been addressed in [1]. In this section we discuss the algebraic connec-
tivity and Fiedler vectors of certain perturbed Laplacian matrices for
an interval graph. Throughout the sequel, we will suppose that # > 3.
‘We begin with the following useful definition.

Dermiumion  Congider an interval graph Z ={K;:i=1,...,x}. For
gach 1 <i<n—1, the overlapping O,;,, is the subgraph KK
of T. For each 1<i<mn, the midpat M, i3 the subgraph
Ki={uiue O 1,041}

We label the vertices of the interval graph T = {K;:i=1,...,n} 50
that the vertices in M, have labels less than the vertices in O, ;41 and
M;,, and the vertices in ;. have labels less than the vertices in
M;.,.;and Q44 442 Let my denote the number of vertices in M,, and let
w; ;.1 be the number of vertices in O,;_;. Then the adjacency matrix
for T can be written as:

m [4—F| J 0 0 0 0 | 0] 0] 07
Wia [l el 3 0 F | A o0 (ol o) o
my | 0 | J |J-1] ¢ 0 0 o, o 0
was | 0 TSI J (o] o] o
A= M | 0 0 0 I |7=1] 2 10} 0! a
wia | 0 ;0 0 S oF qe=1--] 0 0
| 2
Womlp| 0 0 0 0 0 Lo ld=1 I
m, | 0 ; 0 0 0 _ _f| J | J-1

Observe that the degree matrix can be written as

d} IM|
dialy,,

by,
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where

di=m+wa—1;

di= ‘-_1J+mi+W¢lgL|—], for2<i=n-1

dﬂ*“‘ﬂ-],ﬂ"'mn_l;

diz=pry+wiatratwia—1;

Q1= Wi g tmp=wy M Fwip =1, for 2<ign-3;
And dy 1y =Wy 2n_ 1M Wy a =L

Form L,=aD-A, where 0<a<l. It follows that L. has
the eigenvalues adi+1 with multiplicities sy—1, l=i<#» and
eidyg1+1 with multiplicities w1 —1, 1=i<n—1; further the
corresponding eigenspaces are spanned by vectors of the form
0 - 01 0 - 0 —1 0 -~ 00 ... 0, where the
nonzero portion of the vector is contained within a single block
of the partition. Tt follows that the remaining eigenvalues of I,
coincide with those of

(oeh —m~1)  — v o
— Wi dp—w i H1) - SR IWLL 0
1}

—WialE  (wd—myt 1} — n
M@=| 0 Ve (ednosil 0
0 o 0 0 T {1
Further X=[x1 x2 % X212 '+ Xy_1nx X', d5 an
eigenvector of M{a) corresponding o » if and omly if
{xl.'ll\n"rmi}lml

{xlﬂfmlwu

(e2/ 2}l | 45 an eigenvector of L, corresponding to v, where

(X /757) L

1; denotes the vector of size k with each entry 1,

Certainly the unique positive efgenvector of Min) corresponds
to n{M{e)), and hence to 7{L.). Evidently the algebraic connectivity
of L, is the minimum of the algcbraic connectivity of M{a) and
ming << q{adi+1}.

Mote that the graph of M{a) has the form shown in Figure 3.
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e e ] ::7';:’

™, vz i3

Y13 Y13 U

FIGURE 3 Graph ol the compressed matsix.

Fix 1<i<n—1 and delete vertex v;;,1 and let M; and M; be

the sobmatrices of Min) on  vertices {w,¥ia....%} and
Y
W WI2
{¥i1s Vin tinas- s Vo), Tespectively. Letting a, = .|, we find
N

from a computation that ;T Mg < a-n'.«li+|a1fa1, with atrict inequality
provided that i 1. Thus it follows that (M) < od,+ 1, with strict
inequality if M is not T = 1. A similar argument appiies (0 M;, and we
find that r{M,), (M) < ad, + 1, with strict inequality for one of them
since 1 > 3. We now find from Lemma 2 that the algebraic connectivity
of M{x) is strictly less than ad; + 1. Since § was arbitrary, it follows
that the algebraic connectivity of L, coincides with that of M{c).
The following result is motivated by Theorem 4.6 m [1].

Teeorem 21 Suppose that n> 3, and consider the interval graph
T={K:i=1,...,n}. If0<a<l, then the algebraic connectivity of
L. s simpie.

Proof In view of the discussion abowe, it is sufficient to show that the
algebraic connectivity of M{«} is simple. Assume that the multiplicity
is at least two. So let ¥, ¥ be two lincarly independent Fiedler vectors
of Mia) and » be the algebraic connectivity. Let X he a linear
combination of ¥ and ¥ such that x; =0. From the eigenequation
at v, we thus have x; 3 =0. From the eigenequation at v, we have
(cedy — iz + 1)z — /MOW3x23 = vx3, and from the cigenequation
at 12, we have /W) 2ix; = /Wi 2w1axz3 = 0. Putting these together
vields (ody—rp+ Dxp+mnxa =vxs, ie. (odh+Dxa=wxs.  Since
v < ada+1, we find that x»=0 and hence xs3=0. Repeating the
argument at vy and vy 3 now yields x3=0==x14, since v <odh+1. In
this way we find that X =10, a contradiction. [

Qur final result applies some of the results in Section 3,
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Tueorem 22 Suppose that n>3, and consider the imterval graph
IT={K:i=1,....n}. Fix 0<a =1, ler ¥ be o Fiedler vector of L,
and let Z be the eigemvector corresponding to v(L.). Let Gy be a
component of G—05; 1 which contains Ky — 0y, Suppose that
Jor each vertex w in Gy, ¥(W)>0. Let ve 0,y and ve Gy Then
(¥(u)/ Z()) < (Y(D{Z(V)).

Pragf In view of the discussion done earlier in this section, it is
sufficient to prove that if ¥ is Fiedler vector of M(a) such that ;> 0,
¥iy—1 20, ¥i> i, and Z is the eigenvector corresponding to r{Min)),
then (¥;; 1250 1) < (wy2)), W7 > i This statement follows readily from
Corollary 16 by considering M{n)— r{M{al)/]. [ |
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