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Abstract. We consider the three progressively more general ssnpling schees
without replacement from a finite population: simple random sampling without re-
piacenent, Midzuno sampling and successive sampling. We (i} obtain a lower bound
on the expected sample coversge of 2 successive sample, (i) show that the vector of
first order inclosion probabilities divided by the sample size is majorized by the vector
ol selection probabilities of & succossive sample, and {iii} partislly order the vectors
of first veder inclusion prohahilities for the three sampling schemes by majorization.
We also show that the probability of an ordered successive sample enjoys the ar-
rangement increasing property and for swnple size Lwo the expected sample coverage
of a sucoessive sample is Schur convex in it selection probabilities. We also study
the spacings of a simple random ssingle from a lincarly ordered finite population and
characlerize in severa]l ways a simple random sample.

Key wonds and phrases:  Simple random sampling without replacement, Midsuno
sampling, sample coverage, inclusion probabilities, arranpement Increasing functions,
exchangeable random variables, majorization, successive sampling, Schur convexity.

1. Introduction

Consider a finite population ¢/ — {1,...,N} of N distinct units. In this paper
we present some new results on sampling withouf replacemend, from this population.
‘Lhere arc a variety of such sampling achemes and the most general of them s successive
sampling. In successive sampling, draws are made with replacement one by one, and at
cach draw a unit & has probability pe(= 0), k=1,..., N, Eg_l e — 1, of being chosen.
Draws are made until n distinct units are chosen, any repetitions being discarded. An
ordered sample 8 = (iy,...,1,) has probability

Tk

(1.1) P =] %

g=-1 {j- i F=f Pir_)

of being chosenr. Here py, = 0. The probability of an unordered sample § = {k1,... ko }
it oblained by summing the probabilitics of the n! ordered samples given by the n!
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permutalions of the elements of §. That is,

(1.2) P(§)=>" H ;.—1

v 3_1 - 22im0 Pie)

where 3 is taken over all permutations r = {ih_. -,in) of the elements k;, k; € §. For
more details on successive sampling, we refer the interested reader to Hejek (1981). We
shall use upper case bold letters to denote unordered samples and lower case bold letters
for ordered aamples.

An interesting case of successive sampling is that of probability proportional to
size without replacement (PPSWOR). In this case g o 2, 73 = 0, a size measure of
the k-th unit, for k= 1,....N. Scc Rao et al. (1991) for some inleresting propertics of
PPSWOR sampling. In case of a simple random sample without replaceinent (SRSWOR.)
e = 1/N, for all k. Midzuno sampling, introduced by Midzuno (1950} is a cross belwesn
successive sampling and SREWOR. As in successive sampling, draws are made one hy
ohe a.nd with replacement. At the first draw a unil & has probability pe, k= 1,..., N
with Ek _; e = 1 of being chosen, but in subsequent draws has probability 1/N clf bemg
chosen, any repetltmns being discarded. For Midzuno sampling it can be shown that
P(8} = YeesPe/ (701 )-

In Section 2 we diﬂLuS& sore basie propertics of successive sampling. We prove that
the probability P{s) of an ordered sample s is arrangement increasing, when py > --- =
prn- We give a lower bound for £} . opil, the so called capected sample coverage.
For sample size two, we show that the expected sample coversge is Schur convex in its
selection probabilitics.

Throughout the paper we use the word “majorization™ to mean a special partial
order relation ammovg vectors (and nol a component-wise partial order relation). For
an arbitrary set § of i lel n{8} denote the probability of including 8 in the sample.
For § = {#}, {8} will be denoted by m; and & = (m,...,mn) is called the vector of
first order inclusion probabilities. A major result of Section 3 is that w/n is majorized
by ¢ = (p,...,pw ), the vector of sclection probabilities in case of successive sampling,.
Many important results previously discussed in the literature imimnediately follow from
this result. In this section we also compare the three sampling schernes by partially
ordering: their vectors of first order inclusion probabilitics by majorization.

In Seciion 4 we sbudy gpacings of a simple random sample withoul replacement
(SRSWOR) from a linearly ordered finite population. We show that the spacings are
exchangeable and the vector of spacings has multivariabe increasing failure rate distreib-
tion. Seciion b containg some characterizations of & SESWOR from a linearly ordered
population by the exchangeabilily of spacings.

2. Properties of successive sampling

Tn Lhis gsection we discuss some basie properties of ordered and nnordered successive
samples which will be used lafer on in the paper. We study the effect of changes o p,
the vector of selection probabilitiss on the vector 7 of inclusion probahbilities.

The sample covernge for our problem is defined as A(S) = Eke gPr where §is a
suceessive sample. In case of PPSWOR, A(S) = 3 _ou ELI I 15 the proportion
of the total measnre captured by the sample. This quantity is of infterest in many ap-
plications. Andrealla and Kawlman (1986) describe a situation of prospecting for oil.



HAMPLING FROM FINTTE POPULATIONS 633

The sicceasive sample consists of magnitudes of discovered deposits and the expectad
proportion of total discovered deposits to the total {discovered and undiscovered) de-
posils is of interesl. Below we oblain a lower bound on E|A(S)]. First we prove some
preliminary results,

v Let 8 and 83 be two inordered successive samples of the same size. One infuitively
feels that if 51 has higher sample coverage probability than 85, then P(8:) > 12(52).
The following example shows that this i not true in gencral.

Ezample 2.1. Let N =5 with py = 1/26, ps = 3/26, p3 = 10/26, py = ps = 6/26.
Let 8§ = {1,2,3} and 85 = {1,4,5}. Then A(S,} = 14/26 while A(52) — 13/26. Thus
A(S1) = A(S2) and yet P(8;) = 0217 < 023 = P(8;).

However, the following special case is true.

TuconeM 2.1, Let 51 and 52 be two suecessive sumples of the same size. Suppose
& and 8 have all buf one unit in common, with the nonoverlapping units being i and
d. respectively. Then

P8} > P(8s) if end only if p; = py,
with equality holding if and only if p; = py.

Tts proof can be found in Rao et al. (1991) and it also follows from Lemma 3.1 of
Kochar and Korwar {1996).

It follows from the above discussion that, in general, it may not be possible to com-
pletely omder all possible suecessive samples of same size according to (heir probabilities
of inclusion. The proof of the next corollary easily follows fromm the above theorem.

CoOrOLLARY 2.1, In successive sampling, for i £ 7,
m; = 7wy if and only if pi = p;,
with equality holding if and only if py = p; ford,7 -1,...,N.

A similar result holds for the sccond order inclusion probabilities w{ij) that both ¢
and j are in the successive sample.

CoroLLaRy 2.2, In successive sampling, fori 4 j,i# k4,7, k=1,..., N,
x(ik) > w(jk) if and only i pi > p;,
with cquality holding if and only if ps =p; fori, j=1,.. . N.

The next problem we consider is to see whether il is possible to rank all n! possible
ordered samples of the same sel of n units sccording to their probabilities. To answer
this question we necd the following concept of arrangement increasing functions.

Let & = {zy,...,&) and ¢ = {41, ..., 9n) be two vectors. We say that z is better
arvanged than y (written as zx-"y) if £ can be oblained from y through successive pairwise
interchanges ol ils components, with each interchange resulting in an increasing order
of the two interchanged components; e.g. (4,1,5,3) >* (4,3,5,1} =% (4,5,3,1). Note
that =" ordering is only a partial ordering over n-fuples. A function g: B® — R that
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proserves the ordering =° is called an arrengement increasing function and is denoted
by g € AT if 2%y = g({z) = g(y). Sec Marshall and Olkin ((1979), p. 158) for further
properties of such functions. _

We prove in the next theorem that the probability of an ordered sample 8 =
(i1....,1,) a8 given by (L.1) is arrengement increaging when the selection probabilities
;'8 are ordered from the largest to the smallest.

THECREM 2.2, Fetpy = --- = py. Then the probability P(8) of an ordered sample
s s AL,

Proor. Lets={i1,...,in) and 8' == (#},.._,4,) be two ordered samples such that
& contains exactly one inversion of a palr of coordinates which occur in the natural order
ing Teth<fandif =iy, j&k J#E8 7=, n i = e, #y = ik, e < ie. Then
from (1.1},

I’{s’] g TI;;IP-;_;LI
- l_lj=1{1 _Ei= :ﬂi:.}

1A, Il
e T e
T=r F=t

s =

g 3
| |  —
—— —,
e b,

i [
——, s,
ot —

I |
- - 4 [
I I | I
= - [ —
& F
g T

P f[ 1—?::[;:.;,—;:,-,; (j_]:_[”{l—gmr})

= I(8),

where in going over from equality to inequality above we used the fact that p;, < pi,.
This proves the required resnls.

For a suceessive saanple of size n from a finite population of size N, let I{S, k) = 1,
i k € 8 and 0, otherwise. Then A{S) can be expressed as A(5) = E:.'r:i pel(8,k). On
taking cxpectations, we gel
o
(2.1) E[A(S)] = > pimi
i1
= $(p).

Now wo establish an inequality for EJA(S)], the expected sample coverage. We shall be
uzing the following leinma, to prove it.
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Lemaa 2.1, (Cebysev’s incquality. Theorem 1, p. 36 of Mitrinovié {(1970}) Let
fy = =oan and b < --- < by, be two increasing sequences of real numboers, Then

. Doz () (B0

with cquality holding if, and only ifa;, = - =a, o0 by = --- = b,

THEOREM 2.3. Lel 8§ be o successive sample of size n from a finite population of
gize V. Then

n
(2.2) RS 2
with equality holding if and only if § 45 a SRSWOR.

Proov,  Since for any sampling design with a fixed sample size n, Efi, I1{8,i} =n,
on taking expectations we got Efil Ty = 1.

Now observe from (2.1) that E[A(S)] = &(p) Is symmelric in pp's and thns without
loss of generalily, we assume Lhal they are ordered from the largest to the smallest. Then
it follows from Corollary 2.1 that me's are also ordered from the largest to the smallest,
the ordering being strict if the ordering of ;s i3 strict. Applying Lemma 2.1, we get

N N
n
2.3 A > : 5 N=—.
(23) [{&1_{§n}{§ }/ n
Equality in (2.3) holds if, and only if mi's are cqual or pi’s are equal. By Corollary 2.1,
7 's arc coual if and only if pe's are equal, that is, if and only if 5 is a SREWOR. O

The above result suggesls that perhaps the expected sample coverage is greater
when the p's are more dispersed. We necd to introduce the concepts of majorization
among vectors and Schur convexity to make this statement more precise.

DEFINITION 2.1, Let x = (zy,...,zn) and g — (yi,.. ., yw )} be two vectors in the
N-dimensional real space RY . Let {;1:[1] # « -+ = zjy) t denote the decreasing arrangement
of the components of the vector . T'hen the vector g is said to majorize vector = (written
as z=<"My), if

N

i ¥ N
Z-’m‘[k]EZﬂik]: J=14L...,N-1 and Z«’-’l[k]L“Z‘m]-
k=1 e

fl k=1

Observe Lhal majorization as defined here is o partial order relation among vectors
as opposed to component-wise partial order relation.

DerioTion 2.2, A real valued function ¢ defined on a set A © RT is said to be

We conjecture that the expected sample coverage ¢{p) of a successive sample as
given by (2.1} 15 Schur convex in p for any sample size, but have a proof only for n = 2.
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THEOREM 2.4. Consider ¢ successive sample of size n = 2 with selection probo-
bilities vector p. Then the ezpected sample coverage d(p) = E{A(S)] is Schur conver in

Pp.

FProoF. Note that we can write 7y, as
e = t(1, k) -1 t(2, k),
where
t{7, &k} = P{unit k& is the j-th distinet unit drawm), 7=1,2; k=1,...,N.

Note that (1, k) = ps and $(2,k) = ped{k), where

Ik) =Y {pi/(L - p;}} - pe/(1 - pi), k=1, N.

=1

N N
#@) =D Pk + D pel(k)

which can be written, after a bit of rearranging, as

gl N
Hp)=(N 1 1} 1 LZpﬁ : 1] FEN _Q}ZPEJ

where J = E:Ll 1/(1 - p). From this we got
0 _ 8 o~ 1 -
o B 2{p1 — p2} {é T {N—zj} + {;ﬁ 1}

I
'{{1 —lm]“ - Q —1ﬁ2)2}+2{m_m}{1—1p1 + 1—11’!2}

N
= 2{p — pa} {Z ﬁ —{N - 2}} p 2 - pe)(2—p —m)
k=3

=M= )2
N
% LZ:;% —1+4+2(1 —p )1 —m]]

=1

LN
= {m — m} [E{Zl__m_—{ﬁ—ﬂl}

E—=3

2 —py — .3
N {Epﬁ”“*”‘”zﬂ

which has the same sign as (p; --p2) since 1/{1—p;) = 1 foreach i = 3,..., N. Thus #{p)
iz Schur convex in pj,...,py by Theorem A4, page 57 of Marshall and Olkin (1979). O
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3. Some majorization results

Rao et al. (1991} proved that in casc of successive sampling rpryy < mery and npyy =
Ty, where By {ﬂ'{u] and j’i(N}('Jf(N}j are the minimum and the maximum of p‘-’s {‘.H'I:’S].
Cochran {{1977), p. 259} considers the case n = 2 and asserts that m;/2's are “always
closer to equality than the original p;’s . Ilowever, he docs not make il clear in what
senge they are closer. We pgeneralize these results in Theorem 3.1 to prove that the
vector o is majorized by the vector np. We also compare the three without replacement
sampling schemes by partially ordering the vectors of first order inclusion probabilities
by majorization. First wc prove some preliminary results in the next two lemmas.

Lemma 3.1, Letpm = --- 2 gy be o set of probabilitics and et

-k p
(31) G-t g
Zj=1 By

Then g i5 a decreasing funeclion of k.

PRrooF. * We have, after a bit of simplification,

E R+1 k
k41 7
B2 (D p ) 1D opi] laenr — el = ( z -) ZP;- = L
o = — Pkl il e

-k ; ;
Now, 3371 {p;/(1 — )} = {L/{(L — pes1)} 25y 0y, since (1 = ps) < (L— pray), 5 -
1,....&, as pi’s are ordered. Thus, the right hand side of {3.2) is leas thau or equal to 0.
This completes the prool. O

For successive sampling from the [inite population I with selection probabilitics p;’s
and frsl order inclusion probabilities m;%s, ot

t(4,£) = P(unit £ is the j-th distinct unit drawn), j7=1,...,N; £=1,...,N.

Note that we have defined £(j,£) for § — 1,...,N. Although in practice we draw only
n distinet wnits, this extended definition will be uscful for theoreiical purposcs later on.
Observe that ¢(1,4) = pe, £ =1,..., N. Conditioning on the first (distinet) wnit drawn
we have the following representation for £(j, £) for other values of j,

(3.3) t(5, £) Zp,l{jl—]f]z} i=2,....N,
1?9'

where for each 7 (i — 1, N), #(j — 1,# | i) is the condiiional probability of drawing
unit £ as the j-th distinct unit drawn given thal unit 3 was the first unit drawn. Tt turns
out that £{j — 1,#| 1) is the probability of drawing unit # as the (j -~ 1)-th distinct uni,
in the sample from the truncated population (¢} = {1,..., N} — {i} and with sclection
probabilities p(# | £) = pe/(1 — ), £ =1,... N, ¢ # i. The corresponding first order
inclusion probabilities (£ { {}'s satizfy the relation,

i
me—=pet Y pm{fli), €=1_. N
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This follows from the definitions of e, w(£ | i) and the identity m; = 3", £(4,£).
Lemma 3.2 below, which is also of independent. interest, leads to Lﬁe main result of
this section.

LemMa 3.2, Suppose that in o successive sample from a finite poprlation of size
N, the selection probabilities p; s are ovdered from the largest to the smmallest. Then for
gl Ny
k

k
(3.4) YNt +1,8 <> 8, k=1,..,N.
=1

-1
I parlicular,

Zt{.?:f){zt{l 'E:} LP&!: k=1:*“aN'

£=1

ProoF. We will use induction on N to prove the result. From the definition of
i &), wehave for k=1,... N

(3.5) Ltfaﬂ (i )(i """ ) Zl—m

-1 =l

§p£+ (;:m) Ll 1 fipi = (g 1 .;jfpr) /(gﬁ)]

(writing pe/(1 — py) 85 — 14+ 1/{1 — p4))

(3.6) < Y (1,6, k=1,.,N

The lagt inequality follows since by Lemma 3.1,

(E2) /()= Eozs) /o -E

In particular, for N = 2,

& 3
(3.7) D oH2H <D LY, k=12
=1

=1

Incquality (3.7} represents the initial step in the proof by induction on N. Suppose now
that the result is true for N — 1. From (3.3) it follows at once that

k kN
Zt(j:‘ﬂ = Zzpit{j = l i‘)

£=1 £:21 =1
14

N k
= Zpizt(j_]-:fl'i}
-1

=1
£k
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N k

< Dopy ti-2,414)
i=1 Fxl
£#1

[
' zzt[j "'J-r'gjr J=3,.. N
=1

This and (3.7) complete the proof, O

REMARK 3.1. Parts (i) and (ii) of Theorem 2.2 of Rao et al (1991} follow as
immediate conzequences of Lemma 3.2,

Now we prove the main result of (his section.

TheoREM 3.1. Consider ¢ successive sample of size n with selection probubility
vector poand first order inclusion probability vector w. Then w=<np.

I'rooF.  Lel ibe p;'s be ordered from the largest to the smallest. Then by Corollary
2.1 the m;'s are also ordered the same way, We can wrile =y as

(3.8) T = it{j. £,

where as in Lemmas 3.1 and 3.2, #(7,£) denotes the probabilily of including unit £ in
the sample as the j-th distinct unit drawn. To complete the proof, we sum the above
identity for mp from 1 to &, and uwse Lemma 3.2, Thusfor k=1,..., N,

D W

£=1 =1 j=I

n k
Fm Zzt{j?f}

f=E #=1

L
{3.9) _ = ZZPE

J=1 &=l

k
=n)_pe
=1
(3.9) follows from {3.4) since £(1,£) = ps for all £. 01

Qur next result characterizes simple random sampling without replacement by the
resull. in Theorem 3.1.

ProvosiTion 3.1, Let 5 be o successive sample of size n from a finite population
of size N with selection probehilities py,. .., px and first order inclusion probabilities
Ty-- N Thennp =m,i=1,... . N ifand only if, p; =1/N,i=1,..., N, that is,
if ard only if § & 0 SESWOR.
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Proor. “Only if” part. Let the p;'s be ordered from the largest to the smallest.

Let & be a nonnegative integer between 1 and N, both inclusive. Assume np, = i, for
i=1,...,N. We then have by Leroma 3.2

k K k & k
f&Zm = Zﬂf < Zm +(m — I]Zt{lf} < ﬂsz
=1 i—1 —1 e =1

Thus . .
(3.10) A Yo B DM
=] =1
This implies
H2,k+ D) =pey1, for £E—-0,... N-—-1.
‘I'hat is,
(3.11) Pret {47~ Pet/(L = Per1)} = Pry1, k=0, ,N-1

where 77 - Ef_l{pg,f[l — pg)}. From (3.11) we get
. Pk+-1f{1—m:+1}=f* ke ]., k=ﬂ,...,N—1

which yields the desired result, concluding the proofl of the “only i part.
FProof of “if part”. For a SRSWOR of size n, we have p; = 1/N, n; = n/N,
£=1,...,N. Thus, npe — 7, £ = 1,..., N, complcting the proof of “if” part. O

Cur last result of this scction comparcs the vectors of first order inclusion proba-
bilities and the expecled sample coverages for the three sampling designe  SREWOR,
Midzuno sampling and successive sampling.

Note that since SRSWOR is a special case of successive sampling, the interpreta-
tion of ¢(p) (defined by the last equality in {2.1)) as the expected sample coverage for
SRSWOR makes perfect sense. In the case of Midznno sampling, we define ¢(p) by the
samc cquality, the p;'s being the sclection probabilities of the units for the lrst draw.

THREOREM 3.2, (a) Let w585WOR oM ond %5 be the vectors of first order inciu-
ston probabilitics for SRSWOR, Midzuno sompling and successive sampling respectively.
Then

T
—d‘n‘M - 'JTHH

(b} Let pSEEWORMY oM (py and $5(p) be the czpected sample coverages for a
SREWOR, o Midzuno somple and o successive sample, respectively. Then,

¢SRST-VOR(F} Ed QE'M{P] - 'TSSS {P)-

‘IH‘:WL’]H

Proor. (a) The result that ™ majorizes #¥85WOR follows from the facl Lhal
for any real munbers e;s, (a1, ..., ay) majorizes (3, ...,a), where @ = Zfil a; /N

Now we prove the other part of the assertion of the theorem. From {3.8) and the
definition of {7, £) , we have for successive sampling

k
(3.12) e Zp +ZZ£{; 2
i—1

£=-1 §—2
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and the inclusion probabilities for the Midwuno sampling are given hy
(3.13) M =pet {l--p}{{r—1)/(N-1)}, £=1,...,N.
From (3.12) and (3.13) it follows that

k
(3.14) S (aSS . miy
=1 '
kE n e
=33 Hi ) - (k . Zm) (n—1)/(N
£l g=2 £=1
- Now, the first term on Lhe right hand side of (3.14) can be written as
-1k
(3.15) Zzt{j}f} Zf": Z Lt(jsf |
=1 g2 =t g=1 5’11

We now nole that E" ' Er_l i (7, €] 1) Is the sum of the firel k largest my's of
A snccessive bample of size n — 1 from the finite population consisting of all the original
N units cxcept ¢, and selection probabilitics pe/{l —m}, B = 1,..., NV, & # i. Since
{(n—1)/(N-1},...,(n—1)/(N - 1)} is majorized by any {V -- L}-vector of nonmegative
nuurers adding bo g - 1, it follows that

N n-1 k

(3.16) 3om > i, flt]}zh ﬂ“_ll
= e v
- ZN LP:
p=r;
k - 1
= (k_zp") N_1
=}

Thus, (3.14), (3.15) and (3.16)} complete the proof of the second assertion of (a).
(b) To prove the first inequality, we have from (3.13),

(317) M) = T Z‘, 2+ 2ot
N-n N 1V m
N N—IE(P _E) T
> nfN
o ¢.‘;HHWOR@}_

"To prove the second inequality, we have frorn (3.8) and the definition of (7, &) that

n—1
(3.18) et Zm >tk 4)

i.,é =
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N
=P&+Ziﬂiﬂ{kiﬂ-

iz
From this we get
(3.19) ¢%(p) = Zm, + Zml ~ )™ (p14),
=1 i=l1

where %9 (p | 1) is the function @(p) for the successive sample from 2{(i). Now the result
follows from applying Theorem 2.3 to ¢579(p | i) and (3.17). O

Remork 3.2. Note that the lower bound ¢™(p) on ¢"%(p) is sharper than
FFRSWORNG) ae provided by Theorem 3.2. Tlowever, unlike ¢ (p) which depends on
pi's, ¢SIWOR(PY is o universal bound (the same lor all snccessive samples of the same
size).

4. Spacings of a simple random sample without replacement

In this seclion we study some properties of spacings corresponding to a SREWOR
from a linearly ordered linite population without multiplicities.

THEOREM 4.1. Let Xq,..., X, be a SRSWOR from a linearly ordered finite popu-
lation without multiplicitics and let X(py. ..., Xy be the corresponding order statistics.
Let D = Xy - Xpg_ny, ¢ = 1,..o.n be the spacings with Xigy = 0. Then ) 's are
cxchangenlle.

ProoF.  We have
P(D;=5,i=1,...,1)

i
= P{Xﬁ} = ZRJ;‘“I = 1,.. 3 ,ﬂ.}

-1
=lf(?:), n<s b | 8 =N, cach 5 = 1. [
JOROLLARY 4.1,
4.1 PG, , Dy s i
{') '( ?f._'q'l.j!‘_ proay o k n
arid i
N8 N
(4.2) P{D,-,:w,,-,i=1,...?k]=( 2oi=1 )/( )
T T
Proor., We have
P{Dy = 3,1 k}—P(X[,}—Z ,t—l,...,k]

-1

-(E/()
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The proof of (1.2) follows by repeated application on (4.1) of the well-known identity,

43 5 iy, g

; k=fdl

Tuegores 4.2, The ponf. of D; is logeoncane ford = 1, 5.

Proor.  From Corollary 4.7 it follows that

o) =P =9 = (ir— 13) /(j:) '
s v= (329 /(N

_ —1
N—_sz+l

ITence

Now 1l—{n—1}/{N—s+1)is a decreasing function of 5. This completes the proof. O

Corollary 4.1 implics that cach £3; has an IFR (inercasing failure rate) distribution.
We next prove a multbvariale version of this resull. Firsl we give the definition of a
miuliivuriale increasing failure rate (MIFR) distribution.

Derivmion 410 A random vector (A5,..,X,) with survival function
H{71,-..,%s) is said to have a multivariate increasing failure rate (MIFR) distribu-
tion if the marginal survival function 5, g, (zi, ..., 235, ) of {X5,..., &, } satisfes the
condilion Lhak

Soy Ty + 1. T+
S'ii R {I‘iz e Eik}

is decreasing in @y, for £ > O for cach subset {iy,..., 5} of {1,...,n}.

TizorEM 4.3, The vector of spacings I = ([,..., D) has o Multinariale In-
creasing Failure Rate (MTFR) distribution.

Proor. From Corollary 4.1 we have, for 1 < & < n and z = 0, that

PO =t +zdi=1,... k| D;>t,i=1,...,k)

” “(j —};f:: ; —k:r) /k (N _Ej;lti)
-T{e-s/ (v )]

which is decreasing in £;'s, since for each j, 1 — kx /(N — E‘Ll ;i —j) Is decreasing in
t;'s. This completes the proof. O
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Omr last result in this section shows that the spacings are negatively dependent in
the sense that the joint distribution of any pair of thLm s reverse reguler of order 2
(RR2) (see Karlin and Rinott (1980}).

TrroREM 4.4. Forl <1 < j < n, the joint pom.f. f(st) of D; and D; is reverse
requiar of order two (fHs). That is,

_ | (s, 8) floasta) )
fls2,11) f(‘?mtz}

for all 81 < 52 and {1 < ta.

I’'roorF.  From Corollary 4.1 it follows that
(N)? (N—‘h—ﬁ)(”—.‘]z—tg)
=
i m—2
N—Sl—tz N—Sz'—fl
1T — 2

which iz < 0 for 9; < sg and #; < tu, since ['";;‘] [T} is Schur concave in m; and s,

This completes the proof. O

5. Characterizations of SESWOR by exchangeability of spacings

In this scction we use exchangeability of the spacings Lo characterize SRESWOR.

Lot 8 be a WMidszuno sample from a linearly ordered finite populalion without ol
tiplicities, and wilh initial selection probability vector p. 'Then the spacings ;" have
the joint p.m.f. given by

(5.1) P(Dy=si=1,...,n) ~ (x(i} Zs‘?, -1,..., )
= P(8)

: N-1
-/ (GL23)
where

(5.2} S={iﬁj,i:11”.,ﬂ-},

THEOREM 5.1, Let 8 be o Midsuno sample of size n from a linearly ordered finite
population without mulliplicities, and with fniliel selection probobilities m, ..., pn. Let
pn = L/N. Then the spacings are exchangeable if, and only if S is a SRSWOR.

Proor. “If" part. Suppose § i a SREWOR. Then it follows from Theorem 4.1
that the I)'s are exchangeable.
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“Only if” part. Lel D;'s be exchangeable. Then interchanging s; and #;,_{i =
2,...,n}) in (5.1}, we have P{8} = P(5*), where

(5.3) 8" = (a1, 5,

with s} = }_‘,iﬂ e T N 0 = W A b E}c__:i s; + s; and § is given by {5.2).
Now, 8 and 8 differ in only one element. Hence we have, by Thenrem 2.1, that

{5-4) Ei—i s = iy me—2 3j+3=1.

=17 =1

Putting, for 1 < k<N —n+1
3_1':1? j"_]'?"‘7n:l j%t Ei-=k:
we have
Picl =Piage, 1=ZKSN-n+1, 2<i<n

Thus, finally, we have
p = =py-1 — {1 —pu}/(N —1) =1/N,

the last equality following from the asswnption that py = 1/N. This completes the
proof of the “if only” part, and in turn that of the theorem. O

Now let 8 be a successive sample of size n from a linearly ordered population withou
multiplicities, and selection probabilities py, ..., pw. Then, as in the case of the Midvuno

ssinple
(5.5) P(D; =#,i=1,....1u)= P8
where 5 is given by {5.2) and P{§) iy (1.2) (with appropriate notations] changes).

THrOREM 5.2, Let S be g successive sample of size w from o Gnearly ordered finite
population without multiplicities, and selection probabilitics pr, ..., px. Lel py = 1/N.
Then the spacings T 's are exchangeable if ond onfy if § i3 a SRIWOR.

I'noor. “lU" part. This is Theorem 4.1.

“Only #" part. Let 1;'s be exchangeable. Then, interchanging s; and s;_; in (5.5),
we get P(8S) — P(8"), where § and §*° are given by (5.2) and (5.3) respectively. Now,
5 and 8" differ only in one element and hence [rom Theorem 2.1, (5.4) must hold. The
proof [rom this point on is exactly the same as that of Theorem 5.2, This completes the
proof of the theorom. O

Acknowledgements

We are thankful to the two referces for their carelul reading of the original draft of
the paper and for making somne useful comments and sugpestions,



G4t SUBHASH C. KOCHAR AN RAMEST KORWAR

REFERENCES

Andreatta, G and Kaufman, G. M. (1836). Estitnation of finike population propecties wheo sampling
iz without replacement and proporional to magnitude, J. Amer. Statist. Assen., 81, 657666,

Cochran, W. G (1977). Swwmpling Technigues, 3rd ed., Wiley, New York.

Hajek, J. (1981). Sampling from o Finile Population, Marcel Dekker, New York.

Karlin, 5. and Rinott, Y. {1980). Classes of orderinge of messures and related correlation inagualitics
II. Multivariate reverse rule distributions, J. Mulfiveriale Anal, 10, 400-516.

Kochar, 5. C. and Korwar, 11 M. {1996). Slochastic orders for spacings of heterogeneous exponential
rancom varisbles, J. Mullivariole Anal, 57, 6983,

Marshall, &A. W, and Olkin, I {1979). Inequalitics: Theory of Mojorization end &5 Applications,
Academic Press, New York.

Midzuno, L {13507, An outline of the theory of sampling systems, Ann, fnst. Stetist. Math., 1, 149-156.

Mitrinovié, D, 5. {1970). Anelytic Inequelitics, Springer, New York.

Rao, T. L , Sengupta, 5. and Sinha, 13 K. {1991). Some order relations belween sclection and inclusion
probabilities for PPEWOR sampling scheme, Metrika, 38, 3356-343,



	1.jpg
	2.jpg
	3.jpg
	4.jpg
	5.jpg
	6.jpg
	7.jpg
	8.jpg
	9.jpg
	10.jpg
	11.jpg
	12.jpg
	13.jpg
	14.jpg
	15.jpg
	16.jpg

