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Abstract: Following the developments in DasGupla ez al. (2008}, the authors propose and explore a new
method for constmcting proper default priors and a method for selecting & Bayes estimate frormn & family.,
Their results are based on asymptotic expansions of certain marginal correlations, For ease of exposition,
most results are presented for location familics and squared error loss only. The defanlt prior metodology
amauints, wltimately, o the minimization of Fisher informaton, ind henoe, Bickel's prior works out as the
default prior il the location parsmeter is bounded. As for the selected Bayes estimate, it cormesponds B
“Gaussian dlting"” of an inittal reference prior.

Une nouvells méthade de sélection automatique

da lois a priori et d’astimateurs bayésiens robustes

Résumé » Dans la foulde des travaux de DasGupta er af. (20007}, les auteurs proposent et explorent une
nouvelle méhode de construction de lois & priod génériques intégrables, ainsi qu'one méthode de sélection
d'estimateur bayésien dans une classe donnde. Leurs résultats sont déduits de I'expansion asymptotique de
certaines corrélations marginales. Pour simplifier la présentation, 1a plupart de ces résultats ne sont exposés
que dans le cadre des modéles de localisation et pour la foncton de perte quadratique. La 10i a priod 4
laquelle les antenrs sont conduits mindmise I'in[onnaton au sens de Fisher et se éduit donc 3 1a loi a priori
de Bickel si le paramétre de localisation est bomé. Poor sa part, I'esimateur de Bayes choisi comrespond 2
une: “itclingison gavssicnne™ de Ia lod a priot éférendelle de départ.

1. INTRODUCTION

A radically different way of looking at Pearson’s correlation coefficient is detailed in DasGupta et
al. (2000} where itis used as a binding theme to connect together various approaches to statistical
inference. It is also shown thers that some of the properties of Pearson’s correlation can lead to
uscful and substantial developments in mathematical statistics, particularly Bavesian satistics,
This last theme 1s further developed in this article.

We begin with an observable X which is distributed as {7, The parameter # is assumed
to be distributed according to a prior 7, and hence there is then a joint probability distribution
for X and # which we shall call P. As in the above mentioned article, all the developments
here follow from the consideration of Pearson's correlation coefficient between two fumctions
g1{X.8) and g+ X, #) under the probahility distribution /*. However, most of our derivations
involve asymptotic arguments which can be rather intractable in gencral, and hence we shall
restrict our attention mestly to random samples from location families. The exact set-up required
15 outlined in Section 2.

In Section 3. we use the correlation coefficient to address an important problem in robust
Buyesian analysis. The overwhelming bulk of the work in robust Bayesian analysis has dealt
with sensitivity with respect to the choice of the prior. However, the problem of selecting a spe-
cific Bayes estirnate is also an important one. lndecd, classical robusmess flonrished and was
taken seriously because specific procedures such as M-estimates were developed. We first select
a reference prior ; this reference prior need not belong to the family T of priors in consideration,
However, usually one will choose « tfrom inside T. For a general prior i € T, we then consider
the correlation r. (0. d,,} as a criterion for selecting a specific cstimate §..; and then p_, is cal-
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culaved under the chosen reference prior . We maximize an accurate approximation & (7, 4.)
over &,.. The specific chosen estimate .. is Bayes with respect to a prior density of the form

. 1
A = constant w ={f = owp {—;}—q (& - Ir;.}z} :
27

There are several interesting things about this. First, the generality of the form: one always gets
a Gaussian factor. Second, #(#) has the following interpretation: presumably one will start with
a flat refercnce density m(#) duc to robustness coneerns, The final prior () is formally just the
posterior density of A when a Gaunssian observation has heen obtained and # has the prior m(#4).
By starting with a flat prior 7 and ultimately settling for a “formal posterior™ ax &, onc will pull in
the tails but it will still be a more conservative choice than a straight Gaussian prier, However, 4,
will provide greater shrinkage than J;. We have examples illustrating these results. Note that in
other contexts, Bayesians have been talking about such a “tilting™ of an initial prior by collecting
g pilot sample; soe Perez {1998), for cxample. It is interesting that we sce this filting emerge in a
purely theoretical way in our results.

Mext, in Section 4, we apply the correlation criterion to outline a new method for construction
of default priors. Default prior Bayesian analysis has been a very asctive area of research for
a considerable time. Afier the initial classic contributions of Laplace and Jeffreys, the recent
renewed interest has much o do with objective Bayesian inference and the realization that defaul
pricr Bayes methods often provide satisfactory frequentist propertics. Sce Berger (1986), Efron
{1986}, Stein (1982), among many, Conventional default priors in use tend to be improper;
thus, nice frequentist propertics such as admissibility often have to be established case by case.
We develop here an outling for construction of proper defanlt priors. The method suggested 1s
general, although we have worked it out hete in detail only for a location parameter.

The method we suggest is as follows. Many Bayesians take the view that post-data opinion
dbout a parametcr should be reported simply in terms of a posterior density. On the other hand,
there is another clear candidate for such a summary, namely the likelihood function. Just as one
can try to minimize an appropniate distance between the two summaries, we suggest maximizing
the correlation between them under the joint probability measure I,

Now, the exact correlation, of course, 1% not something that one can work with. So we
provide an appropriate expansion for the correlation, and maximize the appropriate werm of this
expansion. The expansion is very technical and is presented in the Appendix. It is remarkable
that in the end, the maximization based on this expansion comresponds to minimization of the
Fisher information of the prier in the chosen family of proper priors. Minimization of Fisher
information 1% a well known variational prohlem that has arisen in other stanistical problems:
see Bickel (1981), Bickel & Collins (1983), Huber (1564, 1974), Levit (1979, 1980}, Kagan,
Linnik & Rao (1973). and Brown (1971). We find this ultimate reduction of our approach to the
minimization of Fisher information quite interesting. As a result of this reduetion, the Bickel
prior {1981) is now seen to have the asymptotic comelation maximization property; compare this
with the asymptotic entropy maximization by Jeffreys priors (Clarke & Barron 1994}

The asymptotic expansions we needed are substantially more involved than what is necessary
in other probleras {e.g., Ghosh, Sinha & Joshi | 982) because we need expansions to more terms
for our results, The derivations thus require more smoothness assumphions on the likelihood
[unction and the prior. Exact finite-sample itnplementation of our approach was not pursued in
this article. We remark, however, that our formulation leads to the uniform prior in the binomial
case for every fnile zample size.

2. THE SET-UP

The following general notation will be used in the sequel:  and - will denote prior densities for
the parameter 8, yn the marginal of X (actually rn. or m,, if the context needs implying depen-
dence of m on the prior used), and E; will denote conditional expectation given #; covp, var,.,
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and g will, respectively, denote the covariance, variance and correlation under the joint distri-
buticm P, whereas cov, and var, will denote the covarianee and variance under the distributian
monf,

We consider i4.d. observations ¥y, X, . .. from a location parameter density

Filz|fy = expi—hiz — 91}

We assume that A is seven times continuously differentiable and thar both AI%! and A7 are

bounded. This form of density is used mainly for the convenience it yields while imposing

conditions on its logarithm; the loss of penerality is minimal, once such conditions are accepred.
The following notation will be used:

ofpe) =3 dogfiwlt), £ = Ll oloss, o= = (LDm) 7,
i=! {.]}
£ =T, {%lugﬂ.‘{: ii'i']} . we = varplh (X}, R ks

Here, ¢ denotes the maximum likelihood estimator (MLE} of 4. We assume that a? > 0,6 =10
for odd i, and £ = [, Le.. the MLE  solves the likelihood equation.

By elementary calculations, one ean sce that £/ = (3, (nt), and that if ¥, = (£ /7
+ 1), then Ep{lW0) = O a1} and Ep[ﬁ-‘f] = wy + (}n~'}). The normal location model
with known variance trivially fits into our set-up. It can be checked that some other standard
location models such as Stadent’s £ and the logistic also fit into our set-up. Regarding the prior
distributions under consideration in this article, we make the following assumption.

ASSUMPTION A. The reference prior density = and every density » in I is five times continu-
ously differentiable a.e., with bounded fourth and fifth derivatives, and B, (8} = 0. L, (6%) < 2o

3. SELECTING A BAYES ESTIMATE

Robust Bayesian analysis has almost exclusively concentrated on sensitivity of the Bayes esti-
mate and other posterior quantities to the cholce of the prior. There is an extensive literature on
this now; see the review article by Berger (1994). Far less has been done in the direction of pre-
genting methods for choosing a Bayes estimate from a collection specified by a family of priors;
see Zen & DasGupta (1997) for some results on this question. We present below a method for
selecting a particular Bayes estimate from a collection for the location parameter case by using
the correlation criterion. The notation and the final result arc as follows: let T be a specified
family of priors. Let 7 be a special prior, a reference. Let » be a generic element of I' with 4,
a5 the cotresponding Bayes cstimate. The criterion for selecting a special 4., is to maximize over
all v the comrelation g, (#, , }, under the reference prior 7. This criterion has an intuitive appeal
sirmilar to that of maximizing the expected utility in a decision theoretic set-up.

3.1. A useful approximation to p,. (8.4, ).

The probiem we wish to address cannot be solved in closed form (and possibly not in any form)
if we work with the exact correlation . (f. 4, ). Instead, we present an approximation g {#, 4, ).
It is an asymptotic approximation, but it can be highly accurate even for » = 3. The detivation
of the approximation is intensely technical, so we shall break it up inte small steps at a time and
we will prescnt only the gist,

We now present the approximation g, (7, 4. ] which we shall maximize over r-. For this, first,
we need an expansion for the Hayes estimate 4,. () as a function of the MLE ¢ and & — 6 . |,
where 1 stands for a vector of ones.
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THEQREM 1. The Baves estimate d,.{x) satisfies

M I!? 4 ﬁl":‘i"l i
g gy il 0 ( +f‘MJ

nou(#) TR o i)
1 g Y 4] TG =
+ '.f'r—., v = I‘ﬂ,h_f.. ['!'3', o u Iﬂ} (3” a ) + ot (L_ + EL—.—H}L)
dn- vlfG w3 y{m it yodn W
+ Oin~%4),

wriformiy in r.

FProaf. The essential details of this long derivation are outlinesd in the Appendiz. We would
like to note here that expansions for the posterior mean of this nature can be found in Ghosh
{1994}, Ghosh, Sinha & Joshi (1982), Johnson (1970} and Lindley {1961). However, they are
only accurate up to (2in~* "), whereas we need an approximation which is goed to (3~ 3/7)
{and, this of course requires a lot more work). O

Using Theorem 1, we have the following asymptotic expressions for the covariance of d,, with
i and the vaniance of 4;.. Proofs of Propositions 1 and 2 are again algebraically very involved and
will not be given here. However, these can be constructed along the lines of those of Theoremn 1
and the complete details can be found in Delampady et af. (19499,

For notational convenience, the following notation 1s used:

a= [ 0n(e) gy, b= [ om0y s,

L

= Jlﬂr[m'"—-ri';[)ﬁ 21, d = [ By de

=i, g= {28 w02}

Also, recall that wa = varp{h (X)) and £4 = Ep{Ai*{X)}. In addition, k(z), & {r) and
Ki=) used below are constants which can depend on i but not on r.

PrOPOSITION 1. One has

2 4 g

covp(f 4 = wvar[(f) + -f-r—~ i+ U— {Ha +f.1] + J—F_. ih—e=d+2f
A
+'§;-, 3u-2+rja+l E{x} + H{n %2, {2)
PROPOSITION 2. One Ras
N B ot \ i

vatp(dy] = varc{f) + T (L+20) + 1 varg(B)(H1es 4 £a} + oy b+ d+ )

n A ne ’
Bt f

(S + £1)a + ; frim) 4+ Ofn~™Y), (3)

FHT
4n?

These two results now lead to the desired approximation to o, (#, §,. ) stated below.
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PROPOSITION 3. g {0, 8,0 = jn (8.4, 0 + {052, where

Pl a? 4 il 4 Lg?
el d) = T.--'d—'{d?[ﬁtf'z*—ﬂﬂ“"—El","“:}"""?—.'{“f"’ 2 +GL~3—L}

par] vary (i} ai? | varg (4] wh
4 2

o 5o ] A . o
+m|:—- —[ii:}fp{ﬁ 5[3?!34—{,4]}'1-.{“::-}]. (4}

Proaf. Usc the definition of 5. (#.4.) and substitine the expressions (2) and (3) given above.
Bquation {4) will follow then based on simple algebra Detaily arc given in the Appendix.

We can now atate the result describing the particalar selected Bayes cstimate 4,.( .Y ),
THEGREM 2. The extimate i, ( X ) maximizing 6. (6, 4.} is Baves with respect to the prior density
. E 1. :
v(0) = ex(0)exp {~ = 0 - )¥ )
5 o
where i, T dare arbitrary and ¢ is a narmalizing constant.

Proof. We will give the proof for the case vary(f] = |. A minor modification works for
vary (#} # L. First, note that from (4) we would like to maximize f - /2 + 0 — o° /2 and hence
minimize

g i gn Y im}ﬁ { R IN T
2f — 2a u _'virfkprm s g4l T[ﬁ']l e —ovs g 6 |-

Now, using the fact that var. (¢} = 1, abserve that

L ﬁ
SO {r i+ ﬂl‘m:l} 4.

3 AN - (8 ) g e

Vg { ) } 2eovy {ﬁ+ 6 ) } OV {EJ. ;—ﬁ?]—}
. 0} LT LH} P ﬂ B [/ ) ="
= vary [ i {ﬁ t o H cor? [ﬂ, e {e+ ﬂ"@}] N x-M;{ﬁ]+ r':ﬂ]}

At this point, make the important cbservation that since var, (#) = |, by Schwartz's incquahty,

e f, ) N 8] .
Vil [Hff‘"? {9+ (0] }] — covy [ﬂ. 18 4+ 6 =0,

with equality if

= =i
e w8

=0+ b (6)

The final step is to note that the solutions of the differential equation (6) are of the form (5). O
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3.2, Iovestigation of the selected Bayes estintate and examples,

Suppose the reference prior density is 7i#] = 1?1 /2, 3 zood middle ground between sharp and
flat priors. Further suppose that the family I" under consideration contains only symmetric priors

and s0 ¢ 15 of the form
@
e[ = vexp (—|ﬂ| - 2;) ;

Thers is a value of = {approximately 7.52) that gives the Jargest variance amonyg all priors of this
form. For our first illustration, this is the specific »(#) we use.

Example I, Letus take X ~ (#, 1). Under both (#) and »{#}, the marginal density of X can
be found in closcd form and hence the Bayes estimates §; (X and 6, (X} can also be found in
closed form by using the familiar identity (Brown 1985}

3 ol (x)
dde) =24 ——— |
i 1 x)

where . 18 the marginal density. Some selected values are reported in Table 1; a3 we have
already noted, 4, results in a bit move shrinkage than 4.

TARLE 1: Values of §.( 5 ] and 7.1 Y] for various choices of X = # in Example |.

@ |0 3 1 L3 2 3 3 ) 10 13

d-(x) |0 241 503 806 1.161 2.026 4 7 ] 14

d.la) |0 23B 497 795 1144 1992 3031 HBTR BER44 137538

Example 2. Consider X ~ Logislic{l!, o), with known o and having density

flzlty = i{‘:{}‘: (_fi.;f) {l s (_%) }—:-

In this case it is not possible to obtain in closed form either the marginals or the Bayes estimates,
but both 4. [} and &, (2] can be easily computed for any given .

Again, some sclected values are reported in Table 2 for two different values of o, 0.5 and
1. As before, 8, teceives a little more shrinkage than 4., Further, ¢ = | results in much more
shrinkage than «r = (0.3, with the values for ¢ = 1).5 being closer to those in Example 1.

TABLE 2: Values of 4: (X ) and 4. X'} for two valucs of o and various choices of 3 = » in Exaunple 2,
T F ] 1 1.5 2 3 5 B 10 15

AN - S LA B i o i
0.5 dpir] 0 276 580 922 1301 2147 4030 7.002 9 14

d.ir] L0 274 574 912 1285 2113 3048 6834 8771 13607

1.0 d-0x) |0 .le6 336 513 698 L1095 1970 3386 4357 6820

A.iz) |0 163 320 501 680 1059 1864 3038 3722 4038
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From the numerical tables above, it seems that in cases where the reference prior is a double
exponential, d; and 4, behave similarly. For another choice of the reference prior, this need not
be the case.

To see this, consider the reletence prior density 7 ({0} = (140 /4)™ 7, density of the Student’s
ts prior which is a flat prior. Suppose ggain that the family T’ under consideration containg only
symmetric priors and so #(#)] is of the form » {81 = efl — 0% /3] exp {—0% /(2771 ].

Example 3. Now consider X ~ Cauchiy{f, o}, with known o and having density

1
Flalt) = ————r

o {I + I:"'a;"}z}
Some selected values are reported in Table 3 for o = (1.2,

TaBLE 3: Values of §,{.X} and 4..{ V') for varioos choices of X = r in Example 3.

# |0 S 1 1.5 2 3 3 8 10 15

dpfay | O 349 BBT 1002 1.284 1735 2197 2216 2065 1645

f.r) |00 348 683 993 1267 1685 1976 1.64) 1.15 481

Note that, for small and mederate values of », 4. and &, behave similarly, whereas for large
values, d, resulls in much more shrinkage than d.. But we would expect this becanse the penul-
timate » has normal tails, whereas the reference m has very fat tails.

4. FURTHER POTENTIAL FOR PRACTICAL USES

4.1. Selecting a defaunlt prior.

An extensive literature exists on default prior Bayesian analysis; the literature includes much
general theory and methods and applications of these to specific problems. There seem to be
widely different opinions regarding appropriate definitions of default priors. We will say that
a prior chosen from a specified class by a specified (and hopefully reasonable) selection rule is
a default prior. Assessment of such a defauit prior is a separate ssue and we will not address
that here. Our intention is to show a potential use of the comrelation approach in the default
prior construction problem. The priors that result from our analysis here are constructed from
an automatic and principled method, and in that sense, they are default priors. In addition, as
we shall show, our proposal has a very distinet connection to the Fisher information. These are
interesting consequences of our general approach and the Bickel prior arises as special from this
development. Ameong the literature on default priors, particularly pettinent to our discussion are
Cifarelli & Regaezini (1987), Clarks & Wasserman (1993}, Ghosh & Mukerjee (1992), Datta &
Ghosh (1993}, and Kass &Wasserman {19596),

The approach we take is the following. A likelihood-based method will summarize the post-
data opinion about ! by the likelihood function f{z]#}; a Bayesian method based on a given prior
mif) will use the posterior density ={f/|=}. Minimizing a snitable distance between these two
summaries is a well accepted approach for the construction of default priors. We are proposing,
instead, maximization of the correlation between f{ x4 and 7 (#|r) inthe joint probability space.
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Before we derive the results of this section for the location parameter case, let us Lok at an
important case as an illustrative example for our suggested approach. This example will show
that the peneral approach we are suggesting has the potential for producing standard default
priors.

Example 4. Suppose ¥ ~ Bin (n. #] and we wish to estimate #. In the literature, various priors
have been supgested as defanlt priors for f, the uniform and the Jeffreys prior included; see
Berger (1986}, 1t is well known that if ¢ ~ {0, 1], then, curiously, X has a marginal uniform
distribution, too. Thus, 7(fjr) = (w + 1) f{+|4), for al ¢ and for all . We therefore have
the curious result that the correlation between f{z|f) and ={f|x} in the joint probability space
is 1 if # has a uniform prior, A foertior, the uniform prior is the defanlt prior for # according
te our criterion Just as long as the class of priors entertained includes the uniform prier. Thus,
in the important binomial case, our peneral approach leads to a eredible default prior. This 1s
encouraging.

For ease of exposition, we shall only state the main results here. Major steps involved in the
proofs will be outlined in the Appendix. However, many of the details are similar to those in the
proof of Theorem 1 and are skipped. The complete details can again be found in Delampady et
af. (1999). The set-up required in this seetion is similar, but somewhat weaker than that stated
in Section 2. Specifically, it is enough to assame that the likelihood function 15 continnensly
differentiable five times with a bounded fifth derivative. With regard to the prior densities also,
we can weaken Assumption A, and work with the following Assumption B,

AssuMPTION B. The class I' of prier densities under consideration consists of prior densi-
ties - which are three times continuously ditferentiable a e, with hovnded third derivative, and
E (M =0,B. (#*) <

4.2, An cxpansion for correlation.

It is not possible to derive any analytical results by working with the exact marginal correlation
g Flrid], wi#]e)]. We will present an expansion for the marginal correlation: in this expan-
siom, the leading term is 1, and the second tetm is —nye” - J{ml/n = az/n, where fix) is the
Fisher information of the prior m, while a; > () is an absolute constant. and o, depends only on
J. Therefore, according to our correlation criterion, we propose to maximize this second term as
a rule for selecting a default prior. This is formally similar to certain results in Clarke & Barron
(1994) and Clarke & Wasserman (1993}, As indicated in the Iniroduction, we thos end up min-
imizing the Fisher information of the prior, a well-known approach which has heen adopted by
other authers for different reasans altogether. This connection of our defaalt prior methedology
to mimimization of Fisher information is interesting.

THEOREM 3. Under Assumption B,

; 7 cal{m) A .. - e
Felfix|fy mifa)t =1 - i =) Bl =D Terom + (e = exliy} 4 ofn™t), (7)

where [{) is the Fisher information functional, and o1 o v are the following constants:

M = IN_L l:."?”[::ll'lrz = ﬁg ta = _II_:':._\. ;‘j-:iﬂ[z]rf;; = ﬁ_wj\?ﬁ [ — f_\'_‘_ @E[;]({: = ﬁ:

1 = I;xl 27t |: bl = f_ 4..‘,1 [2‘ = %. oy = JFL_H_ ;46:3[;]([2: =

fadia

Remark, The constants ¢4 and r5 appear in the derivation but uldmately dissppear. Since - -
o5 = O0O1IHL = 1), we would want to minimize 7{x} in appropriate families T, A formal
derivation of the expansion is outlined in the Appendix.
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4.3, INusteations.

Consider a peneral location parameter model (with parameter ) which fits into our set-up. Then
wc have the following results.

fustrazion 1. Suppose |#| <X 1. Then from Bickel (1981} or Huber (1974), the following prior

density achieves the minimum Fisher information in the class of aff priors {i.c., now compactly
supporied on [—1, 1] since this is the parameter space):

cos (w0 2y, ifji] < 1
0, otherwise.
Thus, the Bickel prior is the default prior under our correlation eriterion,

Mlustration 2. Fix 7 = 1), and consider
I'= {'J'I’ : 15 symmetric about 0 and f El'z:rriéfj i — .-2}.

The prior which achieves the minimum Fisher information in this class is 30, +7), (see Kapan,
Linnik & Rao 1973}, This ¢lass, however, is somewhat restricted since it excludes very heavy
tailed priors such as the Cauchy and Student's ¢ distribution with two degrees of freedom.

Rlustration 3. Now take
I'= {r.- cwif] = [@{ﬁ-ﬂ”j,u{rf*;]: ¢ an arbitrary probability mmurcon|—n:,m'-}.

This is a useful collection of priors in robustness since it is the class of scale mixtures of
normal priors, thus including heavy tailed distributions such as Student’s ¢ (Cauchy being a
special case), and double exponential. Unfortunately, 1t is the case that (see Bickel & Collins
1983} the infimum Fisher information for this class is 0.

Hustration 4. Bickel & Collins (19833 modily the above class and consider instead the -
contarmination class {in some other context),

Tz {rr s = e@if) o (1 = o) [ @0 ip{d), e arbitrary }
o | =]

They show that the prior m which minimizes the Fisher information in this class is given by o,
wherc

w8 = o) + (1~ ) 3 poT tilo7 ),
=1
with0 < oy < col) < < 1,300, p = 1. Identifying the p: and o;, however, is 2 numerically
challenging problem.
APPEMNMDIX

Proof of Theorem 1. Tf »(#} is any prior density, then the Bayes estimator of ¢ with respeet to
this prior is
L JBexplL{d, z)}e(8) db _

IHETE - =0+
e Jexpl £(0. x) et d8 [expl£(0, ) i 61 do

el i 8 2 Vel ;
Ji8 — 0)exp{ £06, 2] }u(b) 48 =+ ft.[z].
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say. An asympiotic expansion is derived for i, now. The proof sketched below can be modified
and used in Propositions 1 and 2 and Theorem 3.

Expand - in a Taylor Series around g, noting that it is continnously differentiable four fimes,
and that the 4th derivative is bounded. Also expand £ in a Taylor Series around d, and note
that £ 8, o}/ is uniformiy bounded. Let ¢ denote the standard normal density and let & =
W [# — &1 e, Then, using (1), we obtain, on Taylor expansions, and some tedious algebra,

Ry L nim( )

A/ denomis}

whete

2 4
8 {‘ S W W

=

=
=
=
=

—
R

ML
i
o
=3

Wit 4 Oin” 1'}}

21 Bn -18 4
£f3] E"‘} 4 ™ I,‘.'I.:‘:- EL"'__::_II -
{ —|- =k } ik -—J—+UIH }}
i T
{mﬁ'}-l— r.;v HJ-—E—H I { ]+|3 7 - u'“[ﬁj—l—{)l’n ‘}} d:.

and

: i ; ! b S
P TN ot ¥4 . i
denomir] = —/GJL-,I {l + 2_\;’?_.! ez + o Wi PR Wiz 4 Ofn }}

ot i o - o f[*
® I L e E L L —— e W )
{ Gr o W 2n? + 120mtE 7 Tl

. T
e
% {V'H' g2 W

g o 0 1)
T | I'-'|| Gy e
1% me.in.ﬁ-"i 2 (& + Oin~ } oz,

Using the mornents of the standard normal distribution and soime mote algebra, these expres-
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Cutline of the derivarion of expansion {7} of Theorem 3. By definition, one has
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Similarly, the marginal density »{«) admits the expansion
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where f{r} is the Fisher information of .
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Combining relations (10), (13), and (14), after several steps,
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which concludes the description.



2001 DEFAULT PRIORS AND ROBUST BAYES METHODOLOGY 449

ACKNOWLEDGEMENTS

The authors are prateful to the [ormer Editor, an Associaie Bditor and the veletess Tor ther comments oo
previous versions of this work. This msearch was supgmed in part by the National Science Foundadon and
the Mational Security Agency.

REFEREMCES

1. 0, Berper {1985, Statistical Deciston Theory and Bayeston Analysis. Springet-Verlag, New York.
I. O Berger (1994}, An overview of robust Bayesian analysis. Test, 3, 5-39.

B 1. Bicke] (1981}, Mimmax estimation of the mean of a notmal distribution when the parsmeter space 15
resricied, The Annalys of Starstics, 9, 1301-1309,

B 1. Bickel & J. B. Collins (1983), Mitiizing Fisher mfotmation over miatures of dishibubions, Senkhva
Series A, 45, 1-19.

L. I». Brown (1971). Admissibility, recuwerent diffusions, and insoluble boundary value problems. The
Annals of Mathematical Statistics, 42, 835-903. {Correction The Ansals of Statistics, 1, 594))

L. I». Brown (1985). Fundaomenials of Statistical Exponential Famifies with Applications tn Swatistical
Drecision Theory, IMS Lecture Notes-Monograph Series, vol, 9, Instituee of Mathematical Statistics.
Hayward, CA.

D, M. Cifarelli & E. Regazzini (1987), Priors for exponential families which maximize the association
hetween past and future ohservations. Tn Probability and Bayesian Statistics: Papers from the Interna-
tional Symposivm held in innshruck, Austria, September 23-26, 1986 (R Viertl, ed.), Plenum, London,
- B394,

B. 5. Clarke & A. R, Barron {1994). Teffreys® prior is asymplotically least favorable under entropy risk.
Journaf of Stadistical Plenning und Inference, 41, 3760

B. 5. Clarke & L, A. Wasserman (1993). Moninformalive priors and nuisance parameters. Jowrnal of the
American Statisical Assacianon, B8, 14271432,

A, DasGupta, G, Casella, M, Delampady, C. Genest, H. Rubin & W. E. Strawderman (20003, Correlation
in & Bayesian fmmework, The Canadian Jfournal of Statistics, 28, 6BT5-68T.

G 5, Datts & 1. K. Ghosh (1995). On prdors providing frequentist validity for Bayesian inference,
Biometrika, 82, 3745,

M. Delampady, A, DasGupis, G, Casella, H. Rubin & W. E. Smawderman (1999). A New Approack to De-
fault Priors and Robust Bayes Methodology. Technical Report Number 99-27, Department of Stalistics,
Purdue University, West Lafayene, IN,

B. Efton {1986). Why isn’t everyone 3 Bayesian (wilth discussion). The American Statistician, 40, 1-11.

1. K. Ghosh {1994}, Higher Order Asymptotics, IMS Lecture Notes-Monograph Series, vol. 4, Institute of
Mathematical Statistics, Hayward, CA,

I K. Ghosh & R. Muketjee (1992), Non-infomnative pricrs. In Bayesfan Statisiics 4: Pmoeedings of the 4th
Valencia international Meeting held in Peniscola, Spain, April 1520, 1991 Dedicated to the Memory
af Morris H, DeGreol, 193 1-198%9 (1, M, Bernardo, 1. O, Berger, A. P Dawid & A. F. M. Smith, eds.],
Omcford University Press, pp. 1952110,

J. K. Ghosh, B. K. Sinha & §. N. Joshi (1982} Expansions for posierior probability and integrated Bayes
risk, In Statistical Decizion Theory und Related Topics HI (5. 5. Gupta & ). 0. Berper, eds ), Academic
Press, New York, pp. 403454,

P. 1. Huber (1964). Robust estimaton of 2 localion parameter. The Annals of Mathemetical Statisdcs, 35,
T3-10%.

F. . Huber {1574}, Fisher information and spline interpolation. The Araaly of Stafstics, 2, 1029-1034,

R. A. Johmzon (1970). Asymptotic expansions associated wilh poserior disaibutions. The Amnalc of Math-
ematical Siaristics, 43, 851864,

A. M. Kagan, Yu, V. Linnik & C. R. Rao {1973). Characterization Problems in Mathematical Staristics.
Wiley, New York,

K. E. Kass & L. A Wasserman (1996), Selection of prior distributions by formal tales. Journal of the
American Statistical Associaion, 91, 1343-1370,



450 Vol. 28, No. 3

B. Ja. Levit (1979}, On the Geory of the asymptote minmax property of second order, Theory of Proba-
bitiry and ity Applications, 24, 435437,

B. Ja. Levit (1981}, On asymptodc minimax estimates of the second order. Theory of Probability and s
Applications, 25, 352568,

[0, ¥, Lindley {1961}, The use of prior probabilaty distributions o statisical inference and decisions, In
FProceedings of the Fowrth: Bevrkeley Symposium on Mathematical Stagictics and Probabiliyy, University
of California Press, Berkeley, CA, vol. 1, pp. 453465,

1. Perez (1998}, Development of Lxpected Fosterior Prior Distributions for Model Comparivon. Doctoral
dizsseriation, Purdue Liniversity, West Lafayetie, TN,

C, Stein (1982). The Ceoverage Probabilivies of Confidernce Sets Based on & Prior Distripution, Mimen-
eraph,

MM, Zen & A, DasGupoa (F993). Eximating a kinomial parameter: is robust Baves real Bayes? Sratisticr
& Decisions, 11, 37-60.

Mohan DELAMPADY: mohan@isibang.ac.in
fndian Staictical Instiite, Bih Mide, Mysore Road
K.V Caollege Post Office, Bangalore 560 039, fndia

Anirhan DasGUPTA: dasgupta @ stat purdus.adu
Department of Suetistics, Purdue University
West Lafuyvelte, IN 47907-T39%, (754

Genrge CARELLA casella®stat.ufl edu
Department of Statistics, University of Flarida
PoY Box 118545, Gainesville, FL 326118545, LI5A

Herman RUBIN: hrubin@ stat purdue. adu
Department of Stanstcs, Purdue Universiny
Wesr Lafaverte, IN 47007-13009, [f54

William E. STRAWDERMAN: straw & statrutgers.edu
Siaristics Center, Rutpers University
110 Frelinghuysen Road, Pivcataweay, NF 8854, T5A



	437.jpg
	438.jpg
	439.jpg
	440.jpg
	441.jpg
	442.jpg
	443.jpg
	444.jpg
	445.jpg
	446.jpg
	447.jpg
	448.jpg
	449.jpg
	450.jpg

