Proc. Indian Acad. Sci. (Math. Sci.), Vol. 111, No. 4, November 2001, pp. 381–397. © Printed in India

Unitary tridiagonalization in $M(4, \mathbb{C})$

VISHWAMBHAR PATI

Stat.-Math. Unit, Indian Statistical Institute, RVCE P.O., Bangalore 560 059, India

MS received 7 April 2001; revised 4 September 2001

Abstract. A question of interest in linear algebra is whether all $n \times n$ complex matrices can be unitarily tridiagonalized. The answer for all $n \neq 4$ (affirmative or negative) has been known for a while, whereas the case n = 4 seems to have remained open. In this paper we settle the n = 4 case in the affirmative. Some machinery from complex algebraic geometry needs to be used.

Keywords. Unitary tridiagonalization; 4×4 matrices; line bundle; degree; algebraic curve.

1. Main Theorem

Let $V = \mathbb{C}^n$, and \langle , \rangle be the usual euclidean hermitian inner product on V. U(V) = U(n) denotes the group of unitary automorphisms of V with respect to \langle , \rangle . $\{e_i\}_{i=1}^n$ will denote the standard orthonormal basis of V. $A \in M(n, \mathbb{C})$ will always denote an $n \times n$ complex matrix.

A matrix $A = [a_{ij}]$ is said to be *tridiagonal* if $a_{ij} = 0$ for all $1 \le i, j \le n$ such that $|i - j| \ge 2$. Then we have:

Theorem 1.1. For $n \leq 4$, and $A \in M(n, \mathbb{C})$, there exists a unitary $U \in U(n)$ such that UAU^* is tridiagonal.

Remark 1.2. The case n = 3, and counterexamples for $n \ge 6$, are due to Longstaff, [3]. In the paper [1], Fong and Wu construct counterexamples for n = 5, and provide a proof in certain special cases for n = 4. The article §4 of [1] poses the n = 4 case in general as an open question. Our main theorem above answers this question in the affirmative. In passing, we also provide another elementary proof for the n = 3 case.

2. Some Lemmas

We need some preliminary lemmas, which we collect in this section. In the sequel, we will also use the letter A to denote the unique linear transformation determined by the matrix $A = [a_{ij}]$ (satisfying $Ae_j = \sum_{i=1}^n a_{ij}e_i$).

Lemma 2.1. Let $A \in M(n, \mathbb{C})$. For all n, the following are equivalent: (i) There exists a unitary $U \in U(n)$ such that UAU^* is tridiagonal.

(ii) There exists a flag (= ascending sequence of \mathbb{C} -subspaces) of $V = \mathbb{C}^n$:

$$0 = W_0 \subset W_1 \subset W_2 \subset \ldots \subset W_n = V$$

such that dim $W_i = i$, $AW_i \subset W_{i+1}$ and $A^*W_i \subset W_{i+1}$ for all $0 \le i \le n-1$. (iii) There exists a flag in V:

$$0 = W_0 \subset W_1 \subset W_2 \subset \ldots \subset W_n = V$$

such that dim
$$W_i = i$$
, $AW_i \subset W_{i+1}$ and $A(W_{i+1}^{\perp}) \subset W_i^{\perp}$ for all $0 \le i \le n-1$.

Proof. (i) \Rightarrow (ii). Set $W_i = \mathbb{C}$ -span (f_1, f_2, \dots, f_i) , where $f_i = U^* e_i$ and e_i is the standard basis of $V = \mathbb{C}^n$. Since the matrix $[b_{ij}] := UAU^*$ is tridiagonal, we have

$$Af_i = b_{i-1,i} f_{i-1} + b_{ii} f_i + b_{i+1,i} f_{i+1}, \text{ for } 1 \le i \le n$$

(where b_{ij} is understood to be = 0 for $i, j \le 0$ or $\ge n + 1$). Thus $AW_i \subset W_{i+1}$. Since $\{f_i\}_{i=1}^n$ is an orthonormal basis for $V = \mathbb{C}^n$, we also have

$$A^* f_i = \overline{b}_{i,i-1} f_{i-1} + \overline{b}_{ii} f_i + \overline{b}_{i,i+1} f_{i+1} \quad 1 \le i \le n$$

which shows $A^*(W_i) \subset W_{i+1}$ for all *i* as well, and (ii) follows.

(ii) \Rightarrow (iii). $A^*W_i \subset W_{i+1}$ implies $(A^*W_i)^{\perp} \supset W_{i+1}^{\perp}$ for $1 \le i \le n-1$. But since $(A^*W_i)^{\perp} = A^{-1}(W_i^{\perp})$, we have $A(W_{i+1}^{\perp}) \subset W_i^{\perp}$ for $1 \le i \le n-1$ and (iii) follows.

(iii) \Rightarrow (i). Inductively choose an orthonormal basis f_i of $V = \mathbb{C}^n$ so that W_i is the span of $\{f_1, \ldots, f_i\}$. Since $A(W_i) \subset W_{i+1}$, we have

$$Af_i = a_{1i}f_1 + a_{2i}f_2 + \dots + a_{i+1,i}f_{i+1}.$$
(1)

Since $f_i \in (W_{i-1})^{\perp}$, and by hypothesis $A(W_{i-1}^{\perp}) \subset W_{i-2}^{\perp}$, and $W_{i-2}^{\perp} = \mathbb{C}$ -span $(f_{i-1}, f_i, \dots, f_n)$, we also have

$$Af_{i} = a_{i-1,i}f_{i-1} + a_{ii}f_{i} + \dots + a_{ni}f_{n}$$
(2)

and by comparing the two equations (1), (2) above, it follows that

$$Af_i = a_{i-1,i} f_{i-1} + a_{ii} f_i + a_{i+1,i} f_{i+1}$$

for all *i*, and defining the unitary U by $U^*e_i = f_i$ makes UAU^* tridiagonal, so that (i) follows.

Lemma 2.2. Let $n \leq 4$. If there exists a 2-dimensional \mathbb{C} -subspace W of $V = \mathbb{C}^n$ such that $AW \subset W$ and $A^*W \subset W$, then A is unitarily tridiagonalizable.

Proof. If $n \leq 2$, there is nothing to prove. For n = 3 or 4, the hypothesis implies that A maps W^{\perp} onto itself. Then, in an orthonormal basis $\{f_i\}_{i=1}^n$ of V which satisfies $W = \mathbb{C}$ -span (f_1, f_2) and $W^{\perp} = \mathbb{C}$ -span (f_3, \ldots, f_n) the matrix of A is in (1, 2) (resp. (2, 2)) block-diagonal form for n = 3 (resp. n = 4), which is clearly tridiagonal. \Box

Lemma 2.3. *Every matrix* $A \in M(3, \mathbb{C})$ *is unitarily tridiagonalizable.*

Proof. For $A \in M(3, \mathbb{C})$, consider the homogeneous cubic polynomial in $v = (v_1, v_2, v_3)$ given by

$$F(v_1, v_2, v_3) := \det(v, Av, A^*v).$$

Note $v \wedge Av \wedge A^*v = F(v_1, v_2, v_3)e_1 \wedge e_2 \wedge e_3$. By a standard result in dimension theory (see [4], p. 74, Theorem 5) each irreducible component of $V(F) \subset \mathbb{P}^2_{\mathsf{C}}$ is of dimension ≥ 1 , and V(F) is non-empty. Choose some $[v_1 : v_2 : v_3] \in V(F)$, and let $v = (v_1, v_2, v_3)$ which is non-zero. Then we have the two cases:

Case 1. v is a common eigenvector for A and A^* . Then the 2-dimensional subspace $W = (\mathbb{C}v)^{\perp}$ is an invariant subspace for both A and A^* , and applying the Lemma 2.2 to W yields the result.

Case 2. v is not a common eigenvector for A and A^* . Say it is not an eigenvector for A (otherwise interchange the roles of A and A^*). Set $W_1 = \mathbb{C}v$, $W_2 = \mathbb{C}$ -span(v, Av), $W_3 = V = \mathbb{C}^3$. Then dim $W_i = i$, for i = 1, 2, 3, and the fact that $v \wedge Av \wedge A^*v = 0$ shows that $A^*W_1 \subset W_2$. Thus, by (ii) of Lemma 2.1, we are done.

Note. From now on, $V = \mathbb{C}^4$ and $A \in M(4, \mathbb{C})$.

Lemma 2.4. If A and A* have a common eigenvector, then A is unitarily tridiagonalizable.

Proof. If $v \neq 0$ is a common eigenvector for A and A^* , the 3-dimensional subspace $W = (\mathbb{C}v)^{\perp}$ is invariant under both A and A^* , and unitary tridiagonalization of $A_{|W}$ exists from the n = 3 case of Lemma 2.3 by a $U_1 \in U(W) = U(3)$. The unitary $U = 1 \oplus U_1$ is the desired unitary in U(4) tridiagonalizing A.

Lemma 2.5. If the main theorem holds for all $A \in S$, where S is any dense (in the classical topology) subset of $M(4, \mathbb{C})$, then it holds for all $A \in M(4, \mathbb{C})$.

Proof. This is a consequence of the compactness of the unitary group U(4). Indeed, let T denote the closed subset of tridiagonal (with respect to the standard basis) matrices.

Let $A \in M(4, \mathbb{C})$ be any general element. By the density of S, there exist $A_n \in S$ such that $A_n \to A$. By hypothesis, there are unitaries $U_n \in U(4)$ such that $U_n A_n U_n^* = T_n$, where T_n are tridiagonal. By the compactness of U(4), and by passing to a subsequence if necessary, we may assume that $U_n \to U \in U(4)$. Then $U_n A_n U_n^* \to U A U^*$. That is $T_n \to U A U^*$. Since T is closed, and $T_n \in T$, we have $U A U^*$ is in T, viz., is tridiagonal.

We shall now construct a suitable dense open subset $S \subset M(4, \mathbb{C})$, and prove tridiagonalizability for a general $A \in S$ in the remainder of this paper. More precisely:

Lemma 2.6. *There is a dense open subset* $S \subset M(4, \mathbb{C})$ *such that:*

(i) A is nonsingular for all $A \in S$.

(ii) A has distinct eigenvalues for all $A \in S$.

(iii) For each $A \in S$, the element $(t_0I + t_1A + t_2A^*) \in M(4, \mathbb{C})$ has rank ≥ 3 for all $(t_0, t_1, t_2) \neq (0, 0, 0)$ in \mathbb{C}^3 .

Proof. The subset of singular matrices in $M(4, \mathbb{C})$ is the complex algebraic subvariety of complex codimension one defined by $Z_1 = \{A : \det A = 0\}$. Let S_1 , (which is just $GL(4, \mathbb{C})$) be its complement. Clearly S_1 is open and dense in the classical topology (in fact, also in the Zariski topology).

A matrix *A* has distinct eigenvalues iff its characteristic polynomial ϕ_A has distinct roots. This happens iff the discriminant polynomial of ϕ_A , which is a 4th degree homogeneous polynomial $\Delta(A)$ in the entries of *A*, is not zero. The zero set $Z_2 = V(\Delta)$ is again a codimension-1 subvariety in $M(4, \mathbb{C})$, so its complement $S_2 = (V(\Delta))^c$ is open and dense in both the classical and Zariski topologies.

To enforce (iii), we claim that the set defined by

$$Z_3 := \{A \in M(4, \mathbb{C}) : \operatorname{rank} (t_0 I + t_1 A + t_2 A^*) \le 2 \text{ for some } (t_0, t_1, t_2) \\ \neq (0, 0, 0) \text{ in } \mathbb{C}^3 \}$$

is a proper *real* algebraic subset of $M(4, \mathbb{C})$. The proof hinges on the fact that three general cubic curves in $\mathbb{P}^2_{\mathbb{C}}$ having a point in common imposes an algebraic condition on their coefficients.

Indeed, saying that rank $(t_0I + t_1A + t_2A^*) \leq 2$ for some $(t_0, t_1, t_2) \neq (0, 0, 0)$ is equivalent to saying that the third exterior power $\bigwedge^3(t_0I + t_1A + t_2A^*)$ is the zero map, for some $(t_0, t_1, t_2) \neq 0$. This is equivalent to demanding that there exist a $(t_0, t_1, t_2) \neq 0$ such that the determinants of all the 3 × 3-minors of $(t_0I + t_1A + t_2A^*)$ are zero.

Note that the (determinants of) the (3×3) -minors of $(t_0I + t_1A + t_2A^*)$, denoted as $M_{ij}(A, t)$ (where the *i*th row and *j*th column are deleted) are complex valued, complex algebraic and \mathbb{C} -homogeneous of degree 3 in $t = (t_0, t_1, t_2)$, with coefficients real algebraic of degree 3 in the variables (A_{ij}, \bar{A}_{ij}) (or, equivalently, in Re A_{ij} , Im A_{ij}), where $A = [A_{ij}]$.

We know that the space of all homogeneous polynomials of degree 3 with complex coefficients in (t_0, t_1, t_2) (up to scaling) is parametrized by the projective space $\mathbb{P}^9_{\mathsf{C}}$ (the Veronese variety, see [4], p. 52). We first consider the complex algebraic variety:

$$X = \{(P, Q, R, [t]) \in \mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}} : P(t) = Q(t) = R(t) = 0\},\$$

where $[t] := [t_0 : t_1 : t_2]$, and (P, Q, R) denotes a triple of homogeneous polynomials. This is just the subset of those (P, Q, R, [t]) in the product $\mathbb{P}^9_{C} \times \mathbb{P}^9_{C} \times \mathbb{P}^9_{C} \times \mathbb{P}^2_{C}$ such that the point [t] lies on all three of the plane cubic curves V(P), V(Q), V(R). Since X is defined by multihomogenous degree (1, 1, 1, 3) equations, it is a complex algebraic subvariety of the quadruple product. Its image under the first projection $Y := \pi_1(X) \subset \mathbb{P}^9_{C} \times \mathbb{P}^9_{C} \times \mathbb{P}^9_{C}$ is therefore an algebraic subvariety inside this triple product (see [4], p. 58, Theorem 3). Y is a proper subvariety because, for example, the cubic polynomials $P = t_0^3$, $Q = t_1^3$, $R = t_2^3$ have no common non-zero root.

Denote pairs (i, j) with $1 \le i, j \le 4$ by capital letters like I, J, K etc. From the minorial determinants $M_I(A, t)$, we can define various *real algebraic* maps:

$$\begin{split} \Theta_{IJK} &: M(4,\mathbb{C}) \quad \to \quad \mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^9_{\mathsf{C}} \\ A \quad \mapsto \quad (M_I(A,t),M_J(A,t),M_K(A,t)) \end{split}$$

for *I*, *J*, *K* distinct. Clearly, $\bigwedge^3 (t_0 I + t_1 A + t_2 A^*) = 0$ for some $t = (t_0, t_1, t_2) \neq (0, 0, 0)$ iff $\Theta_{IJK}(A)$ lies in the complex algebraic subvariety *Y* of $\mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^9_{\mathsf{C}} \times \mathbb{P}^9_{\mathsf{C}}$, for all *I*, *J*, *K* distinct. Hence the subset $Z_3 \subset M(4, \mathbb{C})$ defined above is the intersection:

$$Z_3 = \bigcap_{I,J,K} \Theta_{IJK}^{-1}(Y),$$

where I, J, K runs over all distinct triples of pairs $(i, j), 1 \le i, j \le 4$.

We claim that Z_3 is a proper real algebraic subset of $M(4, \mathbb{C})$. Clearly, since each $M_I(A, t)$ is real algebraic in the variables Re A_{ij} , Im A_{ij} the map Θ_{IJK} is real algebraic. Since Y is complex and hence real algebraic, its inverse image $\Theta_{IJK}^{-1}(Y)$, defined by the real algebraic equations obtained upon substitution of the components $M_I(A, t)$, $M_J(A, t)$, $M_K(A, t)$ in the equations that define Y, is also real algebraic. Hence the set Z_3 is a real algebraic subset of $M(4, \mathbb{C})$.

To see that Z_3 is a *proper* subset of $M(4, \mathbb{C})$, we simply consider the matrix (defined with respect to the standard orthonormal basis $\{e_i\}_{i=1}^4$ of \mathbb{C}^4):

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

For $t = (t_0, t_1, t_2) \neq 0$, we see that

$$t_0 I + t_1 A + t_2 A^* = \begin{bmatrix} t_0 & t_1 & 0 & 0 \\ t_2 & t_0 & t_1 & 0 \\ 0 & t_2 & t_0 & t_1 \\ 0 & 0 & t_2 & t_0 \end{bmatrix}.$$

For the above matrix the minorial determinant $M_{41}(A, t) = t_1^3$, whereas $M_{14}(A, t) = t_2^3$. The only common zeros to these two minorial determinants are points $[t_0 : 0 : 0]$. Setting $t_1 = t_2 = 0$ in the matrix above gives $M_{ii}(A, t) = t_0^3$ for $1 \le i \le 4$. Thus t_0 must also be 0 for all the minorial determinants to vanish. Hence the matrix *A* above lies outside the real algebraic set Z_3 .

It is well-known that a proper real algebraic subset in euclidean space cannot have a nonempty interior. Thus the complement Z_3^c is dense and open in the classical and real-Zariski topologies. Take $S_3 = Z_3^c$.

Finally, set

$$S := S_1 \cap S_2 \cap S_3 = \left(\bigcup_{i=1}^3 Z_i\right)^c$$

which is also open and dense in the classical topology in $M(4, \mathbb{C})$. Hence the lemma. \Box

Remark 2.7. One should note here that for *each* matrix $A \in M(4, \mathbb{C})$, there will be at least a curve of points $[t] = [t_0 : t_1 : t_2] \in \mathbb{P}^2_{\mathbb{C}}$ (defined by the vanishing of det $(t_0I + t_1A + t_2A^*)$), on which $(t_0I + t_1A + t_2A^*)$ is singular. Similarly for each A there is at least a curve of points on which the trace tr $(\bigwedge^3(t_0I + t_1A + t_2A^*))$ vanishes, and so a non-empty (and generally a finite) set on which *both* these polynomials vanish, by dimension theory ([4],

Theorem 5, p. 74). Thus for *each* $A \in M(4, \mathbb{C})$, there is at least a non-empty finite set of points [*t*] such that $(t_0I + t_1A + t_2A^*)$ has 0 as a repeated eigenvalue. For example, for the matrix *A* constructed at the end of the previous lemma, we see that the matrix $(t_0I + t_1A + t_2A^*)$ is strictly upper-triangular and thus has 0 as an eigenvalue of multiplicity 4 for all $(0, t_1, 0) \neq 0$, but nevertheless has rank 3 for all $(t_0, t_1, t_2) \neq (0, 0, 0)$.

Indeed, as (iii) of the lemma above shows, for *A* in the open dense subset *S*, the kernel ker $(t_0I + t_1A + t_2A^*)$ is at most 1-dimensional for all $[t] = [t_0 : t_1 : t_2] \in \mathbb{P}^2_{\mathbb{C}}$.

3. The varieties C, Γ , and D

Notation 3.1. In the light of Lemmas 2.5 and 2.6 above, we shall henceforth assume $A \in S$. As is easily verified, this implies $A^* \in S$ as well. We will also henceforth assume, in view of Lemma 2.4 above, that *A* and A^* have no common eigenvectors. (For example, this rules out *A* being normal, in which case we know that the main result for *A* is true by the spectral theorem.) Also, in view of Lemma 2.2, we shall assume that *A* and A^* do not have a common 2-dimensional invariant subspace.

In $\mathbb{P}^3_{\mathsf{C}}$, the complex projective space of $V = \mathbb{C}^4$, we denote the equivalence class of $v \in V \setminus 0$ by [v]. For a $[v] \in \mathbb{P}^3_{\mathsf{C}}$, we define W([v]) (or simply W(v) when no confusion is likely) by

$$W([v]) := \mathbb{C}\operatorname{-span}(v, Av, A^*v).$$

Since we are assuming that A and A* have no common eigenvectors, we have dim $W([v]) \ge 2$ for all $[v] \in \mathbb{P}^3_{\mathbb{C}}$.

Denote the four distinct points in $\mathbb{P}^3_{\mathsf{C}}$ representing the four linearly independent eigenvectors of *A* (resp. *A*^{*}) by *E* (resp. *E*^{*}). By our assumption above, $E \cap E^* = \phi$.

Lemma 3.2. *Let* $A \in M(4, \mathbb{C})$ *be as in* 3.1 *above. Then the closed subset:*

$$C = \{ [v] \in \mathbb{P}^3_{\mathbf{C}} : v \land Av \land A^*v = 0 \}$$

is a closed projective variety. This variety C is precisely the subset of $[v] \in \mathbb{P}^3_{\mathsf{C}}$ for which the dimension dim $W([v]) = \dim (\mathbb{C}\operatorname{-span} \{v, Av, A^*v\})$ is exactly 2.

Proof. That *C* is a closed projective variety is clear from the fact that it is defined as the set of common zeros of all the four (3×3) -minorial determinants of the (3×4) -matrix

$$\Lambda := \left[\begin{array}{c} v \\ Av \\ A^*v \end{array} \right]$$

(which are all degree-3 homogeneous polynomials in the components of v with respect to some basis). Also *C* is nonempty since it contains $E \cup E^*$.

Also, since A and A* are nonsingular by the assumptions in 3.1, the wedge product $v \wedge Av \wedge A^*v$ of the three non-zero vectors v, Av, A^*v vanishes precisely when the space $W([v]) = \mathbb{C}$ -span (v, Av, A^*v) is of dimension ≤ 2 . Since by 3.1, A, A* have no common eigenvectors, the dimension dim $W([v]) \geq 2$ for all $[v] \in \mathbb{P}^3_{\mathbb{C}}$, so C is precisely the locus of $[v] \in \mathbb{P}^3_{\mathbb{C}}$ for which the space W([v]) is 2-dimensional.

Now we shall show that for *A* as in 3.1, the variety *C* defined above is of pure dimension one. For this, we need to define some more associated algebraic varieties and regular maps.

DEFINITION 3.3

Let us define the bilinear map:

$$B: \mathbb{C}^4 \times \mathbb{C}^3 \quad \to \quad \mathbb{C}^4$$

(v, t_0, t_1, t_2)
$$\mapsto \quad B(v, t) := (t_0 I + t_1 A + t_2 A^*) v.$$

We then have the linear maps $B(v, -) : \mathbb{C}^3 \to \mathbb{C}^4$ for $v \in \mathbb{C}^4$ and $B(-, t) : \mathbb{C}^4 \to \mathbb{C}^3$ for $t \in \mathbb{C}^3$.

Note that the image Im B(v, -) is the span of $\{v, Av, A^*v\}$, which was defined to be W(v). For a fixed *t*, denote the kernel

$$K(t) := \ker(B(-, t) : \mathbb{C}^4 \to \mathbb{C}^4).$$

Denoting $[t_0: t_1: t_2]$ by [t] and $[v_1: v_2: v_3: v_4]$ by [v] for brevity, we define

$$\Gamma := \{ ([v], [t]) \in \mathbb{P}^3_{\mathbf{C}} \times \mathbb{P}^2_{\mathbf{C}} : B(v, t) = 0 \}.$$

Finally, define the variety D by

$$D \subset \mathbb{P}^2_{\mathbf{C}} := \{ [t] \in \mathbb{P}^2_{\mathbf{C}} : \det B(-, t) = \det (t_0 I + t_1 A + t_2 A^*) = 0 \}$$

Let

$$\pi_1: \mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}} \to \mathbb{P}^3_{\mathsf{C}}, \quad \pi_2: \mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}} \to \mathbb{P}^2_{\mathsf{C}}$$

denote the two projections.

Lemma 3.4. We have the following facts:

- (i) $\pi_1(\Gamma) = C$, and $\pi_2(\Gamma) = D$.
- (ii) $\pi_1: \Gamma \to C$ is 1-1, and the map g defined by

$$g := \pi_2 \circ \pi_1^{-1} : C \to D$$

is a regular map so that Γ is the graph of g and isomorphic as a variety to C.

- (iii) $D \subset \mathbb{P}^2_{\mathbf{C}}$ is a plane curve, of pure dimension one. The map $\pi_2 : \Gamma \to D$ is 1-1, and the map $\pi_1 \circ \pi_2^{-1} : D \to C$ is the regular inverse of the regular map g defined above in (ii). Again Γ is also the graph of this regular inverse g^{-1} , and D and Γ are isomorphic as varieties. In particular, C and D are isomorphic as varieties, and thus C is a curve in $\mathbb{P}^3_{\mathbf{C}}$ of pure dimension one.
- (iv) Inside $\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}$, each irreducible component of the intersection of the four divisors $D_i := (B_i(v, t) = 0)$ for i = 1, 2, 3, 4 (where $B_i(v, t)$ is the *i*-th component of B(v, t) with respect to a fixed basis of \mathbb{C}^4) occurs with multiplicity 1. (Note that Γ is set-theoretically the intersection of these four divisors, by definition).

Proof. It is clear that $\pi_1(\Gamma) = C$, because $B(v, t) = t_0v + t_1Av + t_2A^*v = 0$ for some $[t_0: t_1: t_2] \in \mathbb{P}^2_{\mathsf{C}}$ iff dim $W(v) \leq 2$, and since A and A^* have no common eigenvectors, this means dim W(v) = 2. That is, $[v] \in C$.

Clearly $[t] \in \pi_2(\Gamma)$ iff there exists a $[v] \in \mathbb{P}^3_{\mathsf{C}}$ such that B(v, t) = 0. That is, iff dim ker $B(-, t) \ge 1$, that is, iff

$$G(t_0, t_1, t_2) := \det B(-, t) = 0.$$

Thus $D = \pi_2(\Gamma)$ and is defined by a single degree 4 homogeneous polynomial *G* inside $\mathbb{P}^2_{\mathsf{C}}$. It is a curve of pure dimension 1 in $\mathbb{P}^2_{\mathsf{C}}$ by standard dimension theory (see [4], p. 74, Theorem 5) because, for example $[1:0:0] \notin D$ so $D \neq \mathbb{P}^2_{\mathsf{C}}$. So $\pi_2(\Gamma) = D$, and this proves (i).

To see (ii), for a given $[v] \in C$, we claim there is exactly one [t] such that $([v], [t]) \in \Gamma$. Note that $([v], [t]) \in \Gamma$ iff the linear map:

$$B(v, -): \mathbb{C}^3 \to \mathbb{C}^4$$
$$t \mapsto (t_0 I + t_1 A + t_2 A^*) v$$

has a non-trivial kernel containing the line $\mathbb{C}t$. That is, dim Im $B(v, -) \leq 2$. But the image Im B(v, -) = W(v), which is of dimension 2 for all $v \in C$ by our assumptions. Thus its kernel must be exactly one dimensional, defined by ker $B(v, -) = \mathbb{C}t$. Thus ([v], [t]) is the unique point in Γ lying in $\pi_1^{-1}[v]$, viz. for each $[v] \in C$, the vertical line $[v] \times \mathbb{P}^2_{\mathbb{C}}$ intersects Γ in a single point, call it ([v], g[v]). So $\pi_1 : \Gamma \to C$ is 1-1, and Γ is the graph of a map $g : C \to D$. Since $g([v]) = \pi_2 \pi_1^{-1}([v])$ for $[v] \in C$, and Γ is algebraic, g is a regular map. This proves (ii).

To see (iii), note that for $[t] \in D$, by definition, the dimension dim ker $B(-, t) \ge 1$. By the fact that $A \in S$, and (iii) of Lemma 2.6, we know that dim ker $B(-, t) \le 1$ for all $[t] \in \mathbb{P}^2_{\mathbb{C}}$. Thus, denoting $K(t) := \ker B(-, t)$ for $[t] \in D$, we have

$$\dim K(t) = 1 \quad \text{for all} \quad t \in D. \tag{3}$$

Hence we see that the unique projective line [v] corresponding to $\mathbb{C}v = K(t)$ yields the unique element of *C*, such that $([v], [t]) \in \Gamma$. Thus $\pi_2 : \Gamma \to D$ is 1-1, and the regular map $\pi_1 \circ \pi_2^{-1} : D \to C$ is the regular inverse to the map *g* of (ii) above. Γ is thus also the graph of g^{-1} and, in particular, is isomorphic to *D*. Since *g* is an isomorphism of curves, and *D* is of pure dimension 1, it follows that *C* is of pure dimension one. This proves (iii).

To see (iv), we need some more notation.

Note that $D \subset \mathbb{P}^2_{\mathbb{C}} \setminus \{[1; 0; 0]\}$, (because there exists no $[v] \in \mathbb{P}^3_{\mathbb{C}}$ such that I.v = 0!). Thus there is a regular map:

$$\begin{array}{rcl} \theta:D & \to & \mathbb{P}^{1}_{\mathsf{C}} \\ [t_{0}:t_{1}:t_{2}] & \mapsto & [t_{1}:t_{2}]. \end{array}$$

$$(4)$$

Let $\Delta(t_1, t_2)$ be the discriminant polynomial of the characteristic polynomial $\phi_{t_1A+t_2A^*}$ of $t_1A + t_2A^*$. Clearly $\Delta(t_1, t_2)$ is a homogeneous polynomial of degree 4 in (t_1, t_2) , and it is not the zero polynomial because, for example, $\Delta(1, 0) \neq 0$, for $\Delta(1, 0)$ is the discriminant of ϕ_A , which has distinct roots (=the distinct eigenvalues of *A*) by the assumptions 3.1 on *A*. Let $\Sigma \subset \mathbb{P}^1_{\mathbb{C}}$ be the zero locus of Δ , which is a finite set of points. Note that the fibre $\theta^{-1}([1:\mu])$ consists of all $[t:1:\mu] \in D$ such that -t is an eigenvalue of $A + \mu A^*$,

which are at most four in number. Similarly the fibres $\theta^{-1}([\lambda : 1])$ are also finite. Thus the subset of *D* defined by

$$F := \theta^{-1}(\Sigma)$$

is a finite subset of *D*. *F* is precisely the set of points $[t] = [t_0 : t_1 : t_2]$ such that $B(-, t) = (t_0I + t_1A + t_2A^*)$ has 0 as a repeated eigenvalue.

Since $\pi_2 : \Gamma \to D$ is 1-1, the inverse image:

$$F_1 = \pi_2^{-1}(F) \subset \Gamma$$

is a finite subset of Γ .

We will now prove that for each irreducible component Γ_{α} of Γ , and each point x = ([a], [b]) in $\Gamma_{\alpha} \setminus F_1$, the four equations $\{B_i(v, t) = 0\}_{i=1}^4$ are the generators of the ideal of the variety Γ_{α} in an affine neighbourhood of x, where $B_i(v, t)$ are the components of B(v, t) with respect to a fixed basis of \mathbb{C}^4 . Since F_1 is a finite set, this will prove (iv), because the multiplicity of Γ_{α} in the intersection cycle of the four divisors $D_i = (B_i(v, t) = 0)$ in $\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}$ is determined by generic points on Γ_{α} , for example all points of $\Gamma_{\alpha} \setminus F_1$. We will prove this by showing that for $x = ([a], [b]) \in \Gamma_{\alpha} \setminus F_1$, the four divisors $(B_i(v, t) = 0)$ intersect transversely at x.

So let Γ_{α} be some irreducible component of Γ , with $x = ([a], [b]) \in \Gamma_{\alpha} \setminus F_1$.

Fix an $a \in \mathbb{C}^4$ representing $[a] \in C_{\alpha} := \pi_1(\Gamma_{\alpha})$, and also fix $b \in \mathbb{C}^3$ representing $[b] = g([a]) \in g(C_{\alpha})$. Also fix a 3-dimensional linear complement $V_1 := T_{[a]}(\mathbb{P}^3_C) \subset \mathbb{C}^4$ to *a* and similarly, fix a 2-dimensional linear complement $V_2 = T_{[b]}(\mathbb{P}^2_C) \subset \mathbb{C}^3$ to *b*. (The notation comes from the fact that $T_{[v]}(\mathbb{P}^n_C) \simeq \mathbb{C}^{n+1}/\mathbb{C}v$, which we are identifying noncanonically with these respective complements V_i .) These complements also provide local coordinates in the respective projective spaces as follows. Set coordinate charts ϕ around $[a] \in \mathbb{P}^3_C$ by $[v] = \phi(u) := [a+u]$, and ψ around $[b] \in \mathbb{P}^2_C$ by $[t] = \psi(s) := [b+s]$, where $u \in V_1 \simeq \mathbb{C}^3$, and $s \in V_2 \simeq \mathbb{C}^2$. The images $\phi(V_1)$ and $\psi(V_2)$ are affine neighbourhoods of [a] and [b] respectively. These charts are like 'stereographic projection' onto the tangent space and depend on the initial choice of *a* (resp. *b*) representing [a] (resp. [b]), and are *not* the standard coordinate systems on projective space, but more convenient for our purposes.

Then the local affine representation of B(v, t) on the affine open $V_1 \times V_2 = \mathbb{C}^3 \times \mathbb{C}^2$, which we denote by β , is given by

$$\beta(u, s) := B(a + u, b + s).$$

Note that ker $B(a, -) = \mathbb{C}b$, where [b] = g([a]), so that B(a, -) passes to the quotient as an isomorphism:

$$B(a,-): V_2 \longrightarrow W(a), \tag{5}$$

where W(a) is 2-dimensional.

Similarly, since B(-, b) has one dimensional kernel $\mathbb{C}a = K(b) \subset \mathbb{C}^4$, by (3) above, we also have the other isomorphism:

$$B(-,b): V_1 \longrightarrow \operatorname{Im} B(-,b), \tag{6}$$

where Im B(-, b) is 3-dimensional, therefore.

Now one can easily calculate the derivative $D\beta(0,0)$ of β at (u, s) = (0,0). Let $(X, Y) \in V_1 \times V_2$. Then, by bilinearity of *B*, we have

$$\begin{array}{lll} \beta(X,Y) - \beta(0,0) &=& B(a+X,b+Y) - B(a,b) \\ &=& B(X,b) + B(a,Y) + B(X,Y). \end{array}$$

Now since B(X, Y) is quadratic, it follows that

$$D\beta(0,0): V_1 \times V_2 \to \mathbb{C}^4$$
$$(X,Y) \mapsto B(X,b) + B(a,Y).$$
(7)

By eqs (5) and (6) above, we see that the image of $D\beta(0, 0)$ is precisely Im B(-, b) + W(a).

Claim. For $([a], [b]) \in \Gamma_{\alpha} \setminus F_1$, the space Im B(-, b) + W(a) is all of \mathbb{C}^4 .

Proof of Claim. Denote T := B(-, b) for brevity. Clearly $a \in W(a)$ by definition of W(a). Also, $a \in \ker T = K(b)$. We claim that a is not in the image of T. For, if $a \in \operatorname{Im} T$, we would have a = Tw for some $w \notin K(b) = \ker T$ and $w \neq 0$. In fact w is not a multiple of a since $Tw = a \neq 0$ whereas $a \in \ker T$. Thus we would have $T^2w = 0$, and completing $f_1 = a = Tw$, $f_2 = w$ to a basis $\{f_i\}_{i=1}^4$ of \mathbb{C}^4 , the matrix of T with respect to this basis would be of the form:

$$\left[\begin{array}{cccc} 0 & 1 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \\ 0 & 0 & * & * \end{array}\right].$$

Thus T = B(-, b) would have 0 as a repeated eigenvalue. But we have stipulated that $([a], [b]) \notin F_1$, so that $[b] \notin F$, and hence B(-, b) does not have 0 as a repeated eigenvalue. Hence the non-zero vector $a \in W(a)$ is not in Im *T*. Since Im *T* is 3-dimensional, we have $\mathbb{C}^4 = \text{Im } T + W(a)$, and this proves the claim.

In conclusion, all the points of $\Gamma_{\alpha} \setminus F_1$ are in fact smooth points of Γ_{α} , and the local equations for Γ_{α} in a small neighbourhood of such a point are precisely the four equations $\beta_i(u, s) = 0, 1 \le i \le 4$. This proves (iv), and the lemma.

4. Some algebraic bundles

We construct an algebraic line bundle with a (regular) global section over *C*. By showing that this line bundle has positive degree, we will conclude that the section has zeroes in *C*. Any zero of this section will yield a flag of the kind required by Lemma 2.1. One of the technical complications is that none of the bundles we define below are allowed to use the hermitian metric on *V*, orthogonal complements, orthonormal bases etc., because we wish to remain in the \mathbb{C} -algebraic category. As a general reference for this section and the next, the reader may consult [2].

DEFINITION 4.1

For $0 \neq v \in V = \mathbb{C}^4$, we will denote the point $[v] \in \mathbb{P}^3_{\mathbb{C}}$ by v, whenever no confusion is likely, to simplify notation. We have already denoted the vector subspace

 \mathbb{C} -span $(v, Av, A^*v) \subset \mathbb{C}^4$ as W(v). Further define $W_3(v) := W(v) + AW(v)$, and $\widetilde{W}_3(v) := W(v) + A^*W(v)$. Clearly both $W_3(v)$ and $\widetilde{W}_3(v)$ contain W(v).

Since A and A* have no common eigenvectors, we have dim $W(v) \ge 2$ for all $v \in \mathbb{P}^3_{\mathbb{C}}$, and dim W(v) = 2 for all $v \in C$, because of the defining equation $v \wedge Av \wedge A^*v = 0$ of C. Also, since dim $W(v) = 2 = \dim AW(v)$ for $v \in C$, and since $0 \ne Av \in W(v) \cap AW(v)$, we have dim $W_3(v) \le 3$ for all $v \in C$. Similarly dim $\widetilde{W}_3(v) \le 3$ for all $v \in C$.

If there exists a $v \in C$ such that dim $W_3(v) = 2$, then we are done. For, in this case $W_3(v)$ must equal W(v) since it contains W(v). Then the dimension dim $\widetilde{W}_3(v) = 2$ or = 3. If it is 2, W(v) will be a 2-dimensional invariant space for both A and A^* , and the main theorem will follow by Lemma 2.2. If dim $\widetilde{W}_3(v) = 3$, then the flag:

$$0 = W_0 \subset W_1 = \mathbb{C}v \subset W_2 = W(v) \subset W_3 = W_3(v) \subset W_4 = V$$

satisfies the requirements of (ii) in Lemma 2.1, and we are done. Similarly, if there exists a $v \in C$ with dim $\widetilde{W}_3(v) = 2$, we are again done. Hence we may assume that:

dim
$$W_3(v) = \dim W_3(v) = 3$$
 for all $v \in C$. (8)

In the light of the above, we have the following:

Remark 4.2. We are reduced to the situation where the following condition holds: For each $v \in C$, dim W(v) = 2, dim $W_3(v) = \dim \widetilde{W}_3(v) = 3$.

Now our main task is to prove that there exists a $v \in C$ such that the two 3-dimensional subspaces $W_3(v)$ and $\widetilde{W}_3(v)$ are the *same*. In that event, the flag

$$0 = W_0 \subset W_1 = \mathbb{C}v \subset W_2 = W(v) \subset W_3 = W(v) + AW(v) = W(v) + A^*W(v) \subset W_4 = V$$

will meet the requirements of (ii) of the Lemma 2.1. The remainder of this discussion is aimed at proving this.

DEFINITION 4.3

Denote the trivial rank 4 algebraic bundle on $\mathbb{P}^3_{\mathsf{C}}$ by $\mathcal{O}^4_{\mathbb{P}^3_{\mathsf{C}}}$, with fibre $V = \mathbb{C}^4$ at each point (following standard algebraic geometry notation). Similarly, \mathcal{O}^4_C is the trivial bundle on *C*. In $\mathcal{O}^4_{\mathbb{P}^3_{\mathsf{C}}}$, there is the tautological line-subbundle $\mathcal{O}_{\mathbb{P}^3_{\mathsf{C}}}(-1)$, whose fibre at *v* is $\mathbb{C}v$. Its restriction to the curve *C* is denoted as $\mathcal{W}_1 := \mathcal{O}_C(-1)$.

There are also the line subbundles $A\mathcal{O}_{\mathbb{P}^3_{C}}(-1)$ (respectively $A^*\mathcal{O}_{\mathbb{P}^3_{C}}(-1)$) of $\mathcal{O}^4_{\mathbb{P}^3_{C}}$, whose fibre at v is Av (respectively A^*v). Both are isomorphic to $\mathcal{O}_{\mathbb{P}^3_{C}}(-1)$ (via the global linear automorphisms A (resp. A^*) of V). Similarly, their restrictions $A\mathcal{O}_{C}(-1)$, $A^*\mathcal{O}_{C}(-1)$, both isomorphic to $\mathcal{O}_{C}(-1)$. Note that throughout what follows, bundle isomorphism over any variety X will mean algebraic isomorphism, i.e. isomorphism of the corresponding sheaves of algebraic sections as \mathcal{O}_X -modules.

Denote the rank 2 algebraic bundle with fibre $W(v) \subset V$ at $v \in C$ as W_2 . It is an algebraic sub-bundle of \mathcal{O}_C^4 , for its sheaf of sections is the restriction of the subsheaf

$$\mathcal{O}_{\mathbb{P}^{3}_{\mathsf{C}}}(-1) + A\mathcal{O}_{\mathbb{P}^{3}_{\mathsf{C}}}(-1) + A^{*}\mathcal{O}_{\mathbb{P}^{3}_{\mathsf{C}}}(-1) \subset \mathcal{O}^{4}_{\mathbb{P}^{3}_{\mathsf{C}}}(-1)$$

to the curve *C*, which is precisely the subvariety of \mathbb{P}^3_{C} on which the sheaf above is locally free of rank 2 (=rank 2 algebraic bundle).

Denote the rank 3 algebraic sub-bundle of \mathcal{O}_{C}^{4} with fibre $W_{3}(v) = W(v) + AW(v)$ (respectively $\widetilde{W}_{3}(v) = W(v) + A^{*}W(v)$) by \mathcal{W}_{3} (respectively $\widetilde{\mathcal{W}}_{3}$). Both \mathcal{W}_{3} and $\widetilde{\mathcal{W}}_{3}$ are of rank 3 on *C* because of Remark 4.2 above, and both contain \mathcal{W}_{2} as a sub-bundle. We denote the line bundles $\bigwedge^{2} \mathcal{W}_{2}$ by \mathcal{L}_{2} , and $\bigwedge^{3} \mathcal{W}_{3}$ (resp. $\bigwedge^{3} \widetilde{W}_{3}$) by \mathcal{L}_{3} (resp. $\widetilde{\mathcal{L}}_{3}$). Then \mathcal{L}_{2} is a line sub-bundle of $\bigwedge^{2} \mathcal{O}_{C}^{4}$, and \mathcal{L}_{3} , $\widetilde{\mathcal{L}}_{3}$ are line sub-bundles of $\bigwedge^{3} \mathcal{O}_{C}^{4}$.

Finally, for X any variety, with a bundle \mathcal{E} on X which is a sub-bundle of a trivial bundle \mathcal{O}_X^m , the *annihilator* of \mathcal{E} is defined as

Ann
$$\mathcal{E} = \{ \phi \in \hom_X(\mathcal{O}_X^m, \mathcal{O}_X) : \phi(\mathcal{E}) = 0 \}.$$

Clearly, by taking $\hom_X(-, \mathcal{O}_X)$ of the exact sequence

$$0 \to \mathcal{E} \to \mathcal{O}_X^m \to \mathcal{O}_X^m / \mathcal{E} \to 0$$

the bundle

Ann
$$\mathcal{E} \simeq \hom_X(\mathcal{O}_X^m/\mathcal{E}, \mathcal{O}_X) = (\mathcal{O}_X^m/\mathcal{E})^*,$$

where * always denotes the (complex) dual bundle.

Lemma 4.4. Denote the bundle W_3/W_2 (resp. \widetilde{W}_3/W_2) by Λ (resp. $\widetilde{\Lambda}$). Then we have the following identities of bundles on C:

(i)

$$\begin{array}{ll} 0 & \rightarrow \mathcal{W}_{2} \rightarrow \mathcal{W}_{3} \rightarrow \Lambda \rightarrow 0 \\ 0 & \rightarrow \mathcal{W}_{2} \rightarrow \widetilde{\mathcal{W}}_{3} \rightarrow \widetilde{\Lambda} \rightarrow 0 \\ 0 & \rightarrow \mathcal{L}_{3} \xrightarrow{i} \operatorname{Ann} \mathcal{W}_{2} \xrightarrow{\pi} \Lambda^{*} \rightarrow 0 \\ 0 & \rightarrow \widetilde{\mathcal{L}}_{3} \xrightarrow{\widetilde{i}} \operatorname{Ann} \mathcal{W}_{2} \xrightarrow{\widetilde{\pi}} \widetilde{\Lambda}^{*} \rightarrow 0 \end{array}$$

(ii)

$$\mathcal{L}_3 \simeq \mathcal{L}_2 \otimes \Lambda$$
 and $\widetilde{\mathcal{L}}_3 \simeq \mathcal{L}_2 \otimes \widetilde{\Lambda}$,

(iii)

$$\bigwedge^2 \operatorname{Ann} \mathcal{W}_2 \simeq \bigwedge^2 \mathcal{W}_2,$$

(iv)

$$\Lambda \simeq \widetilde{\Lambda},$$

(v)

$$\mathcal{L}_2 \simeq \Lambda \otimes \mathcal{O}_C(-1) \simeq \overline{\Lambda} \otimes \mathcal{O}_C(-1),$$

(vi)

$$\hom_{C}(\mathcal{L}_{3},\widetilde{\Lambda}^{*})\simeq\mathcal{L}_{2}^{*}\otimes\widetilde{\Lambda}^{*2}\simeq\mathcal{L}_{2}^{*3}\otimes\mathcal{O}_{C}(-2).$$

Proof. From the definition of Λ , we have the exact sequence:

 $0 \rightarrow \mathcal{W}_2 \rightarrow \mathcal{W}_3 \rightarrow \Lambda \rightarrow 0$

from which it follows that:

$$0 \to \Lambda \to \mathcal{O}_C^4/\mathcal{W}_2 \to \mathcal{O}_C^4/\mathcal{W}_3 \to 0$$

is exact. Taking hom_C(-, \mathcal{O}_C) of this exact sequence yields the exact sequence:

$$0 \to \operatorname{Ann}\mathcal{W}_3 \to \operatorname{Ann}\mathcal{W}_2 \to \Lambda^* \to 0.$$

Now, via the canonical isomorphism $\bigwedge^3 V \to V^*$ which arises from the non-degenerate pairing

$$\bigwedge^{3} V \otimes V \to \bigwedge^{4} V \simeq \mathbb{C},$$

it is clear that $\operatorname{Ann}\mathcal{W}_3 \simeq \bigwedge^3 \mathcal{W}_3 = \mathcal{L}_3$.

Thus the first and third exact sequences of (i) follow. The proofs of the second and fourth are similar. From the first exact sequence in (i), it follows that $\bigwedge^3 \mathcal{W}_3 \simeq \bigwedge^2 \mathcal{W}_2 \otimes \Lambda$. This implies the first identity of (ii). Similarly the second exact sequence of (i) implies the other identity of (ii).

Since for every line bundle γ , $\gamma \otimes \gamma^*$ is trivial, we get from the first identity of (ii) that $\mathcal{L}_2 \simeq \mathcal{L}_3 \otimes \Lambda^*$. From third exact sequence in (i) it follows that $\bigwedge^2 \operatorname{Ann} \mathcal{W}_2 \simeq \mathcal{L}_3 \otimes \Lambda^*$, and this implies (iii).

To see (iv), note that

$$\Lambda \simeq rac{\mathcal{W}_2 + A\mathcal{W}_2}{\mathcal{W}_2} \simeq rac{A\mathcal{W}_2}{A\mathcal{W}_2 \cap \mathcal{W}_2}$$

The automorphism A^{-1} of V makes the last bundle on the right isomorphic to the line bundle $\mathcal{W}_2/(\mathcal{W}_2 \cap A^{-1}\mathcal{W}_2)$ (note all these operations are happening inside the rank 4 trivial bundle \mathcal{O}_C^4). Similarly, $\widetilde{\Lambda}$ is isomorphic (via the global isomorphism A^{*-1} of V) to the line bundle $\mathcal{W}_2/(\mathcal{W}_2 \cap A^{*-1}\mathcal{W}_2)$. But for each $v \in C$, $\mathcal{W}(v) \cap A^{-1}\mathcal{W}(v) = \mathbb{C}v = \mathcal{W}(v) \cap A^{*-1}\mathcal{W}(v)$, from which it follows that the line sub-bundles $\mathcal{W}_2 \cap A^{-1}\mathcal{W}_2$ and $\mathcal{W}_2 \cap A^{*-1}\mathcal{W}_2$ of \mathcal{W}_2 are the same (= $\mathcal{W}_1 \simeq \mathcal{O}_C(-1)$). Thus $\Lambda \simeq \widetilde{\Lambda}$, proving (iv).

To see (v), we need another exact sequence. For each $v \in C$, we noted in the proof of (iv) above that $\mathbb{C}v = W(v) \cap A^{-1}W(v)$. Thus the sequence of bundles:

$$0 \to \mathcal{O}_C(-1) \to \mathcal{W}_2 \to \frac{\mathcal{W}_2}{\mathcal{W}_2 \cap A^{-1}\mathcal{W}_2} \to 0$$

is exact. But, as we noted in the proof of (iv) above, the bundle on the right is isomorphic to Λ , so that

$$0 \to \mathcal{O}_C(-1) \to \mathcal{W}_2 \to \Lambda \to 0$$

is exact. Hence $\mathcal{L}_2 = \bigwedge^2 \mathcal{W}_2 \simeq \Lambda \otimes \mathcal{O}_C(-1)$. The other identity follows from (iv), thus proving (v).

To see (vi) note that we have by (ii) $\mathcal{L}_3^* \simeq \mathcal{L}_2^* \otimes \Lambda^*$. Thus

$$\hom_C(\mathcal{L}_3, \widetilde{\Lambda}^*) \simeq \mathcal{L}_3^* \otimes \widetilde{\Lambda}^* \simeq \mathcal{L}_2^* \otimes \Lambda^* \otimes \widetilde{\Lambda}^*.$$

However, since by (iv), $\Lambda \simeq \widetilde{\Lambda}$, we have $\hom_C(\mathcal{L}_3, \widetilde{\Lambda}^*) \simeq \mathcal{L}_2^* \otimes \Lambda^{*2}$. Now, substituting $\Lambda^* = \mathcal{L}_2^* \otimes \mathcal{O}_C(-1)$ from (v), we have the rest of (vi). Hence the lemma. \Box

We need one more bundle identity:

Lemma 4.5. There is a bundle isomorphism:

$$\mathcal{L}_2 \simeq \mathcal{O}_C(-2) \otimes g^* \mathcal{O}_D(1).$$

Proof. When $[t] = [t_0 : t_1 : t_2] = g([v])$, we saw in (5) that the linear map $B(v, -) : \mathbb{C}^3 \to \mathbb{C}^4$ acquires a 1-dimensional kernel, which is precisely the line $\mathbb{C}t$, which is the fibre of $\mathcal{O}_D(-1)$ at [t]. The image of B(v, -) was the 2-dimensional span W(v) of v, Av, A^*v , as noted there. Thus for $v \in C, B(-, -)$ induces a canonical isomorphism of vector spaces:

$$\mathcal{O}_C(-1)_v \otimes \left(\mathbb{C}^3/\mathcal{O}_D(-1)\right)_{g(v)} \to W(v) = \mathcal{W}_{2,v}$$

which, being defined by the global map B(-, -), gives an isomorphism of bundles:

$$\mathcal{O}_C(-1)\otimes g^*\left(\mathcal{O}_D^3/\mathcal{O}_D(-1)\right)\simeq \mathcal{W}_2.$$

From the short exact sequence:

$$0 \to \mathcal{O}_D(-1) \to \mathcal{O}_D^3 \to \mathcal{O}_D^3/\mathcal{O}_D(-1) \to 0,$$

it follows that $\bigwedge^2(\mathcal{O}_D^3/\mathcal{O}_D(-1)) \simeq \mathcal{O}_D(1)$. Thus:

$$\mathcal{L}_2 = \bigwedge^2 \mathcal{W}_2 \simeq \mathcal{O}_C(-2) \otimes g^* \left(\bigwedge^2 (\mathcal{O}_D^3 / \mathcal{O}_D(-1)) \right)$$
$$\simeq \mathcal{O}_C(-2) \otimes g^* \mathcal{O}_D(1).$$

This proves the lemma.

5. Degree computations

In this section, we compute the degrees of the various line bundles introduced in the previous section.

DEFNITION 5.1

Note that an *irreducible* complex projective curve *C*, as a topological space, is a canonically oriented pseudomanifold of real dimension 2, and has a canonical generator $\mu_C \in$ $H_2(C, \mathbb{Z}) = \mathbb{Z}$. Indeed, it is the image $\pi_*\mu_{\tilde{C}}$, where $\pi : \tilde{C} \to C$ is the normalization map, and $\mu_{\tilde{C}} \in H_2(\tilde{C}, \mathbb{Z}) = \mathbb{Z}$ is the canonical orientation class for the smooth connected compact complex manifold \widetilde{C} , where $\pi_* : H_2(\widetilde{C}, \mathbb{Z}) \to H_2(C, \mathbb{Z})$ is an isomorphism for elementary topological reasons.

If $C = \bigcup_{\alpha=1}^{r} C_{\alpha}$ is a projective curve of pure dimension 1, with the curves C_{α} as irreducible components, then since the intersections $C_{\alpha} \cap C_{\beta}$ are finite sets of points (or empty), $H_2(C, \mathbb{Z}) = \bigoplus_{\alpha} H_2(C_{\alpha}, \mathbb{Z})$. Letting μ_{α} denote the canonical orientation classes of C_{α} as above, there is a *unique class* $\mu_C = \sum_{\alpha} \mu_{\alpha} \in H_2(C, \mathbb{Z})$. Thinking of *C* as an oriented 2-pseudomanifold, μ_C is just the sum of all the oriented 2-simplices of *C*.

If \mathcal{F} is a complex line bundle on C, it has a first Chern class $c_1(\mathcal{F}) \in H^2(X, \mathbb{Z})$, and the *degree* of \mathcal{F} is defined by

$$\deg \mathcal{F} = \langle c_1(\mathcal{F}), \mu_C \rangle \in \mathbb{Z}.$$

It is known that a complex line bundle on a pseudomanifold is topologically trivial iff its first Chern class is zero. In particular, if an algebraic line bundle on a projective variety has non-zero degree, then it is topologically (and hence algebraically) non-trivial.

Finally, if $i : C \hookrightarrow \mathbb{P}^n_{\mathbb{C}}$ is an (algebraic) embedding of a curve in some projective space, we define the degree of the bundle $\mathcal{O}_C(1) = i^* \mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(1)$ as the *degree of the curve* C (in $\mathbb{P}^n_{\mathbb{C}}$). We note that $[C] := i_*(\mu_C) \in H_2(\mathbb{P}^n_{\mathbb{C}}, \mathbb{Z})$ is called the *fundamental class* of C in $\mathbb{P}^n_{\mathbb{C}}$, and by definition deg $C = \langle c_1(\mathcal{O}_C(1)), \mu_C \rangle = \langle c_1(\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(1)), [C] \rangle$. Geometrically, one intersects C with a generic hyperplane, which intersects C away from its singular locus in a finite set of points, and then counts these points of intersection with their multiplicity.

More generally, a complex projective variety $X \subset \mathbb{P}^n_{\mathbb{C}}$ of complex dimension *m* has a unique orientation class $\mu_X \in H_{2m}(X, \mathbb{Z})$. Its image in $H_{2m}(\mathbb{P}^n_{\mathbb{C}}, \mathbb{Z})$ is denoted [X], and the degree deg X of X is defined as $\langle (c_1(\mathcal{O}_{\mathbb{P}^n_{\mathbb{C}}}(1)))^m, [X] \rangle$. It is known that if X = V(F) for a homogeneous polynomial F of degree d, then deg X = d.

We need the following remark later on.

Remark 5.2. If $f : C \to D$ is a regular isomorphism of complex projective curves *C* and *D*, both of pure dimension 1, and if \mathcal{F} is a complex line bundle on *D*, then deg $f^*\mathcal{F} = \deg \mathcal{F}$. This is because $f_*(\mu_C) = \mu_D$, so that

$$\deg \mathcal{F} = \langle c_1(\mathcal{F}), \mu_D \rangle = \langle c_1(\mathcal{F}), f_* \mu_C \rangle = \langle f^* c_1(\mathcal{F}), \mu_C \rangle = \langle c_1(f^* \mathcal{F}), \mu_C \rangle = \deg f^* \mathcal{F}.$$

Now we can compute the degrees of all the line bundles introduced.

Lemma 5.3. The degrees of the various line bundles above are as follows:

- (i) $\deg \mathcal{O}_C(1) = \deg C = 6$
- (ii) $\deg \mathcal{O}_D(1) = \deg D = 4$
- (iii) deg $\mathcal{L}_2^* = 8$
- (iv) deg hom_C($\mathcal{L}_3, \widetilde{\Lambda}^*$) = deg ($\mathcal{L}_2^{*3} \otimes \mathcal{O}_C(-2)$) = 12.

Proof. We denote the image of orientation class μ_{Γ} of the curve Γ (see Definition 3.3 for the definition of Γ) in $H_2(\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}, \mathbb{Z})$ by $[\Gamma]$. By the part (iv) of Lemma 3.4, we have that the homology class $[\Gamma]$ is the same as the homology class of the intersection cycle defined

by the four divisors $D_i := (B_i(v, t) = 0)$ inside $H_2(\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}, \mathbb{Z})$. By the generalized Bezout theorem in $\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}$, the homology class of the last-mentioned intersection cycle is the homology class Poincaré-dual to the cup product

$$d := d_1 \cup d_2 \cup d_3 \cup d_4,$$

where d_i is the first Chern class of the line bundle L_i corresponding to D_i , for i = 1, 2, 3, 4 (see [4], p. 237, Ex. 2).

Since each $B_i(v, t)$ is separately linear in v, t, the line bundle defined by the divisor D_i is the bundle $\pi_1^* \mathcal{O}_{\mathbb{P}^3_{\mathbb{C}}}(1) \otimes \pi_2^* \mathcal{O}_{\mathbb{P}^2_{\mathbb{C}}}(1)$, where π_1, π_2 are the projections to $\mathbb{P}^3_{\mathbb{C}}$ and $\mathbb{P}^2_{\mathbb{C}}$ respectively. If we denote the hyperplane classes which are the generators of the cohomologies $H^2(\mathbb{P}^3_{\mathbb{C}}, \mathbb{Z})$ and $H^2(\mathbb{P}^2_{\mathbb{C}}, \mathbb{Z})$ by x and y respectively, we have

$$d_i = c_1(L_i) = \pi_1^*(x) + \pi_2^*(y).$$

Then we have, from the cohomology ring structures of $\mathbb{P}^3_{\mathbb{C}}$ and $\mathbb{P}^2_{\mathbb{C}}$ that $x \cup x \cup x \cup x = y \cup y \cup y = 0$. Hence the cohomology class in $H^8(\mathbb{P}^3_{\mathbb{C}} \times \mathbb{P}^2_{\mathbb{C}}, \mathbb{Z})$ given by the cup-product of d_i is

$$d := d_1 \cup d_2 \cup d_3 \cup d_4 = (\pi_1^*(x) + \pi_2^*(y))^4 = 4\pi_1^*(x^3)\pi_2^*(y) + 6\pi_1^*(x^2)\pi_2^*(y^2),$$

where $x^3 = x \cup x \cup x$... etc. By part (ii) of Lemma 3.4, the map $\pi_1 : \Gamma \to C$ is an isomorphism, so applying the Remark 5.2 to it, we have

$$deg \mathcal{O}_{C}(1) = deg \pi_{1}^{*} \mathcal{O}_{C}(1) = \left\langle c_{1}(\pi_{1}^{*}(\mathcal{O}_{\mathbb{P}_{C}^{3}}(1)), [\Gamma] \right\rangle = \left\langle c_{1}(\pi_{1}^{*}(\mathcal{O}_{\mathbb{P}_{C}^{3}}(1)) \cup d, [\mathbb{P}_{C}^{3} \times \mathbb{P}_{C}^{2}] \right\rangle = \left\langle \pi_{1}^{*}(x) \cup \left(4\pi_{1}^{*}(x^{3})\pi_{2}^{*}(y) + 6\pi_{1}^{*}(x^{2})\pi_{2}^{*}(y^{2}) \right), [\mathbb{P}_{C}^{3} \times \mathbb{P}_{C}^{2}] \right\rangle = \left\langle 6\pi_{1}^{*}(x^{3}) \cup \pi_{2}^{*}(y^{2}), [\mathbb{P}_{C}^{3} \times \mathbb{P}_{C}^{2}] \right\rangle = 6,$$
(9)

where we have used the Poincaré duality cap-product relation $[\Gamma] = [\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}] \cap d$ mentioned above, and that $\pi_1^*(x^3) \cup \pi_2^*(y^2)$ is the generator of $H^{10}(\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}, \mathbb{Z})$, so evaluates to 1 on the orientation class $[\mathbb{P}^3_{\mathsf{C}} \times \mathbb{P}^2_{\mathsf{C}}]$, and $x^4 = 0$. This proves (i).

The proof of (ii) is similar, we just replace *C* by *D*, and π_1 by π_2 , and $\pi_1^*(x)$ by $\pi_2^*(y)$ in the equalities of (9) above, and get 4 (as one should expect, since *D* is defined by a degree 4 homogeneous polynomial in $\mathbb{P}^2_{\mathbb{C}}$). This proves (ii).

For (iii), we use the identity of Lemma 4.5 that $\mathcal{L}_2 = \mathcal{O}_C(-2) \otimes g^* \mathcal{O}_D(1)$, and the Remark 5.2 applied to the isomorphism of curves $g : C \to D$ (part (iii) of Lemma 3.4) to conclude that deg $\mathcal{L}_2 = \text{deg } D - 2\text{deg } C = 4 - 12 = -8$, by (i) and (ii) above, so that deg $\mathcal{L}_2^* = 8$.

For (iv), we have by (vi) of Lemma 4.4 that $\hom_C(\mathcal{L}_3, \tilde{\Lambda}^*) \simeq \mathcal{L}_2^{*3} \otimes \mathcal{O}_C(-2)$, so that its degree is $3 \deg \mathcal{L}_2^* - 2 \deg C = 24 - 12 = 12$ by (i) and (iii) above.

This proves the lemma.

From (iv) of the lemma above, we have the following.

COROLLARY 5.4

The line bundle hom_{*C*}($\mathcal{L}_3, \widetilde{\Lambda}^*$) *is a non-trivial line bundle.*

6. Proof of the main theorem

Proof of Theorem 1.1. By the third and fourth exact sequences in (i) of Lemma 4.4, we have a bundle morphism s of line bundles on C defined as the composite:

$$\operatorname{Ann}\mathcal{W}_3 = \mathcal{L}_3 \xrightarrow{\iota} \operatorname{Ann}\mathcal{W}_2 \xrightarrow{\pi} \widetilde{\Lambda}^* = \operatorname{Ann}\mathcal{W}_2/\operatorname{Ann}\widetilde{\mathcal{W}}_3$$

which vanishes at $v \in C$ if and only if the fibre $\operatorname{Ann}\mathcal{W}_{3,v}$ is equal to the fibre $\operatorname{Ann}\widetilde{\mathcal{W}}_{3,v}$ inside $\operatorname{Ann}\mathcal{W}_{2,v}$. At such a point $v \in C$, we will have $\operatorname{Ann}\mathcal{W}_{3,v} = \operatorname{Ann}\widetilde{\mathcal{W}}_{3,v}$, so that $W_3(v) = \mathcal{W}_{3,v} = W(v) + AW(v) = \widetilde{\mathcal{W}}_{3,v} = W(v) + A^*W(v) = \widetilde{W}_3(v)$.

Now, this morphism *s* is a global section of the bundle $\hom_C(\mathcal{L}_3, \widetilde{\Lambda}^*)$, which is not a trivial bundle by Corollary 5.4 of the last section. Thus there does exist a $v \in C$, satisfying s(v) = 0, and consequently the flag

$$0 \subset W_1 := \mathcal{W}_{1,v} = \mathbb{C}v \subset W_2 := \mathcal{W}_{2,v} = W(v) = \mathbb{C}\operatorname{-span}\{v, Av, A^*v\}$$
$$\subset W_3 := W_3(v) = W(v) + AW(v) = W(v) + A^*W(v)$$
$$= \widetilde{W}_3(v) \subset W_4 = V = \mathbb{C}^4$$

satisfies the requirements of (ii) of Lemma 2.1, (as noted after Remark 4.2) and the main theorem 1.1 follows. \Box

Remark 6.1. Note that since dim C = 1, the set of points $v \in C$ such that s(v) = 0, where *s* is the section above, will be a finite set. Then the set of flags that satisfy (ii) of Lemma 2.1 which tridiagonalize *A* of the kind considered above (viz. *A* satisfying the assumptions of 3.1), will only be finitely many (at most 12 in number!).

Acknowledgments

The author is grateful to Bhaskar Bagchi for posing the problem, and to B V Rajarama Bhat and J Holbrook for pointing the relevant literature. The author is also deeply grateful to the referee, whose valuable comments have led to the elimination of grave errors, and a substantial streamlining of this paper.

References

- [1] Fong C K and Wu P Y, Band Diagonal Operators, Linear Algebra Appl. 248 (1996) 195-204
- [2] Hartshorne R, Algebraic Geometry, Springer GTM 52 (1977)
- [3] Longstaff W E, On tridiagonalisation of matrices, Linear Algebra Appl. 109 (1988) 153-163
- [4] Shafarevich I R, Basic Algebraic Geometry, 2nd Edition (Springer Verlag) (1994) vol. 1