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Fuzzy Rule Extraction From ID3-Type Decision
Trees for Real Data

Nikhil R. Pal, Senior Member, IEEE, and Sukumar Chakraborty

Abstract—This paper proposes a method to construct a fuzzy
rule-hased classifier system from an ID3-type decision tree (DT)
for real data. The three major steps are rule extraction, gradient
descent tuning of the rule-base, and performance-based pruning
of the rule-hase. Pruning removes all rules which cannot meet a
certain level of performance. To test our scheme, we have used the
DT generated by RID3, an 1D3-type classifier for real data. In this
process, we made some improvements of RID3 to get a tree with
less redundancy and hence a smaller rule-base. The rule-hase is
tested on several data sets and i found to demonstrate an excellent
performance. Results obtained by the proposed scheme are consis-
tently better than C4.5 across several data sets.

Index Terms—Decision tree (DT), decision tree pruning, fuzzy
rule extraction, rule- hase pruning, rule-hase tuning.

L. INTRODUCTION

HERE are various approaches to fuzzy rule extraction
from numerical data for classification [11]-[21]. For
example, Nozaki er al [15] proposed an adaptive method for
furzy rle extraction for classification. Their method consists
of two leaming procedures: an error correction-based learning
scheme and an additional leaming procedure. The first learning
procedure adjusts the grade of certainty of each rule based on
its classification performance. This is followed by an additional
learning procedure to realize better classification boundanies
between classes. Finally, Nozaki et al. [15] proposed a rule
pruning scheme. Exploratory data analysis, such as clustenng,
is also used to facilitate rule extraction. For example, Chiu
[28] used a subtractive clustering method to find clusters in the
training data; each cluster is then translated into a fuzezy rule.
Another commonly used approach for rule extraction is o
build a decision tree (DT from the traming samples and extract
rules from it. This approach is used because semantically a path
of a DT and a rule are almost the same. There are different types
of DTs [6], [7] available, each having its advantages and dis-
advantages [8], but probably the most popular onge 1s Quinlan’s
1D3[1]. The main concern about 1D3 s that it can deal with cat-
egorcal data only and the DT generated is a crisp one. Different
vanations of 1D3 are now available where authors have tned 1o
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overcome these limitations of ID3 and extract fuzey rules from
the DT [16]-24]. Quinlan also came up with a new algorithm
named C4.5 [4]. Some of these algorithms are discussed below.

The fuzzy DT of Chang and Pavlidis [17] used a fuzzy de-
cision function (not the node splitting function) at each internal
node. If an internal node V has & branches, for example, then the
fuzzy decision function produces a vectorin |4, 1]¥. Each com-
ponent of the decision function can be thought of as an edge
weight of a branch coming out of the node V. Each leaf node
of the DT has a crsp label associated with it For an unknown
x © HP the firing strength of each path from root to every leaf
is computed using either product or minimum of the decision
function values on the path. If minimom 15 used, they call ita
Sfuzzy decision tree; for product, it is called a pmbabilistic de-
cizion tree. x is assigned the crisp label of the leaf having the
highest firing strength. Chang and Pavlidis spent a majority of
their paper on theoretical results about search algorithms o find
the max-firing strength solution, but did not give any method for
construction of the tree.

Maber and 51 Claw [16] proposed an algorithm, UR-1D3,
which combined uncertam reasoning with the rule set produced
by 1D3 to deal with uncertain and noisy traming and test data.
In thewr approach, they start with a DT made by 1D3, then the
attribute values associated with each branch of the tree 1s consid-
ered 1o be approximate. Triangularly shaped membership func-
tons are used w model the approximate values. For each at-
tribute value of a data point, a support interval is calculated
usimg the approximate value associated with the comesponding
branches of the tree. The classification of a test sample is done
by considering the set of support intervals for different possible
classifications. Each path from the root to a leaf is then inter-
preted as a ruke. One problem of this algorithm is that for con-
tinuous valued data, one has to assume some quantization of the
features and the performance of the algorithm may greatly de-
pend on the optimality of this choice.

Following the idea of UR-1D3, Chi and Yan [ 19] proposed an
algorithm o generate fuzzy rules from a similar DT. To fuzzify
the crisp rules, in the case of continuous data, an interval of
values 15 associated with cach node of the tee: whike in the
case of categorical data, for each feature they have used a re-
lational matrix of size L > L {(where L is the number of dif-
ferent attributes for that feature). Then the output is calculated
as a weighted sum of the firing strengths generated by all rules.
The weights are learned by a two-layer perceptron network. To
zel the final output, they combine the outputs of the percepiron
with the outputs of an optimized nearest-neighbor (NN classi-
fier proposed by Yan [26] using a three-layer perceptron. Apart
from the problem of quantization for continuous data, for cate-
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eorical data the relational matrix for each feature is another area,
which needs either a subjective judgment or some guidelines.

Yuan and Shaw [22] described an algorithm o construct
a fuzzy DT and then extract a rule-base from it. While con-
structing the DT, they used two constants, significant level
threshold (o and truth level threshold [ & is used to
determine whether a node is a leal or not and < is osed to
determine the label of a data point. However, no guideline for
choosing these constants has been given. For real data, they
quantify each feature into & levels (€ is the number of classes)
using Kohonen's feature map.

Many varants of fuzzy 1D3 have also been proposed. The
basic idea behind fuzzy 1ID3 is o build a DT of ID3-type where,
at each node, the best feature is selected depending on the gain
inentropy. Based on some stopping critenon, a decision 1s made
whether a node will be a leal node or we will have further
branching from it One such criterion is that if the gain is less
than some predetermined threshold, then that node becomes a
leaf node. Some popular measures of gain can be found in Jun er
al. [43]. Tsang et al. [23] developed one such algorithm and then
they associated each branch with a weight called local weight
{LW). Each leaf node is also associated with a weight called
global weight (GW). After the tree construction, they tune these
weights by a hybrid neural network. For real data, they fuzzified
cach feature into three linguistc attributes. Obviously, this may
not give the best resuls for all data sets. Another similar ap-
proach is found in Ichihashi er al. [24] where, after the fuzzy
ID3 DT is constructed, the membership functions associated
with different nodes are approximated with B-Splines (for better
modeling capability of complex functions). The parameters of
the B-Splines are then learned using a three-layered neural net-
work.

Recently, Wang and Yeung [25] proposed a new algonthm
for generating a fuzey DT and then extracting a rule-base from
it. They first compule the relative importance of each linguistic
term for each feature. Then the imporance of a feature is
caleulated as a weighted average of the relative importance
of is linguistic terms and the feature having the maximum
importance is selected first. They also use the same truth level
threshold (7)) of Yuan and Shaw [22] to determine whether
or not & node is a leaf. The rules extracted from the tree are
of the form IF{wyis Ay AND wudis A AND - apiz Ay
THEN yis By CF (L, Lava, ..., Ly Here Lug; is the
cerlainty factor associated with the atomic clause “»; i A7
and represents the relative importance caleulated for that
linguistic term of the coresponding feature. In their paper [25],
Wang and Yeung compare various aspects of their method
with those of [22] and fuzey 1D3. While the computational
complexity of their algorithm is high, the comprehensibility of
the extracted rule set are better than that of fuzzy 1D3 and less
than Yoan and Shaw’s method.

Earlier, we proposed a DT called RID3 [2], which is an
ID3-like DT that deals with real valued data. In RID3, each
node except the oot has a protolype vector and it comesponds
to a particular class. The tree creation process uses a ranking of
features, and the prototypical values of each class are computed
as class centroids. To find the label of a data point, we traverse
through the tree starting at the root, and at each level we st

the similarity of a set of features with the prototype of the node
in terms of a membership value caleulated using the fuzey
c-means formula (FCM) [9] and fit the data point to the best
matching node. We continue going down this way untl we
find some node where either the data point has a membership
higher than the threshold of that node, or it is a lkeal node. The
thresholds are tuned using genetic algorithms (GAs) [ 10].

This paperis broadly divided in two parts. In the first part, we
propose an improved tuning scheme for RID3 by which, along
with improving the classification performance, we achieve im-
proved computational efficiency by restricting the average clas-
sification depth. Then we propose a pruning scheme Lo reduce
the size of the tree. The improved version of RID3 is wermed
“IRID3” Pruning of DTs s itsell a topic of research, and there
are a number of pruning methods availlable i the lileratore. A
zood survey paper by Esposito et al. [40] may be consulted for
more details. Our method 1s conceptually closest wo the critical
value pruning {CVP) method descenbed in [40]. Although, as
pointed out by the authors, the CVP method can fail mm some
spectal cases, inour case this will not happen.

In the second part, we propose an algorithm to build a fuzey
rule-based system Lo classify real data points. To extract rules
from the DT, we select some specific paths of the tree and con-
verl each of them to arule. The feature value examined at each
level is converted to a clause in the antecedent pan of the rule,
and the terminal label of the path becomes the consequent or
the outcome of the rule. The rules are fuzey and the member-
ship functions are of Gaussian nature, although other choices
can be vsed. Forillustration purpose, we have used the DT made
by IRID3, but no special feature of IRID3 has been wsed. The
basic assumption is that the structure of the DT should be such
that, at each level, a new feature 15 accounted in the classifi-
cation process o addition o the features used in the previous
levels. The imital rule-base 15 wned wsing gradient search, then
a pruning phase removes redundant rules, if any.

We have tested our scheme on various data sets commonly
used in the literature and found quite satisfactory and consistent
results across all data sets. We have also compared our result
with Quinlan’s C4.5 [4]. The results on training data and test
data are found to be consistently better than C4.5.

The rest of the paper is as follows. Section 1 briefly de-
scrbes the RID3 algonithm. In Secuon 1L we discuss the im-
proved tuning and pruning of RID3. Section 1V describes rle
extraction, rule-base tuning, and rule-base prunmg technigues.
We conclude in Section V.

II. A BRIEF DESCRIFTION OF RI1D3

given a  p-dimensional data sel
IX.. %o, X b where 2 © FP with ¢ classes
7 = {m, ru..oo.ee o The §th component of any data point
represents the value of the ith feature [; (we denote the feature
setas F = [ fi. fooooo f ]

RID3 involves three sleps:

1) feature ranking;

2) tree construc hon;

3y threshold tuning.
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The featre ranking step is optional as we can use any arbitrary
order of the featres, bul itis a desirable step because it can help
to reduce the size of the tree. With a good feature ranking, im-
portant features will be considered in the higher levels of the tree
and most data points will be classified in the top levels without
going down o deeper levels.

A. Feature Ranking
Although any feature ranking scheme [27] can be used, we
discuss here a simple scheme for the sake of completeness.
For the dth feature we caleulate a feature evaluation index
(FEL)

FEI, - ND; - CDy = (1 4+ ITC8)71 (1)

where

Z:f-el” — 1) (2
Z (in — w?\;_.;'j2 (3)
[0 = Z Z(m_,; ] (4)

i=L Wk=1

ND stands for nondistinguishability, CD stands for cluster-dis-
persion, and [CS stands for inter-cluster-separation. Here
wivey 18 called the actwal protorype of the ith feature cor-
responding to class 7 and is caleulated wsing the formula
gy = i1/ f.'}:al-;l} le-CX; =12, =1,2.. ...
gy 15 the natwral prototype of the ith feature comesponding to
class j calculated wsing the FCM algorithm. X; is the set of
data points comesponding to class j. Lower FEI L'um:sp-unds Lo
better ranking. For a detailed discussion of FEL readers may
refer to [2].

B, Tree Construction

Let the ordering of the features done by a feature ranking
scheme be fr, fr..... sltealetmged — 0200y
1, 2.+ - ¢ be the sth component of the jth actual prowtype.
The tree is constructed as follows.

1) Each internal node, including the root, has exactly ¢ chil-
dren, each child comesponds o a class, and there are p
levels in the tree.

20 If the 7th child of the ith node at level T 1 s denoted as
Nli=12 .47 =12, .. ¢ then the nodeis
characlerized by the following:

a) Ithas got a prototype vector of dimension [,

b) The first I — 1 components of the prototype are
exactly the same as that of its parent.

¢) The {th component is the prototypical value of fea-
ture [z, comesponding to class j. Le., vieg, .

3y Each node, except the root, has a threshold associated
with it (denoted by ﬂE_—.‘ ) Imitially all thresholds are set w
some o where ¢ < (0, 10
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C. Tuning Using Genetic Algovithms

To determine the label of an unknown data point, we star at
the root node. The value of the most important feature (i.e., _;I‘Hl}l
15 tested with all children of the oot node and passed on o the
node where the membership (representing the similarity of the
data point with the prototypical value of the node, calculated
using the FCM fommula) is the maximum. If the membership
is greater than the threshold of that node, then the data point is
labeled with the label of that node, or else it goes further down
in the same mamer ll either a leal node is encountered or the
membership value exceeds the threshold.

Clearly the pedormance of the tree depends on the thresholds.
We use GA 1o tune the threshold values. We use binary coding
for the thresholds to form strings of Os and 15 as chromosomes.
For each set of thresholds, we get one such chromosome, which
is evaluated using the percentage of misclassification (3} as
the fitness function &, i.e, £ = M. Chromosomes are copied
to the mating pool with the probability proportional to their fit-
ness (better performance, more number of copies). Then we do
the usual crossover and mutation on these chromosomes o gel
a mating pool of new chromosomes. In this way, the process
evolves and generates new sets of thresholds giving better per-
formance [2]. We run the GA for i, . number of iterations
and pick up the best set of thresholds for the final DT,

1L IRID3: AN IMPROVED VERSION OF RID3

Fora p-dimensional data distributed in 2 classes, the number
of nodes in the tree will be (e#™! — 13/0n — 1), Such a tree
may have wo many redundant nodes, and rule-base generated
from RID3 may (and usually does) have many redundant rules.
Moreover, RID3 does not pay any attention Lo the depth at which
classification decisions are made. A DT should be optimized so
that decisions are made at lower depth (nearer to the rooty—this
can reduce the cost of measurement of features, which s often
very important for applications relating to medical diagnosis.
Therefore, we make the following two modifications.

1) The tuning process is improved so that classification can

be done using fewer number of nodes (feares).

2y A pruning process 15 intmodoced o remove nodes which

are not useful.

A. Imprwoved Tuning

We want the samples o get classified at lower depths (1Le.,
nearer 1o the root), so that nodes at higher depths of the ree
become redundant. In RID3 the objectve function of GA was
E — M, where M is the percentage misclassification. This is
changed to & = M | wl, where L is the average depth of
classification and w is the “Penalty for Depth.” While tuning the
thresholds, initially we set v to a value such that L is greater
than A4, This means that reduction of classification depth re-
ceives a higher priority over minimization of misclassification.
Thus the thresholds are so wned that the data points get clas-
sified at lower depths (i.e., near the root). As the GA evolves,
we gradually continue 1o decrease the value of » so that mini-
mization of missclassification stans dominating. We start with
a value of v such that Af < 1L and then reduce the value of 4 1o
zero in & equal steps. In other words, after T /8 iterations

nonx S
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of GA, i is reduced once. Note that & = 75 coresponds
to linear reduction of + after every iteration of GA. Moreover,
the last Ty, Sk iterations of GA are evolved with i = (). This
refines the tree Lo minimize only the misclassification. In the re-
ported results, we have used & = 10, With this modification,
we are able to classify the data points with low average depth
without losing performance.

B. FPruning

The pruming step talors the DT o keep only the required
nodes. After tuning is over, we classify the training samples
once and mark the nodes that are taking part in this process.
Then we remove all nodes that are NOT marked. Since our
tuning is such that classification is done at lower depths { nearer
to the root), we et a large number of unmarked nodes. There-
fore, after pruning we gel a tree of drastically reduced size. Con-
sequently, this will prevent test data points from lraversmg any
part of the original tree which is not supporied by the training
data. In addition to this, because of pruning of the DT, in the
rule generation phase we getl an efficient (both in terms of size
and quality ) rule-base. After tuning and pruning, the thresholds
of the reduced DT are retuned by GA, again for a fixed number
of ilerations.

C. Complexity Analvsis of IRID3

The different steps of IRID3 are analyzed one by one.

As stated earlier, the feature ranking step is an optional one,
and any method of feature ranking can be used, so we do not
consider this step for the time complexity analysis.

The complexity of the tree construction is (T 1 where T
is the number of nodes in the tree. The initial tree being a e-ary
complete tree of maximum depth p, |7 35 & (o —
11/{e 1) Therefore, the complexity of the tree construction
is e,

There are many expressions available for the ume com-
plexity of GA in the literature, e.g., Ankenbradt showed
[41] vsing a mecurmrence relation and the theory of induction
that the average and worst case time complexity of GA is
(eialustc.m log m)f log +, where m is the population size,
ris the fitness ratio, and evoluate s the tme complexity of
the domain dependent evaluation function. In [41], Ankenbradt
assuméd that there would be no mutation, only crossover will
be used to generate the new mating pool after selection is
over. Droste et al [42] showed that the expected run ime of
the {1 — 1) evolutionary algorithm with mutation probability
1/ is A log 1) where £ is the number of variables. This
expression holds for lineady separable functions where only
mutation and no crossover 15 used. However, in the present case
of threshold wning, the function is not lineady separable, as
well as we use both crossover and mutation for generation of
new chromosomes, so neither of the above two expressions can
be used to represent the time complexity of our case.

However, we run the GA for a maximum number of itera-
tions Tpp, . sothe ume for convergence is not of much impor-
tance here. Thus, for our case, the dme complexity is simply
il evnfuete) . In evaluating once, the following computations
are involved: generation of the chromosomes (D301 = '),

getting the thresholds from the chromosomes (307 = o731,
and evaluation of the training samples ((npe) ). Therefore, the
time complexity of tning is {{wpe — o)

The pruning is a very simple stiep where we only evaluate
the training samples once and remove the unused nodes from
the tree, which involves visiting every node once. Therefore, the
computation involved is lrpe + o1

Therefore, the overall complexity of IRID3 Diinge — o™,

0. Results on RIDI and IRIDZ

We tested RID3 with a large number of data sets and the re-
sults obtained are quite good and fairly consistent across the data
sets. Before presenting the results, we provide brief descriptions
of the data seis.

1) Description of the Data Sets Used:

IRIS [29]: This is a four-dimensional data consisting of 150
points divided into three classes of equal size 50. The four fea-
tures ane: sepal kength, sepal width, petal length, and petal width.
IRIS has been used in many mesearch mvestigations related 1o
pattern recognition and has become a sort of benchmark data.

Mango_leal [30]: This is a data set with number of features
= 18, (1e., 18-dimensional data) with 166 data points. 1t has
three classes representing three kinds of mango. The feawre
sel consists of measurements like area (A0, perimeter {Pe),
maximum length (L), maximum breadth (2}, petiole [P,
length+petiole (L 4+ 7). length/petiole [L/7), length/max-
imum breadth (LAY, [+ Foji Afl, AflL AfPe,
upper_midriblower_midrib, upper Pe/Lower e, and so on.
The terms “upper” and “lower™ are used with respect 1o the
maximum breadth position.

Crude_oil [31], [32]: Gerrid and Lantz chemically analyzed
Crude_oil samples from three zones of sandstone. [tis a five-di-
mensional data with 56 points and three classes named wil-
helm, submuilinia, and upper (mulinia, second subscales, first
subscales). The features of Crude_oil are vanadium (in percent
ash), iron (in percent ash), beryllium (in percent ash), satrated
hydrocarbons (in percent area), and aromatic hydrocarbons (in
percent area).

Normd4 [33]: The data set Nommd is a sample of 800 points
consisting of 200 points each from the four components of a
mixture of four class d-variate normals,

Vowel [34]: Telugu is one of the Indian languages spoken in
the southern part of the country. The Vowel data set consists
of 871 samples of discrete phonetically balanced speech sam-
ples for the Telugu vowels in consonant-vowel nucleus-conso-
nant {CNC) form. These samples are generated from three male
informants in the age group of 25 1o 30 years. The first three for-
mant frequencies are taken as the features. Vowel has six sub-
stantally overdapped classes.

Glass [35]: The Glass ldentification data set has six classes
with nine contnuously wvalued attributes: refractive index,
sodivm, magnesium, aluminum, sithcon, potassium, calcium,
barium, and iron. The unit of measurement of all attnbutes
but refractive index is weight percent in corresponding oxide.
The six classes are named as building_windows_float_pro-
cessed, building_windows_non_floal_processed, vehicle_win-
dows_float_ processed, containers, tableware, and headlamps.
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Myo_electric [39]: This is a four-dimensional data set con-
sisting of 72 points divided into two classes; class 1 has 38 points
while class 2 has the emaining 34 points.

2) Results: Table | shows the comparison of the RID3 with
its improved version IRID3. In column 3, the numbers i 7] list
the percentage reduction of number of nodes after wning and
pruning. Except for Myo_electric data, in all other cases the
reduction is by more than 75% and in some cases it is even more
than 95% . For Myo_electric data, the reduction is by 51%.

Colurmns 4 and 5 give the average depth of decision making
iclassification) with the taining data. In IR1ID3 the “improved
tuning” is expected w reduce the average depth of classification
than that of RID3. Columns 4 and 5 depict that this s indeed
the case for all data sets except Mango_leal and Normd. The
average depth of classification for Mango_leal and Normd is
litle more than that of RID3. This can happen due to the fol-
lowving reason: prunming may result m some degradation of per-
formance of the DT because at each node, the total membership
of unity is redistributed among is remaining children. There-
fore, afier pruning, we retuned the DT for a fixed number of
iterations using GA to minimize only the misclassification ii.e.,
without the “penalty for depth”™ term). This additional tuning
phase may increase the average depth of classification to reduce
the number of misclassification. Comparing columns 7 and 8,
we find that with such a massive reduction of wee size, the per-
formance of IRID3 remains almost the same as that of RID3.

IV. GENERATION OF FUZZY RULES FROM THE DECISION TREE

The final DT obained after pruning is used for generation of
furzy rules. The three major steps involved in rule generation
are

Step 1) extraction of the initial rule-base;

Step 2) tuning of the rule-base parmmeters;

Step 3) pruning of the rule-base.

A, Extraction of the Initial Rule-Base

With the final DT, we classify the training sample once and
the following steps are executed.

Step 1) Whenever a data point is classified at a particular
node, we mark that node as a classifier node.
In every node we maintain the mean () and
standard deviation (=) of the data points that pass
through it.
The rules are then constructed as follows.

Step 2)

1y Each path starting from the root up (o a classifier node is
converled o a rule.

2) The number of clavses in the antecedent part of the rule
is the same as the number of levels encountered in the
comesponding path.

3y Each node encountered in the path (except the mot node)
15 converted to a clanse and 1s associated with an initial
membership function of Gaussian-type with position = u
and width = =, i.e., membership function is given by
rinf ) pmiem sl 2 where 1 is the corresponding fea-
ture value of the data pont.
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COMPARATIVE STUDY OF RID3 anp IRIDA

- Fo. of nodes | Average Fercenlags

Cate in the depth of of correct.
Lot decision tres classification classification

Used TG THITHE WIDE T D | D

TS 121 & [95) 1-35 1.5 L] 8
Mange.leaf 364 BT {31.4) 1.63 266 To.5 1]
COrude_oid ] 15 [45) 2.78 1.83 [TH! [TH]
Mpo_elecire Eil 15 (31.8) E; .57 B3.1 B3.1
Normag 341 A1 [76.2) z 2.4 EE] Bl
Fowel I69 | 58 (17.8) | 2.0 1.7 50 60T
Glosa{FEI] | 0331 | 255(87.3] 3 .58 al1 35,5

4) The consequent of the rule, i.e., the class assigned by the
rule, 1 the same as the class label assigned by the corme-
sponding path.

1t should be noted that the antecedent parts of different rules
generated by the above scheme generally have different number
of clauses. A path involving two levels will be converted o a
rule having two clauses in the antecedent part, whereas a path
involving five levels will be converted 1o a rule having five an-
tecedent clauses. To caleulate the final output of a rule, we use
product as the intersection operator. For example, 5., the firing
strength of the vth rule on the ith data point is calculated as
S = H_:._l m;, . where m;_ 1% the membership of the £,th
feature value (7 is the feature withrank 3) of the tth data point
in the fuzzy setassociated with the jth clause of the rth rule and
{ is the total number of clauses in the rthrule. The inital g and =
of the Gaussian membership function associated with anode are
taken as the mean and standard deviation of the feature values
of all taining data points passing through that node. Note that,
every level of the tree corresponds o a unque input feature.

When we get a data point with unknown class, we calculate
the firing strength of all rules in the rule-base and select the rule
with the maximum firing strength. Then we label the data by
the consequent of that rule. Let us illustrate the rule extraction
procedure by an example. Consider IRIS data (p = 4, o = 31.
The feature ranking according to the feature evaluation index,
FEL, described in Section 1I-A is 4, 3, 2, 1. After wning and
pruning we gel the tree shown in Fig. 1.

InFig. 1, there are four leal nodes and the number of extracted
rules is also four. However, in general, the number of rules may
be greater than the number of leaf nodes, because whenever any
decision node (nternal node) classifies some data pomts, then
the path from the oot up w that particular node also gels con-
verted o arule. The fuzzy mles extracted from this DT are the
following:

Lip: IF ryis Ay THEN Class 1

Har IF 2y is Agp AND 2y is Ay THEN Class 2

R;_{,: ¥ i is _-"1.13 AND s is _-"13;-; THEN Class 3

fig: IF xyis Ale: THEN Class 3

Here x.q is the fourth feature (having rank 1 in this case) value
of a data point and A4y is the fuzzy set whose initial member-
ship function is defined by the pe and o associated with node 2
of the tree. For fiy, 1y is the petal length and 444 is a Ganssian
function with g = [L246 and & = (L104326. Thus, semant-
cally A, says: il petal length is close to 0246, then class is 1.
Considerng the scatterplot [Fig. 2] of features 3 and 4 of [RIS,
we see that B conforms o the structure of the data. In Fig. 2,
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Fig. 1. Final DT obtained on RIS data by IRIDA

the w-axis corresponds o feature 3 and the g-axis cormesponds
to feature 4. Points corresponding o different classes are repre-
sented by different symbols in Fig. 2.

B. Tuning of the Extracted Rules

Classification by IRID3 is threshold-based; consequently a
node as well as its child belonging to the same class may both
classify some data points and thus both may get marked as clas-
sifter nodes. As aresull two rules may be generated. Clearly the
antecedent clauses of these two rules will be almost similar. In
fact, the antecedent part of the rule comesponding Lo the parent
node 15 contamned i the antecedent of the rule comesponding 1o
the child (which has got one extra clause) and both of them clas-
sify for the same class. The chance that one of these two rles
will become redundant 1s very high.

The g and ¢ of the fuzzy sets associated with the rules are
very important and proper choiee of these will certanly increase
the performance of the rule-base. In our case these parameters
are initialized by the mean and standard deviation of the data
points passmg through that node. We do not consider how many
of them are properdy classified and how many are misclassified.
Moreover, a lot of data points belonging o other classes may
also pass through this node. Hence, with the pand & imbalieed
by the mean and standard deviation of those data points may
(usually will) not be the best possible chowee. Thus, they should
be tuned for a better performance. We have used gradient de-
scent technique 1o tune the parameters of the rules which we
discuss next.

1) Tuning of the Rules: Let or,. denote the firing strength of
the rth rule on a data point x. Letthere be & rules with n; mles
representing class o Let g be the maximum firing sirength
of a rule that represents the éth class. Then, we can minimizse
YL 5 . — &), where £
£ = U for the rest. In this case with every data point parameters
of at most & rukes will be updated. If (0, —#) = 0 for some
eroup of rules, then no rule from that group will be updated.

Another altemative emor function, which we use, s as fol-
lows. Letie, ., be the maximum firdng strength of a rule giving
correct classification, generated by the rule R poax, and ey o

1 for the correct class and
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Fig. 2. Scatter plot of features 3 and 4 of IRIS.

be the maximum firing strength of a rule giving wrong classifi-
cation, generated by the rule £, mne. We ry 1o mimimieze the

error E = 3701 — ebe e + o e ) as in [28]. Afier each

training sample is classified, we update the parameters of the
pair of rules {f2. ... £, 000 b using the following:

FR oy PR e, _Y’“ﬁ a
ity e, =My, r}a% (6}
Bt woe, = Fl ma, _*?’f*'ﬁ‘u,i% 7

Here the index { refiers to clause number in the corresponding
rule, .., for the first antecedent clanse @ 1. for the second
clavse ¢+ = 2, and so on. The tuning process 15 repeated untl
the rate of decrement in £ becomes negligible or the iteration
reaches a maximum hmil.

Since a Gaussian membership function isextended to infinity,
for any data point all rules will be fired o some extent. In our
implementation, if the firing strength is less than a threshold, «
(=001}, then the rule 1s not assumed to be fired. Thos, under
this sitwation, the rule-base exracted by the system may not
be complete with respect o the trmning data. In fact, this can
also happen when we use membership functions with triangular
or trapezoidal shapes. Next we provide a scheme for ensuring
completeness of the rule-base with respect o the trainmg data.

If the training data set contains a data point which does not
fire any rule, then we convert that data point into a mle. We
generate a rule having the maximum number of clauses (which
is the same as the maximum height of the final DT) in the an-
tecedent, the prs of the antecedent clavses are imbalized by the
corresponding feature values of the data point and o5 of the
clavses are mitally set o some small predetermined value -,
s < [0, 1}, The consequent of this rule is assigned by the ac-
tual label of the data point. This rule will classify the data point



PAL AND CHAKRABORTY: FUZZY RULE EXTRACTION FROM ID3-TYPE DTs

under consideration and also other data pomts in s neighbor-
hood, which otherwise might have remained unclassified, if this
rule was not there in the rule-base. Since & s small, this rule will
not mterfere with other rules.

C. Pruning the Rule-Base

The proposed rule extraction method, however, does not rule
out the possibility of presence of redundant rules as well as bad
rules, which should be removed from the rule-base for a better
performance as well as efficiency, as discussed eardier. We pro-
pose a very simple but effective scheme for rule minimization.
Afer tuning is over we classify the training sample once more
with the rule-base and do the following.

1y With each mle, we maintan two  vanables, Cor-

rect_Cownt and Incorrect_Count.

2) Whenever any data point is classified correctly by a rule,

we inerease its Correct_Count by 1.
3) Whenever any data point is classified incorrectly by a
rule, we increase its Incorrect_Count by 1.
4) After all training samples are exhausted, the rules that
satisfy any one of the following two criteria are deleted.
a) A rule whose Correct_Count 15 less than its fneor-
rect_Count.
b) A rule whose Correct_Count 15 less than a certain
percentage of the cardinality of the training set.

Criterion a) represents a case where a rule wrongly classi-
fies more points than it comrectly classifies; consequently, such
arule should be deleted. Critenion b) suggests a situation where
a rule fails to represent an adequate number of data points and
such rules should also be deleed o avoird bad generahzaton.
Afer rule pruning is finished, we run the tuning process for
some more iterations o reattenuate the parameters of the re-
maining rules in the changed rule-base environment. The entire
rule generation process 15 schematized in Figs. 3 and 4.

0. Complexity Analyvsis of Rule-Base Extraction, Tuning, and
Pruning

The three mam steps involved are rule extracuon, rule tunmg,
and rule-base pruning. We analyze the complexity of each step
ong by one.

It is obvious from the IRID3 algorithm that the maximum
number of classifier node (1.e., which classifies at least one data
point) 15 a (we assume that o 22 n) and in the worst case all
these nodes will be at the pth level, so complexity of the rule-
extraction process in the worst case is Dipn) and the number
of rules is w. If we use some other DT for rule generation, this
number may change.

Since in the worst case, every rule will have . antecedents,
and classification of a single data point involves finding the
firing strength on every rle, the cost of classification of every
data point is £y,

In the tuning phase, after classifying each data point we tune
the parameters of only two rules, so itinvolves (3 ip+Din4-4p)
computation [ for computation of finng strength, ()
for finding the two rules to be updated and O3 4p) for updating
the parameters of the rules]. Therefore, the complexity of one
iteration (a complete pass through the raining data) is Oip +

Dhata, Input

Do feature Accept
ranking by natursl ord
FEI or other of features

methiod

_—

Build the
decision

e

\

Tune
thresholds
by GA

\

Frune the
decigion
tree

Final Tree T

Fig. 3. Steps involved in building the DT from training data.

1in? | 4pn}. In our simulation, the training is continued for at
most £y iterations. Therefore, the complexity of the entire
tuning process is {0 (p — L + 4.

In pruning phase we evaluate the raming data once, which s
an (¥pn?) process.

Therefore, the overall complexity in the worst case is also
ipm ).

E. Results

The performance of the rule-base extracted from IRID3 is
shown in Table 1. Comparing columns 2 and 3 of Table 11, we
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Steps involved in the mle generation process,

find that tuning of the rule-base improves the performance of
the rule-base a lot, which mmplies that the mitahzatnon of the
parameters of the rules was not the optimum, as discussed ear-
lier. For all data sets (with the exception of Glass), we used the
ranks suggested by the simple index FEL; while for Glass, we
consider two different sets of five features, one of which is as
per the FEI ranks.

Comparing columns 3 and 4, we find that although for IRIS,
Crude_oil, and Vowel data, the performmance remains the same
before and after pruning, for Mango_leaf, there is a litle degra-
dation in pedformance (kess than 1%). This has happened pos-
sibly because the pruming process has deleted some rules as
per Criterion b)), which were correctly classifying a few points
and the residual rule-base 15 not able o correctly classily those
points. For Myo_electrie, Nomd and Glass data, the perfor-
mance 15 mnproved by pruning. This means that there were some
bad rules n the oniginal rule-base, which were incorrectly clas-
sifying some dala points.

From columns 5 and 6 we find that except for RIS, the
number of rules in the rule-base is decreased for all data sets.
Sometimes, more than 70% rules of the orginal rule-base are
deleted, which shows the effectiveness of our pruning scheme.

Comparing Table II with Table 1, we find that except IRLS, for
all data sets, there 15 a significant improvement in the recogni-
tion score achieved by the rule-base; for IRIS the performance
remains the same. For Glass data, as we mentioned earier, use
of a different set of five features (using a different ranking), the

TABLE 11
PERFORMANCE OF THE RULERASE ON [INFFERENT DATA SETS
Fercenlage Tumbar
Data of correct uf
Set chagsification Rules
Tzed Taat ot
Tyned | Toned Froned Pruned Fruned
THIE 26 EE] L 4 4
Manga_lesf 50 Ba.1 355 31 14
Lruds_pil A7 61,1 911 11 7
Mya B.6 Q5.8 948.5 B B
Mormd 463 93.8 a94.6 41 17
Fiowsd i) S 41,5 L5 7
Clasa 6.4 TT.1 o4 [ 88 | 49
Llass with FET 21 q1.7 454 o4 EL]
TABLE 111
PERFORMANCE COMPARISON OF OUR RULEBASE AND RULERASE FRoOM C4.5
Diaza Our Rulebas: 4.5 Tulchuse
5 . Misclanifcation T, Mieclassilication
No.of [ Tms [ Tst | Newf | Tog ZH) ot
Tsed Rules | data | data | Rules | data | dala
TRIS 4 |13 4 3 LT 67
Mangoleaffi} | 4| 410 313 ER 320
Mango_leaff8) 21 LT 329
_ Cradeod 11 6.9 33,3 4 0.0 444
My 1 ] 53 3 ] FE
 Narm{ | &5 1B ] 1 6.75
(Huax 15 21.5 47.5 10 12.5 5.5

recognition score by IRID3 15 improved by 6%. For this case,
the percentage of correct classification by the rule-base becomes
T9.4%, i.e., an improvement of about 38%.

So far, we have not evaluated the genermahization ability of the
rules extracted by our scheme. Next, we do so and also compare
our results with the outputs of C4.5. For this we partition the
data set X into training { Yo, and test{ X, ) sets such that X
XT‘?" 1) XI".: X-}',. M X']"f. =1 and |X-1-'|.! — |)\--1',| = !‘ll.- I.-'IQ.

Table 1 compares the performance of the proposed rule-
based system with the riles from C4.5 in terms of generaliza-
ton capability. For Crude_oil, although C4.5 achieves a traming
error of 0%, the test ermor percentage 15 44.5, which 1s 1 1% more
than that achieved by the IRID3 mle-base. Similady, for Glass
data, the trning error 15 9% lower for C4.5 but the test ermor
is 12% more than that by our rule-base. In the case of IR1S, of
course, our ruke-base achieves lower error rate for both traming
and test data. For Mango data C4.5 performs better than the
rule-base both for the traming and the test data (the first row for
Mango data). This poor performance may be attributed 1o the se-
vere pruning of the rule-base. If we do not prune the rule-base,
the perdformance of the proposed system is comparable 1o that
of C4.5 for both tramning and test data. This comesponds o the
second row for Mango_leaf. For Myo and Normd, the pedor-
mance of both classifiers on the training data is comparable but
for the test data, our rule-base outperforms C4.5. To summarize,
the fuzzy rule-base extracted by our system is found to have a
better generalization than C4.5 and except for Glass and Crude
oil, the number of rules extracted by both systems are compa-
rable.

In order o establish further the effectiveness of our scheme
we refer o some results reported in [ 16], which compared four
classifiers vsing 75% of IRIS for tmning and the remaming
25% for testing. The experiment was repealed for three such
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