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Unsteady flow of thin liquid film on a disk under nonuniform rotation
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Development of thin liquid film under nonuniform rotation has been studied numerically by using
finite difference technigue under the assumption of planar intedface. For impulsive rotation of the
disk an anomalous behavior of the rate of film thinning with the variation of the Reynolds number
is observed in a different time zone. 1t is also shown that the azimuthal velocity field develops into

the entire depth faster with the smaller impulsive rotation. A physical explanation for the above
observation is provided. Further it is found that faster rate of thinning can be obtained if the spinner
starts impulsively and then mereases 118 spinning rate continuously.

Physics. [DOIL: 10.1063/1.1377615]

l. INTRODUCTION

Free surface flow of a liquid film on a rotating disk is an
interesting fluid mechanical problem. A number of forces
like friction exerted by the disk, the centrifugal, and Coriolis
forces due 1o rotation, the inertia of the existing fluid on the
disk and the shear stress due o air/vapor flow at the free
surface act on the sysiem jointly o shape the flow structure.
It is interesting 1o note that the flow of thin liquid film under
the action of centrifugal force has not been studied as much
as film flow due to the action of gravity. 1t is well known that
the centrifugal force can be controlled 1o any desired level by
regulating the spinning of the disk in a laboratory, on the
other hand gravity driven flow has is own limitations. Still
for an unknown reason not much attention has been paid in
the literature 1o the former type of flow, although it has enor-
mous technological applications. For example, the thin film
produced on a rotating disk is used 1o promote the absorption
of vapor into it. Specifically the absorber unit of a space-
based vapor-absomption refrigeration system will use a liguid
film thinned by the centrifugal force on a rotating disk to
enhance the absorption of the refdgerant vapor into the ab-
sorbent. Since a falling film cannot be produced in a micro-
gravily environment, the vapor-absorption cycle 1s more ap-
propriate than g vapor-compression cycle for & microgravily
application. Thin film on a rotating disk can also be used in
coating the substrates in micro-electronics industry known as
spin coating in the literature. The first theoretical study on
hydrodynamical film flow on a molating disk was made by
Emslic ef al' and predicted the flow pattem as well as the
thickness of the film. Later, a number of theoretcal as well
as experimental studies on the development of thin film on a
rotating disk were presented in the pertinent literature (Acri-
vos e .m’.,2 Wushu," ['s1u3..'|:rh{}fur,'l Givens and Duughu}mj
Lai.® Chen.” Jenekhe and Schuldt® Sukanek.” Hwang and
Ma," and others) by considering different aspects of the pro-
cess. Higgins'' first considered the full Navier—Stokes equa-
tions and studied the flow problem from initial stage of de-

velopment  through  matched  asymplotic  expansion
procedure. Later on Dandapat and I{.'ij,'u"“1 and Ray and
Dandapat 5 extended the thin film development on a rotating
disk to study analytically the effect of thermocapillarity
andior magnetic field on the mte of film thinning. In all these
studies it is tacitly assumed that the disk is wet so that the
classical no-shp boundary condition can be applied at every
point along the disk surface. The assumption of wet wall is
justified in the light of the experimental observation on ad-
vancing contact hines by Schwarte and chud.'l”' and Gi-
radella and Rudigun,” in which they have indicated the pres-
ence of an unseen precursor layer of fluid shead of the
contact line which 1s only an angstrom thick. Further it has
been argued by physical chemists that the presence of a pre-
cursar layer 15 a very real phenomenon ansing as a conse-
quence of evaporation from the drop in a small region local
to the contact line followed by diffusion and adsorption (De
Gennes'™). Another important class of problems viz., spread-
ing of a liquid drop on a rotating disk in connection with the
spin-coating is also studied by Troian er al,'® Melo er af, ™"
Monarty and Schwarz,*! and McKinley er al® In these
studies main interest was on how the contact line moves
during the spreading of the drop on the disk and its stability.
The present study is based on the former assumption of wet
disk and we are interested to know the effects of three dif-
ferent types of nonuniform rotations of the disk for entire
tume scale. The disk starts rotation (i) impulsively from rest
and then maintaing ity speed for futurve time, (i) starts im-
pulsive rotation from rest and increases its angular speed
continuously with time t, and (iii) starts from rest and in-
creases ity angular speed smoothly with time to attain a con-
stant finite value ay t—=_ In general, the aim of this paper is
to study the transient as well as sieady behavior of the film
development under different types of rotation. In particular,
this study will address the guestion: If the disk starts from
rest with impulsive rotation and maintains it for the rest of
the period of motation then wilf the film thinning rate be more

Jor the stronger rotational speed from the beginning of the

spinning ? If not, why'!
It may be pointed out here that other works on the un-
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steady development of thin film on a rotating disk are by
Matsumoto et al.” and Wung er al* Matsumoto et al™
considered a hemispherical liquid blob on the wetted surface
of the disk and studied how this blob spreads at the initial
stage of the rotation and the action of different forces like
eravitational, Corolis, centrifugal, etc., on film development.
They have correctly mentioned that after 0.01 s from the start
of the rotation only gravitational force dominates the film
development as centrifugal force has very little effect at this
stage. Al time (.03 s afier the start of the rotation, the gravi-
tational force is dominated by the centrifugal force. The lig-
uid rotates similar to rigid rotation causing the unifommity of
the film thickness at time lapse of 0,07 s from the start. This
implies that the centrifugal foree controls the film develop-
ment process. Wang ef al.”! studied the fluid flow over an
accelerating rotating disk. By using a special type of similar-
ity transformation they were able to reduce the unsteady
N-8 equations to & sel of nonlinear ODE. They further found
the existence of nonunigue solutions depending on film
thickness over the rotating disk for the same value of the
unsteady parameter §=a/(},, where both « and (), are
positive with dimension [T '], These constants are related
o the unsteady acceleration of the disk given by (3(1)
=0y 1 —at)” 1. It is to be pointed out here that the work of
Wang ef al.* is a parallel study to our case (i) for continu-
ous increase of the angular speed after the impulsive start of
the disk. It should be noted that the objective of the present
study differs from that of Wang er al. As stated earlier, we
are more interested in studying the initial value problem to
determine the unsteady development of velocity field, film
thickness, ete., after the impulsive start of rotation of the disk
and their corresponding changes with time if the angular
speed increases continuously. Wang er al.® instead focused
their attention on the effect of the unsteady parameter S, on
the velocity field and the film thickness.

In Sec. 11, mathematical formulation is done by using the
Von-Karman™ similarity transformation on the equations of
motion and the corresponding boundary conditions. These
transformed equations are then expressed in suitable dimen-
sionless form. The resulting set of partial differential equa-
tions in one space coordinate and time is solved numerically
using finite-difference technigue. The method of solution and
the theoretical results and discussion on these are presented
m Secs. 111 and 1V, Secton ¥V ocontains conclusion on the
study. It is o be noted here that the film height gradually
decreases with ume. This shows the physical domain vanes
with time. To fix the computational domain into a finite fixed
region, a coordinate transformation has been used o solve
the problem.

Il. MATHEMATICAL FORMULATION OF THE
PROBLEM

Consider a film of viscous liguid of uniform thickness f,
on a disk whose radius s large compared with the thickness
of the film and rotates with a nonuniform angular velocity
(}(t). The origin is fixed at the center of the disk and the
z-axis pointing vertically upward is the axis of rotation. Let
(1,v,w) be the velocity components along (r, #, z) directions
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of a eylindrical polar coordinate system. The axisymmetric
equations of continuity and the Navier-Swkes equations are
Wrillen as

Ll
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Here p denotes the pressure. The suffix denotes the de-
rivative with respect o the indicated variables.

Boundary conditions at z=0 and z=hi1):

At the disk surface (z=10):

MNo-slip condition gives u=0, v=1>0r, w=1(.

At the free-surface z=h(1):

The dynamic boundary conditions at the free-surdface
are: (i) the jump in the normal stress across the interface is
balanced by surface tension times curvature and (ii) the shear
stress vanishes along the interface. Under the assumption of
planar interface these conditions are represented by

Pa—pt+2pdw=10, (5)
dewt+da=0 and J.uv=1), ()

where p 15 the atmospherie pressure and pois the dynamic
coefficient of viscosity of the fluid. The kinematic condition
at the free-surface is

dhi=wirh.t), (7}

which states that the free surface is advected by the fluid
molion,
The initial conditions (r=10) are

uir,z.0)=virz 0 =w(r,z0)=0,

g
h(0)y=hy, k=0 (&)
Introducing the following similadty varables:
wlr.z.ty=rflz. v (r.z.t)=rgl(z.r),
r?
wir.z,t)=wiz.t), and p=— o pA(z.t)+ Blz.t)p (9)

in the above system of Egs. (1)-(4), the following set of
equations obtained after equating the different powers of r
ane

af+ - gt +waf=Alz.n+ vd_f, (10}
dgt+2 fgtwdg=vi.g. i11)

1 s a.B _
dw+ —dw —vd_w+—=10, (12)
2 i < P
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2 f+d.w=0, (13}
. A=0. (14)
Substituting (9d) for p in Eq. (5) we get

A=0, B=2pva.w at z=h(t). (15)

Equations {14) and (13a) give A=0 and B(z.r) can be found
by integrating Eq. (12) with respect to z, from z to :
=h(r), and thus we can evaluate the pressure from (9d). The
following dimensionless quantities:

=1y, w=zlhy, H=hihy, F=fi},,

G=g/,, and W=w/{h,{},), i16)

may be introduced into the system of equations and bound-
ary conditions, where {1, and f, are the initial angular ve-
locity of the system and the film thickness (at r=10), respec-

avely.
The final set of dimensionless equations become
Re[d . F+F — G+ Wd, Fl=4d,,F, (17)
Re{#,G+2 FG+Wd,G]=4,,G, (18)
2F+d,W=0. i19)

The dimensionbess boundary conditions are

Flr =0, G(7,0)=0(7),;, W(70)=0,
d.Flr.H)=0, 4,G(T.H)=0, d H=W(7.H). (20)
The initial conditions of the problem are
F(O,n)=G{0,n)=W(0,5)=0,
(21)

Hi)=1,

where the Reynolds number Rﬁ=ﬂnhf,fv. In the present study
the mtation £ 7) has been chosen for three different forms
viz., (i) the disk starts with impulsive acceleration and main-
taing thiv constant angular speed thereafter, (i) the disk
starts impulsively and ity angular speed increases continu-
ously with time, and (iii) the disk starts ity rotation from rest
and ity angular speed increases continuwously to a finite value

d H{0)=10,

fay 7— 00,

. METHOD OF SOLUTION

The above coupled nonlinear system of Egs. (17)-(21)
with boundary conditions can be solved by the finite-
difference technigue. It is 1o be noted that the conventional
finite-difference method cannot be used in this problem as
the film height is continuously decreasing with time. For this
reason one has to transform the time-dependent physical do-
main to a fixed computational domain [0, 1] such that the
film thickness will always remain in fixed computational do-
main for all times. Furtther it is well known that fine grid
distribution is needed for large velocity gradients near the
disk surface when Reynolds number is large. [t should be
pointed out here that the said ransformation will be useful
for the fine as well as uniform grid distnbution. Following
Roberts.® we choose the transformation as below:
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lasH{T)—
fl: T}— 1 ay IH|I.WII
Here a;=[In{a,/b;)]"'. where a;=(c+1) and by=(c
— 1), The parameter ¢ controls the grid spacing in the physi-
cal domain. Small values of ¢ cluster grid points at the disk
surface where as large values make the grid spacing uniform
throughout the liquid film.

The Crank-Nicholson scheme s used o solve the trans-
formed nonlinear system of Egs. (17)—-(21) after approximat-
g the nonlinear terms according w0 the Newton’s lineariea-
tion technique (Fletcher” ). Computation is camied out in
cach time level on the following linear tridiagonal system of
algebraic equations:

|, 1<e<e. (22)

PG+ QG+ RGITI=(5,), (23)
PEI L+ QF 4 RFIT = (8,)0. (24)

Here n and j denote the time level and spatial level of dis-
cretization. The gquantities P,Q,RJS,};! , and f.‘:’g}lj-' are de-
fined as
B-A C
~ToE 1o
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a
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Al each and every time kevel (F" ' and .F"' are Lumpuu_‘:d
from (23} to (24) and then th axtal "f'Lli’J'LI[} Hr’" 15 ob-
tained from the finite-difference representation uf the conti-
nuity equation by using the values of F17 ' at that dme level.
The iteration process is continued until it achieves the de-
sired level of film height.

Computation is carried out on 50 nodes in vertical diree-
tion with o= 10" {equivalent 1o a uniform grid in the physical
domain). This gives the uniform grid distribution in the
physical domain as well as computational domain. Increase
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of Reynolds number needs the increase of grid points in the
vertical direction, under this situation one has to decrease o
drastically, depending upon the rotatonal speed of the disk.
The tme step has been calculated by

S1=0.25x% 8¢, (25)

This comes from the CFL condition of numerical stability.
The domain of 47 is chosen smaller than the stability domain
for linear equation due to the coupled nonlinear system. For
much smaller Reynolds number flow the time-step has to be
decreased further subject to condition (25).

IV. RESULTS AND DISCUSSION

The results of the numercal study on the effect of three
different types of nonuniform rotation on the development of
thin hgquid film on a spinning disk for various Reynolds num-
bers are presented as three different cases of studies:

(1) fmpulsive acceleration. In this section, it is assumed
that the disk is impulsively accelerated from rest to an angu-
lar velocity £, and maintains this speed for the entire period.
For Reynolds numbers 2, 5, and 10, respectively, Fig 1 pre-
sents the vardation of film thinning for different Re with re-
spect 1o time. 1L is clear from the figure that the thinning mie

i
FIG. 1. Film thickness vs time. Thick, dotted, and thin
- lines represent for Reynolds numbers 2, 5, and 11, re-
spectively.
T

increases with the decrease of the Reynolds number during
the time interval 0<2 7= 7, while film thinning increases with
the increase of the Reynolds number for the interval 7.< 7.
This anomalous behavior of the variation of the film height
in different time interval can be explained by considering the
two time zones 7= 7. and 7= 7. . Here 7. denotes a point on
the time scale. This point represents that tme, when the total
amount of fluid flowing out at a certain radial distance in two
Reynolds number become equal. It 15 obvious that the point
7. changes as the cormesponding Reynolds number changes.
In the first zone (7<= 7.), film thinning increases with the
decrease of the rotational speed of the disk. This seems 1o be
inconsistent with one’s common knowledge that film thins
faster with the faster rotation of the disk. A close scrutiny of
the physical process reveals that the azimuthal component of
velocity develops along the entire depth of the fluid faster
with slower rotation of the disk. This is doe w the fact that
the Reynolds number is the ratio of the centrifugal o the
viscous forces. Decrease of the Reynolds number implies
that the viscous force dominates over the centrifugal force.
As aresult, viscous action builds up azimuthal velocity field
faster throughout the depth of the fluid for smaller Reynolds
number. This result is found in Figs. 2, 3, and 4 which are

[.45%
0.§
.54

FIG, 2. Variation of azimuthal velocity G with time 7at
#=1{L1 H, thick and dotted lines for Reymolds numbers
I} and 5, respectively.

L

]

i
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FIG. 3. Variation of azimuthal velocity G with time Tat
=105 H, thick and dotted lines for Reynolds numbers
10 and 5, respectively.

1 T T L e
0.0 T =
0.8 i 4
.-.-"f-'.-'. -
T
L
0.2 -
0.l -
1 i 1 1 1 =
0 | o 3 i i

plotted at different depths of the fluid for Reynolds numbers
5 and 10. The faster development of the azimuthal velocity
ficld inroduces the comesponding radial velocity faster for
smaller Reynolds number only. Now, for 7= 7. one may
expect that the azimuthal velocity has developed on the
maximum portion of the depth of the fluid for smaller Re.
Consequently, for 7= 7., the radial velocity develops over a
greater depth for the Reynolds number Re than the come-
sponding depth for Reynolds number Re, =Re | . Figures 5, 6,
7, and 8 confimm the above view. As a result, the net amount
of fluid flowing out at a certain radius is more for Re; than
that at the same radius for Re,. This explains why the film
thins faster with smaller Re in tme interval 0< 7= 7., In the
second zone for 7= 7., azrimuthal velocity field has devel-
oped into the larger portion of the film depth for both large
and small Reynolds numbers and the coresponding centrifu-
zal force is large for larper Re. As a result, fluid moves out
of the disk guickly when its rotational speed is high.

The rate of liquid depleted from the disk at a fixed radial
distance from the center with time for different values of
Reynolds numbers is represented in Fig. 9. 1t is evident from
the figure that in a very small span of time fluid depletion
rale is high for small Re compare with the large Re as ex-
plained eadier. But for both large and small Re, () atlains its

maximum in a short interval of time and then decreases with
tume and ultimately attains an asymptote valoes at large
time. Furher it is clear from the figure that ( takes larger
time o attain this asymptotic value if Re is decreased. This is
due o the fact that the decrease of Re means the decrease of
the motational speed {1,. This implies that less amount of
centrifugal force acts on the fluid to draw it out at a fixed
radial distance.

Here, Q0 7)=J§ 2w ryud 5 denotes the rate of liquid de-
pleted in time 7at a fixed radial distance r=ry (7 !, say). It
is observed from the numerical computations that the trend
of velocily components are more or less same for the other
cases of rolations, viz. (i) starts impulsively and then in-
creases continuously with time Q(7)=04(1—&7)" ', (1)
=1, and (iii) smoothly increases from rest with time and
attaing a finite maximum value at large time (7)=10};(1
—exp{ —o7)). Here both § and o are positive constants.

It is observed that the variations of the film thickness is
markedly different for three cases of nonuniform rotations
and shown in Fig. 10 for §=0.1 and o=0.1 with Re=2_11is
clear from the figure that the continuously increasing rotation
of type (ii) makes the film thinner very fast. It is expected
that at large time the thickness of the film in case (iii) con-

G

i FIG. 4. Variation of azimuthal velocity G with time 7at
= L0H, thick and dotted lines for Reymolds numbers
10 and 5, respectively.
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FIG. 5. Vadation of radial velocity F with time 7 at 5
=il H, thick and dotted lines for Reynolds numbers
10 and 5, respectively.

FIG. 6. Vardation of radial velocity F with time 7 at 5
=14 H thick and dotted lines for Reynolds numbers 10
amd 5, mespectively.

FIG. 7. Vardation of radial velocity F with time 7 at 5
={15H, thick and dotted lines for Reynolds numbers
10 and 5, respectively.
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FIG. 8. Vardation of radial velocity F with time 7 at 5
=10 H, thick and dotted lines for Reynolds numbers
10 and 5, respectively.

FIG. 9. Depletion mte () vs time 7 Thick, dotted, and
thin lines cormspond to the Reynolds mumbers 10, 5,
anmd 2, mspectively.

FIG. 10, Variation of height H with time 7 for three
different forms of rotations. Thin, thick, and dotted
lines are correspond to rotation type (i), (i), and (i),
respectively.
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FIG. 11. Comparison on the variation of height H with time « for similarity
appmach adopted by Wang e ol (mctangles ) and the present analysis {solid
lines ).

verges Lo that of case (i). It should be pointed oul here again
that Wang et al* have also considered the same kind of
unsteadiness as the present case (ii), but solved by similarity
approach (SA). They reduced the N-5 equation to a set of
nonlinear ODE by using a special type of similarity variable
1 defined in their Eq. (6), which combines time and z. It is
therefore possible o compare the results of our case (ii) with
that of Wang et al.” To do that, ket us start with their Eqg.
(11}, which can be expressed in dimensionless form using
Eg. (16) of the present analysis as

H{7)=Re "{1-5n)"8. (26)

Here, H(7), Re, and 7 have the same meaning and ¢x-
pression used in the present study. S{=a/(},) and 8 are the
dimensionless parameters used by Wang er al  §=0.1 in
case (i) of the present paper is equivalent to §=0.1 in (26).
Now it is possible to pick out corresponding 8 from Fig. 1 of
Wang et al.** for $§=0.1 or by using their Eq. (27), which is
very accurate for small S-values and gives §=02739. 1
=0 in (26) above gives H(0)=Re " . But according to
the definition, H{0) should be equal 1o 1. Therefore Eqg. (26)
reveals that the analysis of Wang er al. M umphicitly implies
that

Re=p2. (27)

This shows that their analysis is valid only for one paricular
Re for each G-value obtained from their Fig. 1 which relates
8§ with 8. For the present purpose of comparison between
two studies we have for §=0.1, #=02739, and Re
=0.075021. Figure 11 depicts the results obtain from our
finite-difference scheme for case (ii) of N-5 equations and
that obtaned by Wang et al. = through similarity approach. 1t
is clear from the graph that both the results agree very well.

V. CONCLUSION

To obtain the faster thinning spinner should run impul-
sively at the beginning and the rate of spinning should in-
crease with tme untl the deswed thinpess 15 obtamed. By
increasing the spinning rate one may avoid hard skinning

Unsteady thin liguid film on a spinning disk 1867

which is & common phenomenon in spin-coating. OF course
this result needs experimental confirmation. It should be
cleardy bome in mind that the disk is fully wet and covered
by the flud so that the moving contact hine case does not
arse. In other types of problems related 1o the contact line
one may observe fingerng instabilities on the rim of the
moving drop (Troian ef al.'® and Melo er al '), 1t should be
noted that in the present case the film is very thin and across
the depth viscous effect is very prominent o regularze any
kind of diswrbance due o the deformed interface. Further it
should be pointed out here that the undedying theory for film
flow is based on the assumption that the free surface remains
flat during the entire spinning period, so that, a self-similar
solution exists for the velocily fields. In this connection it
should be mentioned here that Matsumoto er al.* have stud-
ied the spreading of a hemispherical liquid drop on a spin-
ning disk and shown that the film thins uniformly after a very
short time [0.106 s] from the start of the rotation. 1t is there-
fore expected that the initial flat deposition of the liquid film
will thin uniformly much faster than the hemispherical drop.
Therefore, one may conjecture from the present study that
the removal of the r dependence for the physical variables
takes place in a very short span of time. In other words, the
self-similar velocity field may be expected to exist within a
very shor interval of time from the stan of the rotation. The
case of the nonuniform free surface will be considered in a
future work. Further we would like to put a few remarks
regarding the strengths and weaknesses of the two different
approaches, viz., the similarity approach (SA) and finite dif-
ference (FD) methods. In order 1o achieve similarity solu-
tions one has o compromise with the generality of the prob-
lem although ODEs can be solved more accurately than
PDEs. On the other hand (FD) retains its versatility while
solving the PDEs.
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