A PT-symmetric QES partner to the Khare—-Mandal potential
with real eigenvalues
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Ahbstract

We consider a PT-symmetric pariner to Khare—-Mandal’s recently proposed non-Hermitian potential with complex eigen-
values, Our potential, which is quasi-exactly solvable, is shown to possess only real eigenvalues.
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Exploraton of non-Hemmitian Hamiltonians, in par-

ticular the PT-symmetne ones, 15 currently a topic of

aetive research interest (see, for example, [1-14]). As
15 well known, PT-symmetne Hamillonians are con-
jectured [15] to preserve the reality of ther bound
state eigenvalues except possibly for situations when
PT may be spontaneously broken. It should be noted
that PT-invariance in itself is not a sufficient condition
for the Hamiltonian to possess an entirely real spec-
trum [1.2].

Recently, Khare and Mandal (KM) have mguired
[9] into the invariance of a non-Hermmitan Hamiltonian
under the combined operations of a complex shift
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(x = a—x,a=1i(x/2)) and time reversal (p — —p,
i — —i) symmetries and have argued, by consider-
ing a specific model potential, that the gquasi-exactly
solvable eigenvalues can emerge as complex conjugate
pairs if one of the potential parameters 15 an even inle-
gerorifitis an odd integer and, in addition, the other
potential parameter is large enough. They also identify
their complex shift with that of parity and as such ook
upon their potential as the one enjoying PT-symmetry:

Vix) =—(r cosh2r —iM)*, (1)

where the parameter £ 18 real and M s esricted o
integer values only.

We wish to point out in this Letter that although
the above potential s invariant under the aforesad
transformations x — a — x and § — —i as rightly
claimed by KM, it i non-PT-invariant because with
a imagmary these tansformations do net commute
between themselves. We also observe that potential (1)



B. Bagchi eral / Physics Letters A 289 2000) 3438 35

does admit of a PT-symmetnc partner, namely

V(x) =—(f sinh2x —iM)? (2)

(where, asin (1), ¢ 15 real and M an integer) which,
as can be easily checked, 15 invariant under the joint
action of parity (x — —x ) and time reversal (7 — —i).
Further, it 15 quasi-exactly solvable as we demonstrate
below.

We begin by considering simultaneously the KM
potential (1) and its modified version (2). The come-
sponding Hamiltonians are (A =2m = 1)

2
HHz_E — (¢ cosh2x —iM)*, (3)
d* 2
H') = ——— —({ sinh2x —i M), (4)

which can also be expressed together as

Hfilz__—[ (e te ‘""}—:M] (5)

MNow, under a change of variable x = (1,/2)logz,
H'= become

d? d 1 2
HS = dz? — —dz— — [E(z + —) —:'M] ;

ﬂ';_: dz 2 Z
(6)
A such if we set
pB(g) = ANAS DD, (7)

Hamilomians (6) can be mapped o therr gauge-
transformed forms

H = [p®@)] " B® ()], (8)
From the relations
o d d u
L=+ —, (9
Z Z i
Sl i B B (10)
a2 a2 ™ d: T w

where primes denote differentiations with respect oz,
we easily obtain

_43”__[5(zi1)—i,w]_. (11
L 2 z

Taking now into account the expressions

Wo1-M 1)

— = +i=|1F=|]. (12

o 2z ,4( :FEI }
i

[T w1 —-M £ 1

Eo(B) - it (13)

we armive at the following representations of H;:]
HF = —4335;3 —[2igz* —4(M - 2)z F zfz]di:
4+ 20(M -1z +2M — 152 (14)
We thus find that the Schriidinger equation
HE ) () = Sy H(x) (15)
15 eguivalent Lo

H;:]¢'l:]{3}=£[:]¢l=]{3}~ {16}'

where & (x) = u™® (209 (2).
It should be noted here that in terms of the s6(2, &)
generators [16]

d d d
Jo=z3e — 24z, Jh=z— —|. J = —
dz 1< ! dz ! dz
(17)

the gauged Hamilonians H',::] can be rewrillen as

H =402 —2ig Iy 22600+ M2 F¢2 (18)

(provided j = (M — 1)/2) in the troe spirit of guasi-
solvability [16].

We now tum to some specific cases of ¢'='(z) by
focusing on the following choices:

(i) ¢‘=]{z}—c‘:],
(i) ¢F () =c; +c. v{c‘.z];em

(iii) ¢'= ]{‘}'—‘":] +C-Er ‘72 {-:"7 #{}}'
(iv) ";11'[ ]{-.::' —f':] +C| 4_ -|-,|:",._r + '!. =l '!- {C
=0,

where c':-:] (i =10.1.2,3) are constants. It s obvious
that we can generalize ¢'='(z) to higher degrees of ¢
apart from the ones chosen here.

ﬁrstu{}nsidcr¢[ ) }_q] ! For this case, Eqg. (16)

becomes

2ip(M—z4+2M — 15 —E¥ =0 (19)



36 B. Bagchi eral / Physics Letters A 289 2000) 3438

leading o
20(M —1)=0, (20)
M —1xl—EF =g (21)

Henee M =1 (j =0) and, as a result,
E® =15 (22)
The accompanying wave functions read

1,5"[_] o E[I; {21 oosh2y ] (23)

1":"[_] Dl'.;.'[‘.*; P sinhlr_ (24)

We therefore see that for M = 1 the energy eigenval-
ues comesponding to (1) as well as its modified PT-
symmetric version (2) are real. _

Mext consider ¢[:]{z}l = c't[]zl -+ c'llz]z. Eq. (16)
Zives

2L (M —2) ¢ =0, (25)
2ip (M — el + (6M — 95 ¢2— E®) ! =0,
(26)

L2 + (M -1 F - EF)T =0, 2D
Eq. (25) implies M =2 while Eqgs. (26) and (27) give

Y e S (28)
—e@®eiF L2506 =0, (29)
wheree'® = E=) 347,

Solving (28) and (29) we get "[:'_] = x2i{ (com-
plex) and €' = £2¢ (real). We thus find for M =2
(f = 1/2) the results
EXF =3+2ic -2, (30)
1'!r_[_—] EX'.L’[‘.{".E] oosh2y (f—.l.' :|:L’l.} (31)

for the KM potential and

EST =3+20 412, (32)
1'5_;—] D,-_,,_u-'-"';-"z] sinh2y {f—.l.' :I:ff'l.} (33)

for potential (2). Expectedly the eigenvalues for the
KM case trn out o be a complex conjugale pair,
M =2 being an even integer. However, those for the
PT-symmelric potential (2) emerge real as bome out

by (32).

Procecding now to the case ¢'='(z) =Ct[]:] =T CEI]E
+ci'z2, we find from Eg. (16)

2ic(M — e =0, (34)
2i5(M —2)ci + (10M — 25 F 4% — E®)ef™
=), (35)
2ig(M — Dy + (6M — 95 £2 — ES)c)™
+4itch =0, (36)

£2Le +(2M -1 57— EF)e™ =0. (3D

Here we have M = 3 and, defining ¢'=' = E'= —
942, we get

2icer — (€ +4) ™ =0, (38)
dicey — B Ldiges =0, (39)
—(e® + 4)eg™ £2ic077 =0. (40)

Solving (38)-(40) we obtain for M =3 (f = 1) the
solutions

i+ 2
E, ' =5-15
(+) 2 /
EXN=T7-0" 4241412, (41)
1}'&[]_:] o U X Ginh 2x, (42)
n ; ; i {
1'5":: ) g T cosh Ty [2“”5‘“ Ty — E(l e ‘I,"I 4{2)]
(43)
for the KM potential and
E7 =54
EQO =7+ 22/1+472, (44)
lﬁft[]_] o 8 AIsinh2x e h oy, (45)
P oc IO iy — — (1414 4¢2)
N ¢
(46)

for potential (2). Contrary to the Khare-Mandal poten-
tial ( 1) for which two of the eigenvalues (namely El:_']}l
become complex if [£] is larger than the eritical value
£ = 1,2, all three eigenvalues of the PT-symmetric
potential (2) remain real for all values of £

We now take up the case (iv), namely ¢[:]{:} =

q[]:] + c'[l:]: + c‘f_.:]zl + c'_i:]z'1’, for which we obtain
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from Eq. (16) the melations

2if (M —d)ey™ =0, (47)
2L (M —3)cy™ + (14M — 495 £* — EF) L™
=0, (48)
2t (M — e + (10M — 255 £ — E®) Y
+6itel =0, (49)
2ig (M — el + (6M — 95 {2 — E®)
+diges =0, (50)
£2ice +(2M -1 F 70— EFN)T =0, (51)

We are thus led to M = 4 and, defining ¢'=' = E'= —
1542, we get

2icey — (e + 8)cl™ =0, (52)
dice;™ —eFel™ Loice) =0, (53)
6ites™ —eBerH L 4ipdiH =0, (54)
—(e® 4+ 8)ey™ £2ite] =0 (55)

An analysis of Egs. (32)—(53) reveals that for con-
sisteney of the equations ¢ = have o fulfill the condi-
Lion
(e +8)[(e™ + 8)(e= £ 1607) £ 247 %]

+ 144 =0, (56)
This fourth-degree equation can be factorized into bawo
quadratic ones, namely
(e +8)e' 2aig) + 1262 =10, (57)
(' +8)(e £4g) — 1207 =0 (58)

Let us now consider the solutions of (537) and (538). 11
is obvious that in the former case, all the four solutions
are complex. This corresponds o the KM scenano.
However, in the latter case (which corresponds o the
PT-symmetric model (2)), we get quadratic equations
in €'~ with real coefficients:

e a2+ e T FAp(E8— 30 = 0. (59)

For the upper signs we obtain two real solutions for
any £:

=20+ prafi-r 422, 60)

and the same is true for the lower signs:
r‘_j1==—z{2—.;}i41,'.31+¢+¢1. (61)
Note that we can combing the four real solutions given
by (60) and (61) in the manner

!
e =—22+af) +dr\fl—af + {2, (62)

whereo, T =4, —.
Thus corresponding to the PT-symmetric potential
(2) our findings for M =4 (j =3/2) are

=1 ’) 2 2
E7=1-2a0 +{"+4r/1 —al + {5 (63)

o,
) L,[J'l;.-"l]sinhlr {L,—.l.' _ﬂ_,-‘_,.t'}

Irl—
&, T
i {
gnh2r — — 1 z
x[smh_.r ;‘(1+I1'"1 ab 4+t )]

(6d)
To summariee, we observe from the foregoing
treatment of the cases M = 1.2, 3.4 that unlike the
case of KM potential in which QES cigenvalues occur
in complex conjugate pairs for M an even integer but
may be real for M an odd integer and |£ | smaller than
or equal to some entical value £, our PT-symmetnc
potential (2) exhibits real energy cigenvalues both for
even and odd integer values of M oand any value
of £ It should be remarked that although we restricted
our discussion up w0 M =4 which comesponds to
keeping a fourth-degree wave function, it is clear that
we can deal with, in an identical way, higher degree
contributions in ¢'='(z). We conjecture that all of
them will lead to real eigenvalues.
Finally, we can wrte down recurrence relations for
polynomials by substituting

od

Wy R (EHR) .z
=Y P r_izf.;‘

n=i
in the Schridinger equation (16). It can be readily seen
that the coefficients By (E=)) satisfy the three-term
recursion relation

R (E9) = (B — ) RO (ED)

41

—ay R (E), (65)
where
@y =F4n(M —n)?, (66)
b}r:J=4J!{JW—1—11}+21W_1:F;.1_ (67)
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If M =k, a positive integer, then ﬂ;i] =} and,
for n = k, Eq. (65) reduces to a two-lenm recursion

relation. As a consequence, Ri:_.]l . and more generally,
ﬁ'i:_.ir . 18 proportional to R,E:]:

(=) _ plE) giEl
R, =RTR™, (GHE)

where ﬁ_',[rzl satishes the three-term recarson relation
Gl=] =i £ =)y pix) =3
‘I;"l.lr—l{El } = {El - b.tf-—Jr}Rn {El }
(=) plE) ()
_H.H-.-JrF'Jr—l{E } (69)
QES eigenvalues are oblained as solutions of the kth-
degree equation Rfi]{E[=]} =1
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