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Abstract

We provide an alternative simple proof of the necessity of entanglement in quantum tele-

portation by using the no-disentanglement theorem. We show that this is true even when

the state to be teleported is known to be among two noncommuting qubits. We further show

that to teleport any set of commuting qubits, it is su�cient to have a classically correlated

channel. Using this result we provide a simple proof of the fact that any set of bipartite

entangled states can be exactly disentangled if the single particle density matrices of any one

party commute.

The idea of quantum teleportation is to send an unknown state to a distant party without actually
sending the particle itself using only local operations and classical communication (LOCC) between
them. A protocol for this scheme was proposed by Bennett et al. [1], where a maximally entangled
state is required as channel state between the two parties. In teleporting a state from one party
to another where only local operations and classical communication is allowed between the two
parties, the question of necessity of entanglement of the channel state is a fundamental one. This
issue has been discussed in a sketchy way in [1] as well as in [2]. It is in Ref. [3, 4] where this
issue has been discussed in a somewhat detailed manner. In this letter we shall discuss this issue
of necessity of entanglement of the channel state for exact quantum teleportation of a given set of
states of a single qubit. In this direction we provide an alternative simple reasoning to show that
for universal teleportation, one necessarily requires an entangled channel state. Next we show that
entanglement of the channel is necessary even to teleport any set of noncommuting qubits. These
proofs are independent of any teleportation protocol. We then provide a protocol by which any
set of commuting states can be teleported through a classically correlated channel. This allows us
to give a simple proof of the fact that the entangled states of two qubits, whose reduced density
matrices of one party commute, can be disentangled exactly.

We �rst provide a simple reasoning as to why entanglement of the channel state is necessary for
exactly teleporting an unknown qubit. Consider a separable channel state between two distant
parties, Alice and Bob. Suppose that it is possible to teleport (exactly) an arbitrary qubit (call
it qubit 1) from Alice to Bob through this channel state. Now this qubit may be one part of a
two qubit entangled state ρ12 at Alice's side. As Alice and Bob do not possess any shared entan-
glement before implementation of the teleportation protocol, they would not share any after it.
Therefore after the teleportation protocol, the initial entangled state ρ12 would get transformed
into a separable one with reduced density matrices remaining intact [5]. But this would make uni-
versal disentanglement possible contradicting the No-Disentanglement theorem [6]. So to teleport
exactly a universal set of qubits, entanglement of the channel state is necessary [9].
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We now show that entanglement of the channel is necessary even for exactly teleporting any set
of two nonorthogonal states [11].

Consider the following set of bipartite normalized states,

F = {|0α〉, |1β〉, 1√
2
(|0α〉+ |1β〉)},

where |0〉, |1〉 are orthogonal states and |α〉, |β〉 are nonorthogonal states. We �rst show below
that the set F can not be exactly disentangled into separable states [12], in a fashion similar to
that in Mor [7]. If possible, let there exist a unitary operator U , acting on these states together
with a �xed ancilla state |A〉, realizing exact disentanglement of these states. So we must have

U(|0αA〉) = |0αA0〉,
U(|1βA〉) = |1βA1〉,

U(
1√
2
(|0αA〉+ |1βA〉)) =

1√
2
(|0αA0〉+ |1βA1〉),

where the ancilla states should satisfy the relation 〈A0|A1〉 = 1 (to keep the reduced density
matrices intact). This will not change the entanglement of the state 1√

2
(|0α〉+ |1β〉) at all. Hence

the set F cannot be exactly disentangled. (This result also shows that universal disentanglement
is not possible.) Interestingly, Mor [7] proved the same result using a set of four states, and
conjectured that this result can be proved with fewer (i.e., less than four) states.

Consider now a separable channel state between two distant parties, Alice and Bob. Assume that
the set {|α〉, |β〉} of two nonorthogonal states can be teleported exactly from Alice to Bob through
this channel state. Hence any mixture of P [|α〉] and P [|β〉] can also be teleported through this
channel state, as the channel keeps no imprint of the states |α〉 or |β〉 after their teleportation.
Therefore Alice would be able to (exactly) teleport to Bob, the state of the second particle of an
arbitrary two-particle state chosen from the set F = {|0α〉, |1β〉, (1/√2)(|0α〉 + |1β〉}. Since the
channel state is separable, the set F would get exactly disentangled. But this is impossible, as was
shown above. So we conclude that entanglement of the channel is necessary for exact teleportation

of a state known to be among two given nonorthogonal states.

Next we show that teleportation any two noncommuting qubits also requires an entangled channel.
We shall require the following lemma.

Lemma: The set S = {ρ1
AB, ρ

2
AB} of two 2 ⊗ 2 states, where at least one of them is entangled,

cannot be exactly disentangled by applying any physical operation on the side B, if the reduced
density matrices on the side B do not commute.

Proof : As the reduced density matrices on the side B do not commute, there exist two nonorthog-
onal pure qubits |ψ〉 and |φ〉, such that trA(ρj

AB) = λjP [|ψ〉B] + (1− λj)P [|φ〉B ] (j = 1, 2), where
λ1 6= λ2, and at least one of them is di�erent from both 0 and 1. If possible, let UBM be an
unitary operator acting on party B and an ancilla M , attached with B, realizing the disentan-
gling process. Then after disentanglement, the joint state of the two parties A and B becomes
ρ′jAB = trM [IA⊗UBMρj

AB⊗P [|M〉]IA⊗U †
BM ] (j = 1, 2), |M〉 being the initial state of the ancilla.

As we demand exact disentanglement, we must have

trB [ρj
AB] = trB[ρ′jAB], (1)

trA[ρj
AB] = trA[ρ′jAB ]. (2)

Eq. (1) holds trivially, as nothing has been done on party A. Eq. (2) gives

λjP [|ψ〉] + (1− λj)P [|φ〉] = λjtrM [P [UBM (|ψ〉 ⊗ |M〉)]]
+(1− λj)trM [P [UBM (|φ〉 ⊗ |M〉)]], (3)

for j = 1, 2. Eq. (3) will be satis�ed if and only if

UBM (|ψ〉 ⊗ |M〉) = |ψ〉 ⊗ |M0〉,
UBM (|φ〉 ⊗ |M〉) = |φ〉 ⊗ |M1〉.

}
(4)
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Unitarity demands that the ancilla states |M0〉 and |M1〉 should be identical. Hence none of the
states in the set S will be changed (except a possible change in the identi�cation of the particles)
by this disentangling process. Thus the set S cannot be exactly disentangled by applying a
disentangling operation on B's side.♦
We now show that to teleport any set of noncommuting qubits, entanglement of the channel is

necessary.

Suppose that it is possible to teleport a state chosen at random from the set {ρ1, ρ2} of two
noncommuting qubits through an unentangled channel. If both of the states ρ1, ρ2 are pure, it
has been shown above that they cannot be teleported exactly through an unentangled channel. So
we assume here that at least one of ρ1, ρ2 is a nonpure state. Since ρ1 and ρ2 are noncommuting,
there uniquely exist two nonorthogonal states |ψ〉 and |φ〉 such that

ρj = λjP [|ψ〉] + (1− λj)P [|φ〉] (j = 1, 2),

where 0 ≤ λj ≤ 1, λ1 6= λ2, and at least one of the λj 's is di�erent from both 0 and 1. Let us

choose two 2⊗2 states ρ1
AB and ρ2

AB (at least one of which is entangled), where trA[ρj
AB] = ρj , for

j = 1, 2. Then the set {ρ1
AB, ρ

2
AB} can be disentangled exactly by telporting the states of B's side

through the unentangled channel. This has been shown to be impossible. So exact teleportation
of any set of noncommuting qubits requires entanglement of the channel.

The obvious next question is whether entanglement of the channel is necessary even to teleport a
set of commuting states. We know that for teleportation of two orthogonal states, no correlation
(quantum or classical) of the channel is required - a phone call is su�cient. Here we show that for
teleportation of any set of commuting states, a classically correlated channel state is su�cient.

Suppose that Alice has to send any one of the states from the largest set of commuting qubits
{wP [|0〉A1 ] + (1 − w)P [|1〉A1 ] : 0 ≤ w ≤ 1} to Bob ({|0〉, |1〉} is a known orthonormal basis) and
Alice and Bob share the separable channel state 1

2P [|00〉A2B] + 1
2P [|11〉A2B] between them. The

three particle state is
wP

2
[|000〉A1A2B] +

(1 − w)
2

P [|111〉A1A2B]

+
w

2
P [|011〉A1A2B] +

(1− w)
2

P [|100〉A1A2B].

Alice applies a discriminating measurement between the subspaces associated with the following
two-dimensional projectors: P1 = P [|00〉A1A2 ] + P [|11〉A1A2 ] and P2 = P [|01〉A1A2 ] + P [|10〉A1A2 ].
If P1 clicks, the state of the whole system system becomes wP [|000〉A1A2B]+(1−w)P [|111〉A1A2B]
so that Bob's state is wP [|0〉B]+(1−w)P [|1〉B . Alice just rings up Bob to tell him the result of her
measurement. But if P2 clicks, Alice informs this to Bob and he has to apply the unitary operator
that converts |0〉 → |1〉 and |1〉 → |0〉 (i.e. σx) on his particle. In this case the three-qubit state
transforms to wP [|010〉A1A2B] + (1 − w)P [|101〉A1A2B ]. Tracing out A1 and A2, Bob's particle is
again in the state wP [|0〉B ] + (1−w)P [|1〉B . Thus we conclude that any set of commuting states
can be teleported via a classically correlated channel.

Here one may note that this teleportation protocol is essentially a 1 → 3 broadcasting protocol
[13] where the third particle is at a distant location, and where there must be a further operation
with σx on A2 in the case when P2 clicks. This can be easily generalized to a 1 → N broadcasting
protocol by using the state 1

2P [|000....0〉B1B2...BN−1]+
1
2P [|111.....1〉B1B2...BN−1 ] as the blank state

where only two particles, the particle whose state is to be teleported and B1 are required to be at
the same location.

One can now relate the properties of the teleportation channel state (leaving aside the accom-
panying LOCC that are also required in any teleportation protocol) with the set of states to be

teleported in the following way:[14]

(1) For a set of orthogonal states (where cloning is possible), no correlation (quantum or classical)
is required in the channel state.

(2) For a set of commuting states (where no-cloning holds but broadcasting is possible), classical
correlation in the channel is su�cient for teleportation.
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(3) For a set of noncommuting states (where even broadcasting is not possible), an entangled
channel state is necessary for teleportation.

Lastly we show that exact disentanglement of a set of 2 ⊗ 2 states is possible when the reduced
density matrices on one side are commuting [16], without applying the partial transpose operation
[17]. This easily follows from the fact that the state of the side in which the density matrices
commute, can be teleported exactly through a separable channel. This fact along with the above
lemma implies that so far as local operations are concerned, any set of 2 ⊗ 2 density matrices
between two particles 1 and 2 can be exactly disentangled if and only if the reduced density
matrices of at least one party commute.

Recently some attempts has been made to understand whether quantum teleportation is essentially
a nonlocal phenomenon [3, 18]. In particular, Hardy [3] has shown that in general, teleportation
is conceptually independent of nonlocality. To show this he constructed a toy model which is local
(in the sence that this model has a local hidden variable description) and in which no-cloning
holds, but still teleportation is possible. Then the question arises whether there exists a bipartite
state in quantum theory which has a local hidden variable description but is still useful (as the
channel state) for exactly teleporting a set of states which cannot be cloned. In this letter we
have shown that this type of scenario really exists in quantum theory. There is a set of states
(any set of commuting states which is not simply a set of orthogonal states) which cannot be
cloned but can be teleported through a classically correlated channel state, which obviously has
a local hidden variable description. We have also shown here (in a protocol-independent way)
that in exact teleportation of any set of noncommuting states (where no-broadcasting [13] holds
in addition to no-cloning), entanglement of the channel is necessary.

Based on the results till found, one would perhaps be inclined to think that it is the no-cloning
theorem in quantum mechanics which necessitates the use of entanglement in teleportation chan-
nel. But we see here that it is not true. Rather one can see that noncommutativity plays the
fundamental role in deciding the necessity of entanglement of the channel. This interplay between
noncommutativity and entanglement in teleportation can further be exploited to probe the more
di�cult question as to whether quantum teleportation is a fundamentally nonlocal phenomenon.

The authors acknowledge Debasis Sarkar for useful discussions. U.S. acknowledges partial support
by the Council of Scienti�c and Industrial Research, Government of India, New Delhi.
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