RELATIONSHIP BETWEEN 5TRONG MONOTONICITY PROPERTY,
P,-PROPERTY, AND THE GUS-PROPERTY IN SEMIDEFINITE
LINEAR COMPLEMENTARITY PROBLEMS

T. PARTHASARATHY, D. SAMPANGI RAMAN, anp B. SRIPARNA

In 2 recent paper on semidefinite linear complementarity pmblems, Gowda and Song (3000
introduced and stdied the P-property, P,-property, GUS-property, and strong monatonicity pmperty
for linear transformation L: §% — 5%, where 57 is the space of all symmetric and real n = n matrices.
In an attempt to charactenize the Po-property, they mised the following two questions: (i) Does the
strong monotonicity imply the Py-propenty ? (i) Does the GUS-property imply the FPr-property? In
this paper, we show that the strong monotonicity property implies the P,-property for any linear
transformation and describe an equivalence between these two properties for Lyapunov and other
transformations. ‘We show by means of an example that the GUS-property need not imply the
Py-property, even for Lyapunov tmnsformations.

1. Introduction. Let $" be the space of all symmetric real nx n matrices and 57
the space of symmetric and real nx n positive semidefinite matrices. Given a linear
transfomation L: §" — 8" and @ £ §", the semidefinite linear complementarity problem
SDLCP{L, 8%, @) is the problem of finding a matrix X € 8" such that

Xes§', Y=LX)+Qe§" (X, ¥)=u(XY)=0,

where "t denotes the trace.

This problem was originally introduced by Kojima et al. (1997), although in a slightly
different form. The SDLCP can be considered as a generalization of the linear complemen-
tarity problem (LCP); see Cottle et al. (1992). Motivated by various useful results in the
linear complementarity theory, Gowda and Song (2000) introduced the P, GUS, and various
other properties for the SDLCP. For related results on SDLCP, see Gowda and Parthasarathy
{2000). As mentioned in Gowda and Song (2000, the commutativity of X and L{X) makes
the analysis of P-property simpler, since X and L{X) can be simultaneously diagonalized.
The guestion that naturally anses is, “What can we say about the linear wansformations for
which X and L(X) do not commute?” This, as has been pointed out in Gowda and Song
{2000), motivated the introduction of the P)- and Pi-properties. So the Py-property can be
thought of as a variation of the P-property of a linear transformation in SDLCP. We know
that when L has the strong monotonicity properly, then it satisfies the P-property. We have
shown that if a linear transformation L satisfies the strong monotonicity property, then it
also satisfies the Py-property. For some special type of tansformations, for example the
Lyapunov transformation, we could show that the strong monotonicity property and the P,-
property are equivalent. However, if L is monotone but not strongly monotone, then from
Example 1 it is clear that it may not satisfy the P.-property.

The significance of the P,-property also lies in the fact that it can be thought of as a
generalization of the P-matrix condition of the LCP, since the two conditions are equivalent
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for a matrix M; see Gowda and Song (2000). Hence, an interesting problem would be to
derive relationships between the P,y- and GUS-properies. Gowda and Song (2000) showed
that the Py-property always implies the GUS-property. We show here, by means of a coun-
terexample, that the converse is not always true. We have also shown that if the matrix A is
positive definite, then the Lyapunov transformation satisfies the Po-property, and vice versa.
Also, if we make the additional assumption that A is symmetric, then for the Lyapunov
transfommation and for the ransformation M, { X) defined by AXA, we could show that the
GUS-property and the P;-property are equivalent.

L.1. Preliminaries. Fora matix A € R we recall the following definitions.

(1) The trace of A is the sum of all diagonal elements of A or, equivalently, the sum of
all eigenvalues of A,

{(2) A is positive semidefinite (definite) if the usual inner product {Ax, x) = 0 (=0) for
all nonzero x € R,

(3) A is positive stable if every eigenvalue of A has a positive real par.

(4) A is orthogonal if AAT =1 = ATA, where [ is the n % n identity matrix.

We wnte X = 0 when X 8%,

We list below some well-known matrix theoretic properties; see Bellman (1995) and
Zhang (19949).

(1) X =0= PXP" = 0 for any nonsingular matrix P.

(2) X=0,Y=0=({X, V=10

(3) X=0,Y=0,{X, Y)=0=X¥=YX=0.

DerFiviTioN 1. For a linear transformation L 8" — 8", we say that

(1) L has the GUS-property if for all 0 € 8", SDLCPL.(Q) has a unique solution.

(2) L has the strong monotonicity property if {L{X), X} = 0 for all nonzero X £ §".

{3) L has the monotonicity property if {L{X), X} =0 for all nonzero X £ §".

(4) L has the Po-property if X =0, ¥ =0, (X—FV)LIX -¥Y}IX+ V) =0=X=7T.

(3) L has the P-propedy if X and L{X) commute, XL(X) = 0= X =0.

Note that if L has the strong monotonicity property then L has the P-property.

{6) L has the cross commutative property if for every @ € 8" and solutions X, and X,
of SDLCPR( L, ), the following holds:

X, Y,=YX, and X.,¥, =YX,

where ¥, =L(X)+0Q, i=12
DerFiviTiON 2. For a matrix A € R"*" we define the corresponding Lyapunov ransfor-
mation L4 8" — 8" by

LX)=AX+XxA".
THEOREM 1 (KARAMARDIAN 1970). Consider a linear transformation L: 8" — 8" If

the problems SDLCP(L,0) and SDLCP(L,E) for some E positive definite have unigue
sofutions, then for all Qe 8", SDLCP(L, Q) has a solution.

THEOREM 2 (Gowna aND SonG 2000).  For a linear transformation L: §" — 8", the
SJollowing are equivalent:

(1) Foraff Qe 8", SDLCP{L, Q) has at most one solution.

(2) L has the P- and cross-commutative properties.

(3) L has the GUS-property.

THEOREM 3 (Gowna aND SonG 2000).  For a matrix A€ R, consider the Lyvapunov
transformation L. Then the following statements are equivalent:

(1) L, has the GUS-property.
(2) A ix positive stable and positive semidefinite.



328 T. PARTHASARATHY, [3. 5. RAMAN, AND B. SRIPARNA

2, Main resulis. Gowda and Song (2000) have shown that the Pr-property always
implies the GUS-property. The following example shows that the converse need not be true.

ExampPLE 1. For A= [': ;], consider the Lyapunov transformation L,. Since A is
positive semidefinite and positive stable, L, has the GUS-property by Theorem 3.

Now let X=[?, J]and ¥ =[' ] Then X =0, ¥ =0 and (X —¥)L (X —¥)x
(X+¥)=0.

Since X #£ ¥, L, does not satisfy the P-property, we see that L, although monotone,
does not satisfy the Po-property. Thus we see that although the Pi-property always implies
the GUS-property (Gowda and Song 20000), the converse is not always true.

It is obvious from the definition that for a given L: §" — 8", if it satisfies the srong
monotonicity property, then it satisfies the P-property. Below we prove a stronger result.

THEOREM 4. [f a linear transformation L : 8" — 8" has the strong monotonicity pmp-
erty, then it has the P,-property.

Proor.  We will prove this by contradiction. Suppose there exists an X =0 and ¥ =0
such that (X —FILIX =YX +¥F) =0

Assume X £ ¥ and without loss of generality, let X + ¥ % 0. Then there exists an orthog-
onal matrix U7, positive numbers A, A, .., A, (1 = r=n) with

. [0
Ulix+vriv=pn|" I3,
(XY [u u]

where D:diug(.,,.-“lﬁ_, ..... .,_.fr, Lissan 1) and [, is the identity matnix of size rxr.
Let A=(D)'UTXUD and B= (D) 'UTYUD ™. Then A and B are symmelric positive

semidefinite with I o
A+B=|~ .
& [n u]
L_[A 0
TLooof
B E O
ool
where A and B, are r x r matrices. Now premultiplying and postmultiplying (X — ¥)x

LIX—=YNX+Y¥)by DUT and UD', respectively, and introducing appropriate matrices
between the three factors of (X — VILIX — Y X+ ¥), we gel

It follows that

and

(A—B)[L(A)—L(B)](A+B) <0,
where L(Z) = DUTL(UDZDUT)UD. Note that L is a strongly monotone linear transfor-

mation on 8. Wriling
= - P 0
L(4)-L(8)= [Q;- %]

A—B, 0[P QO .
Lr([ 0 {}][Q? R])={LH—3J~A—B}H},

e, (A, —B)P] = 0. On the other hand,

we gil

(A—B)[L(A) —L(B(A+B) =<0

gives (after simplification) (A, — B.)P] =0, leading w a contradiction. Hence, we must
have X =¥, giving us the P,-property. O
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Remare. Theorem 4 is false if the transformation is just monotone; see Example 1
However, one can prove the following proposition.

Proposmion 1. Let L 8" — 8" be monotone. Suppose L has the following property:
X=10, ¥ =i, (X-Y)L(X-Y}X+¥)=0=X=VY.

Then L has the Py-property.

The proof follows along lines similar to those of Theorem 4, and so we have omil-
ted it. This proposition is motivated by Example 1. Regarding the converse statement of
Theorem 4, we do not have a complete answer. We can give a partial answer. We show that
for the Lyapunov transformation and for M, (X) = AXAT when A is symmetric, the strong
monotonicity properly and the Po-properly are equivalent. Note that in Example 1, 4 is
positive semidefinite and we have shown that L, does not satisty the P,-property. However,
if A is positive definite, then the following theorem shows that L, satisfies the Py-propery
and vice versa.

THEOREM 5. The following statements awe eguivalent for a Lyvapunov transformation
L,

(1) A ix powitive definite.
(i) L, has the strong monotoRicity property.
(i) L, has the Py-property.

Proor.  To show (1) = (ii). Suppose A is positive definite. If X is a nonzero mabrix in 8"
where x;, x5, ..., x, are the columns of X, then trL, (X)X = 2r(XAX) =23 x,"Ax; =
0. This proves (ii).

(i) = (iii) has already been established in Theorem 4.

(iii) = (i). If L, satisfies Py, then it has the GUS-property. From Gowda and Song
(2000, we get that A is positive stable and positive semidefinite. Suppose if A is not
positive definite; then there exists an x % 0 such that x7Ax = 0. Take X = xx"; then X is
symmetric and XL, (X)X = xx"(Axx" + xx7A ) xx” =0 since x7 Ax = 0. However, since
L, satisfies Py, this implies that X = 0; that is, x =0, which is a conwradiction. Thus, A is
positive definite. O

Note that if we take L, to be monotone instead of strongly monotone, then it is clear
from Example 1 that the above theorem does not hold good. While P, and GUS are not
equivalent, they are so for L, when (A4 A") is nonsingular.

CorowLary 1. If det{ A+ AT) £ 0, then the following are equivalent for the Lvapunov
transformation L 4.

(1) L, has the GUS-property.

(i) L, satisfies the Py-property.

The following theorem shows that when A is symmetde, P,, GUS, and the strong mono-
tonicity properties are equivalent for M (X) = AXA.

THEOREM 6. When A is symmetric, the folfowing statements are equivalent for the trans-
Sformation M (X) = AXA.

(1) A is positive definite or negative definite.

(i) M, has the strong monotonicity property,

(iii) M, has the P,-property.

(iv) M, has the GUS-property.

Proor. (i) = (ii). Since M (X)=M_,(X), without loss of generality we assume A o
be positive definite. Suppose tr M (X)X = 0 for some X € 8" £ 0. Then wr{AXAX) = 0.
Since A is symmetric and positive definite, r{AXAX) =0 (since XAX is also positive
sermidefinite). Thus r AXAX == AXAX = 0; this implies that XAX =0 = X =, which
is a contradiction. Thus, M, has sirong monolonicily property.
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(it) = (iii) follows from Theorem 4.
(iii) = (iv) follows from Gowda and Song 2000,
{iv) = (i). Suppose M, has the GUS-property. If the order of the matrix is one, then
it is easy 1o see that (iv) = (i). Assume that the order of the matax is at least two. If A
is not positive definite or negative definite, then there exists an x # 0 such that x"Ax =0,
Suppose not. Then let us consider the sets E= {x:x"Ax <0} and F = {x: x7Ax = 0},
These two sets are open and since there exists no x # 0 such that x7Ax =0, EUF = R\,
This imphes that 890 15 disconnected, which 1s a contradiction. Henee there exists an
x # 0 such that x"Ax = 0. Take X = xx"; then X is symmetric and positive semidefinite
XL, (X)=xx" Axx"A=0. S0 we have two solutions for SDLCP(M . 0) contradicting the
GUS-property. Thus (iv) = (). O
Theorem 6 need not hold good il A is nol symmetric, as the following example shows.
,EK?TPLE 2. Consider the following transformation: M, (X) = AXAT where A =
Note that 4 is not symmetric but is positive definite. Let X = [%, 73] Then AXATX =
o 2] and tr{AXATX) = —40 < 0.
In other words M, does not have the strong monotonmcity property. In this example M,
also does not have the Py-property, and this can be seen as follows. Let X, = [3_j _i] and

Xo=[2 9] Now (X, — X,)M,(X, — X,)(X, + X,) is negative semidefinite but X, # X,.

In other words M, fails to have the Po-propery. However, this transformation M, has the
GUS-property. In fact, it is shown in Bhimshankaram et al. {2000) that A is positive definite
if and only if M, has the GUS-property. Note that the result is not true for the Lyapunov
transfomation (see Example 1) unless A is symmetric (see Corollary 1).

Combining Theorems 5, 6, and Corollary 1, we have the following result.

CoroLLary 2. Suppose A is symmetric. Then L, has the GUS-property if and onfy if
M, has the GUS-property.

Summarizing, our findings in this paper are as follows. Every strongly monotone linear
transfomation has the Po-property. For the Lyapunov transformation and the transformation
M. stomg monotonicity 15 equivalent o the Pe-property. An example 15 given o show
that the GUS-property need not imply the P-propery in general (although the P-property
always implies the GUS-property; see Gowda and Song 2000). The following problem
remains open: Does the Po-property imply the strong monotonicity for a general linear
transformation L7
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