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Abstract: We treat the problem of variance estimation of the least squares estimate

of the parameter in high dimensional linear regression models by using the Uncor-

related Weights Bootstrap (UBS). We find a representation of the UBS dispersion

matrix and show that the bootstrap estimator is consistent if p2/n → 0 where p is

the dimension of the parameter and n is the sample size. For fixed dimension we

show that the UBS belongs to the R-class as defined in Liu and Singh (1992).
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1. Introduction

In Efron (1979) the bootstrap method was introduced to understand the
jackknife better, and it is a general technique to estimate the distribution of
statistical functionals. Broadly, the bootstrap principle is to sample from the data
itself with replacement and to compute the statistic for each such resample, and
appropriately average over all possible resamples. This can be viewed as attaching
a random weight to each data point, computing the statistic for the randomised
data and then integrating out the extraneous randomisation. Sampling from
the data with replacement is thus attaching Multinomial(n; 1/n/1/n, . . . , 1/n)
weights to the n data points. Other random weights, satisfying certain sets of
conditions, can also be used for resampling. Any such resampling technique may
be called a generalised bootstrap.

The idea of bootstrapping with random weights probably appeared first in
Rubin (1981). Bootstrapping with exchangeable weights have been treated in
Efron (1982), Lo (1987), Weng (1989), Zheng and Tu (1988), Praestgaard and
Wellner (1993). Other generalised bootstrap methods may be found in Boos
and Monahan (1986), Lo (1991), Härdle and Marron (1991), Mammen (1993).
A review can be found in Barbe and Bartail (1995). In this paper we focus on
estimating the mean squared error of the least squares estimator of the regression
parameter in high dimensional linear models by using a generalised bootstrap
technique.
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The data consists of the observations {(xi:n, yi:n), i = 1, . . . , n}, where xi:n’s
are pn × 1 vectors and yi:n’s are real valued. We assume the linear regression
model given by

yi:n = xT
i:nβn + ei:n, i = 1, . . . , n, (1.1)

for some fixed but unknown sequence of constants βn and some function ei:n

which represents the “error”. We henceforth write p, β,xi, yi, ei respectively for
pn, βn,xi:n, yi:n, ei:n. Let X denote the n × p matrix whose ith row is formed by
xT

i . Let XT denote the transpose of X. Also let Y and e be the n-dimensional
vectors whose ith entries are yi and ei respectively. Then the model with n

observations may be written as

y = Xβ + e. (1.2)

Let Px = X(XT X)−1XT be the projection matrix on the column space of X. Let
Aij denote the (i, j)th element of the matrix A. Also, for any real symmetric ma-
trix A, λmax(A), λmin(A), λamax(A), λi(A), respectively, denote the maximum,
minimum, maximum in absolute value and ith eigenvalue of A. Throughout the
rest of the paper we use the generic c and k to denote constants, without implying
they are the same, wherever they appear.

We now state the conditions which we impose on our linear model. The
regressors xi’s may or may not be random. The first condition, on the dimension
growth, is

p2/n → 0 as n → ∞. (1.3)

We assume the following conditions if xi’s are non-random:

sup
1≤i≤n

||xi||2 = O(p), (1.4)

λmin(n−1XTX) > c > 0. (1.5)

The assumptions on the errors are

Ee2
i = τ2

i < c < ∞, (1.6)

Eeiej = 0; i, j different, (1.7)

supEe2
i ejek = O(n−1), i, j, k different, (1.8)

supEeiejekel = O(n−2), i, j, k, l different, (1.9)

supEe4
i < ∞. (1.10)
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In case the xi’s are random, we need probabilistic versions of (1.4) and (1.5).
Suppose A is the set on which λmin(n−1XTX) > c > 0. Then the conditions
assumed are

sup
1≤i≤n

E||xi||2 = O(p), (1.11)

P [A] = 1 − O(p2n−2). (1.12)

When xi’s are random, the assumptions on the error are

ei is independent of xi, (xj , ej), j ≤ i ∀i, (1.13)

Eei = 0, (1.14)

Ee2
i = τ2

i < c < ∞, (1.15)

supEe4
i < ∞. (1.16)

A precise definition of our models is now as follows:

Model 1. ( Fixed regressors) This is (1.1) with non-random xi’s satisfying
conditions (1.3) - (1.5) and (1.6)-(1.10).

Model 2. ( Random regressors) This is (1.1) with random xi’s satisfying con-
ditions (1.3), (1.11)-(1.12) and (1.13)-(1.16).

It may be mentioned here that our conditions on the errors allow for the ei’s
to come from several standard dependent structures, such as the autoregressive
or autoregressive conditional heteroscedastic. If the ei’s are mean zero normal
random variables, not necessarily independent, then (1.8) and (1.9) follow from
(1.7). This follows from

Lemma 1.1. (Wick) If (N1, N2, N3, N4) is a normal random vector with mean
zero then

E(N1N2N3N4) = E(N1N2)E(N3N4) + E(N1N3)E(N2N4) + E(N1N4)E(N2N3).

Bootstrap schemes for linear models have been discussed in Efron (1979),
Freedman (1981) and in Bickel and Freedman (1983). In linear models, gener-
alised bootstrap may be performed in essentially two ways: by resampling the
residuals after fitting the model, or by resampling the data pairs {(xi, yi), i =
1, . . . , n}. If multinomial weights are used, then these resampling schemes are
usually known as the residual bootstrap and the paired bootstrap respectively.
Hinkley (1977), Wu (1986), Shao and Wu (1987) have studied consistency of
different bootstrap and jackknife schemes in heteroskedastic linear models. The
bootstrap in regression models with many parameters has been considered by
Bickel and Freedman (1983) and Mammen (1993), who respectively showed the
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consistency of the residual bootstrap and the wild bootstrap (which is a gen-
eralisation of the residual bootstrap) and paired bootstrap for the distribution
of least squares estimate of the regression parameters. A generalised bootstrap
which uses the pairs for resampling does not seem to have received enough at-
tention. We focus on such resampling schemes here for estimating the mean
squared error of the least squares estimator. The resampling scheme is carried
out by weighting each data point (yi,xi) with the random weight

√
wi, then

computing the statistic of interest and taking expectation of the random weight
vector. In particular, this generalised bootstrap includes the paired bootstrap
and all the delete-d jackknives. We call our scheme the uncorrelated bootstrap
(UBS) and the precise conditions on the weights are given in the next section.

Our generalised bootstrap can be looked upon as a weighted least squares
analysis with random weights, and then simple averaging over such weighted
least squares estimates. With easily available weighted least squares routines
this can lead to significant ease in implementing resampling in linear models.
Even though we discuss estimating the variance of the ordinary least squares
estimator here, our technique potentially extends to the corresponding problem
for the weighted least squares.

Note that (1.5) or (1.12) ensures that the inverse (XT X)−1 exists. Thus
we want to estimate Vn = E(β̂ − β)(β̂ − β)T . Under Model 1, this is Vn =
(XTX)−1XTTX(XTX)−1, where T is a diagonal matrix with ith diagonal ele-
ment τ2

i . Notice that this is a p × p matrix, and for us p → ∞. Hence we try to
estimate ξT Vnξ for any ξ ∈ R

p with ||ξ|| = 1. Our main result is a representation
for ξT VUBSξ, where VUBS is an appropriate bootstrap estimate of Vn. This also
gives an element wise bound of Vn and results for estimating the variance of
linear combinations of the elements of β.

For linear models with nonrandom design and fixed p, Liu and Singh (1992)
studied bootstrap and jackknife schemes. They showed that for estimating the
variance of the least squares estimate of β, some resampling schemes such as
the paired bootstrap and wild bootstrap produce consistent results under het-
eroskedasticity, while some others such as the usual residual bootstrap do not
yield consistent estimates under heteroskedasticity but are more efficient under
homoskedasticity. These resampling techniques are thus either robust or efficient:
they belong to the R-class or the E-class. Our results show that for fixed p the
UBS we study belongs to the R-class. Note that two special cases of UBS, the
paired bootstrap and the delete-1 jackknife were already known to belong to the
R-class.

The random regressor model has been considered in Mammen (1993) in the
context of the paired bootstrap and the wild bootstrap. The model there was
based on observing i.i.d. variables {(xi, yi), i = 1, . . . , n}, where xi’s were p × 1
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vectors with the assumed model relation being yi = xT
i β + ei for some constant

but unknown β. The dimension p was allowed to vary with n. Note that this
implies that {(xi, ei), i = 1, . . . , n} are also i.i.d. and this, in turn, implies (1.13)-
(1.15). Chatterjee and Bose (1998) considered the problem of estimating the
distribution of the least squares estimate of a linear regression parameter, using
the UBS resampling scheme, in the same set-up as that of Mammen (1993). It
was shown that the distribution of any contrast of the least squares estimator and
its UBS bootstrap equivalent tend to the same normal limit, thus establishing
consistency of the UBS technique for estimating the distribution function. Since
we are estimating the variance of the least squares estimator as opposed to the
distribution function, as in Mammen (1993), the fourth moment condition (1.16)
is imposed.

Our random regressor model is more general than Mammen (1993) in the
sense that the assumption of i.i.d. nature of the data is modified to (1.13). How-
ever, in place of assuming p1+δ/n → 0 for δ ≥ 1/3 as in Mammen (1993), or
δ > 0 as in Chatterjee and Bose (1998), we need p2/n → 0. This is explained
by the fact that in general the bias in the least squares estimate is of the order
p/n1/2, and so the mean squared error that we are estimating requires (1.3).

We now check that with regressors taken to be independently and identically
distributed, as assumed in Mammen (1993), our model conditions (1.11)-(1.12)
hold. Suppose the regressors xi:n are i.i.d., with supn sup||d||=1 E|dT xi:n|4 < ∞
as in condition 2.2 of Theorem 1 of Mammen (1993). The condition (1.11) follows
directly from Lemma 0 of Mammen (1993). Assume without loss that ExixT

i = I,
and letting A = n−1∑n

i=1 xixT
i − I, we have n−1XTX = I + A, so that

λmin(n−1XTX) = 1 + λmin(A) ≥ 1 − λamax(A)

and hence

P [|λmin(n−1XTX)| ≤ 1/2] ≤ P [|1 − λamax(A)| ≤ 1/2]

≤ P [|λamax(A)| ≥ 1/2]

≤ 4E(λamax(A))2 = O(p3/2n−1),

with the last relation following from Lemma 1 of Mammen (1993). This verifies
(1.12).

For some resampling schemes that we consider, condition (1.5) is not suffi-
cient. For example, a paired bootstrap sample can include only the data points
indexed by Im = {i1, . . . , im}. If m < p there is no possibility that the de-
sign matrix is of full column rank. However, this case has exponentially small
probability as we show later. Even if m ≥ p, we still need nonsingularity of
XT∗X∗. So an equivalent of (1.5) is needed for submatrices of the design matrix.
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We now state here a more general condition. Suppose m0 is a specified integer
in the range [n/3] to n. For any integer m in {m0, . . . , n} consider the subset
Im = {i1, . . . , im} of {1, . . . , n}. Let X∗ be the m × p matrix whose jth row is
xT

ij
. Then the general condition is

m−1XT∗X∗ > k1I, k1 > 0 (1.17)

for every such choice of subset Im of size m from {1, . . . , n} and for every m in
[m0, n]. (For two matrices A1 and A2 we write A1 > A2 if and only if A1 −A2

is positive definite.) Note that this condition depend on m0; the higher its value,
the weaker is the condition. For m0 = n condition (1.17) is same as (1.5). For
the model with random regressors, the corresponding condition is that the set
A, on which

m−1XT∗X∗ > k1I, for every Im and every m ∈ [m0, n], (1.18)

has a probability 1−O(p2/n). There are UBS resampling schemes which require
only m0 = n. The delete-d jackknife requires m0 = n − d. However, the paired
bootstrap requires as low an m0 as possible. The more stringent assumption
(1.17) or (1.18) is required to make resampling schemes like the paired bootstrap
and the different jackknives feasible.

2. The Resampling Scheme

Let {wi:n; 1 ≤ i ≤ n, n ≥ 1} be a triangular array of non-negative random
variables to be used as weights. We drop the suffix n from the notation of the
weights. The resampling scheme is carried out by weighting each data point
(yi,xi) with the random weight

√
wi, then computing the statistic of interest and

taking expectation of the random weight vector. The above set up can be taken as
a direct generalization of the paired bootstrap, where the {wi; 1 ≤ i ≤ n} are given
by a random sample from Multinomial(n; 1/n, . . . , 1/n). The different delete-d
jackknives can also be viewed as special cases of this resampling technique, see
Chatterjee (1998) for details.

The weights w1, . . . , wn used for resampling satisfy certain restrictions on
the first few moments which we now state. Let V (wi) = σ2

n and assume that the
quantities

E
(wa − 1

σn

)i(wb − 1
σn

)j(wc − 1
σn

)k
. . .

are functions of the powers i, j, k . . . only, and not of the indices a, b, c . . .. Thus
we can write

cijk... = E
(wa − 1

σn

)i(wb − 1
σn

)j(wc − 1
σn

)k
. . .
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Note that if the weights are assumed to be exchangeable, then the above condition
follows. But exchangeability of weights is not a necessary condition.

Let W be the set on which at least m0 of the weights are greater than some
fixed constant k2 > 0. The value of m0 is the same as that of assumptions (1.17)
or (1.18). The weights are assumed to satisfy certain conditions.

E(wi) = 1, (2.1)

σ2
n → k > 0, (2.2)

PB[Kn ≥
n∑

i=1

wi ≥ kn, K > k > 0] = 1, (2.3)

PB[W] = 1 − O(p2n−1), (2.4)

c11 = O(n−1), (2.5)

ci1...ik = O(n−k+1) ∀ i1, . . . , ik satisfying
k∑

j=1

ij = 3, (2.6)

ci1...ik = O(min (n−k+2, 1)) ∀ i1, . . . , ik satisfying
k∑

j=1

ij = 4. (2.7)

We define the bootstrap estimate of β to be

β̂B =

{
(XTWDX)−1XTWy on the set W ∩A,

β̂ otherwise,

and the bootstrap variance estimate to be

VUBS = σ−2
n EB(β̂B − β̂)(β̂B − β̂)T .

For Model 1, take the set A to be the entire sample space, so that the definition
of β̂B does not depend on the model used.

If yi’s are i.i.d., the UBS variance estimate coincides with the generalised
bootstrap variance estimate used for estimating the variance of the sample mean.
See Barbe and Bertail (1995) for use of this statistic for other statistical func-
tionals.

The notable feature of this resampling scheme is that the weights {wi:n} are
asymptotically uncorrelated. We call this the Uncorrelated Weights Bootstrap
(hereafter UBS). We denote the variance estimate in UBS by VUBS. A slight
variant of the above conditions on weights can be effected by dropping (2.2) and
letting the common variance go to zero, so that the weights are asymptotically
degenerate. With that condition, the conditions on various mixed moments can
be slightly relaxed. For details about this variation refer to Chatterjee (1998).
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One significant condition on the weights is (2.4), which we now discuss. This
condition is related to (1.17) and (1.18). If instead, we restrict the condition to
require that all the weights are bounded away from zero, then we can take m0 = n

in (1.17). For example, the weights can be taken to be i.i.d. unit mean random
variables that are supported on some interval (k,K), with 0 < k < K < ∞. For
the delete-d jackknives, we need (1.17) with m0 = n−d only. For the paired boot-
strap, that is for a random sample from Multinomial(n; 1/n, . . . , 1/n), Propo-
sition 3.1 of the next section shows that (2.4) is satisfied for m0 = [n/3], the
greatest integer less than or equal to n/3. Note that the condition on W is in
terms of “at least m0” weights being positive, so an upper bound on m0 is really
meaningful. There is a duality between model conditions and conditions on the
resampling weights. We may relax certain model conditions by making the con-
ditions on resampling weights more stringent. For example, for resampling with
independent weights, we can ignore the model conditions (1.8) and (1.9).

3. Main Results

Let

(Tn)ij =

{
e2

i , if i = j,

0, if i 	= j.

Theorem 3.1. Assume the conditions of Model 1. Also assume (1.17) for some
m0. Then for any ξ ∈ R

p with ||ξ|| = 1,

n3/2p−1ξT(VUBS−Vn)ξ=n3/2p−1ξT (XT X)−1XT [Tn−T]X(XTX)−1ξ+OP (pn−1/2).
(3.1)

In particular, UBS is a consistent resampling technique for the model. The
distributional asymptotics for the variance estimator can essentially be developed
from here, by noting that the leading term in the variance representation is a
linear combination of e2

i ’s. Note that the leading term in (3.1) is bounded in
probability. Since this result does not depend on the particular choice of weights,
they can be chosen according to convenience. This exact rate is not obtained
under Model 2, but otherwise a very similar representation theorem holds.

Theorem 3.2. Assume the conditions of Model 2. Also assume (1.18) for some
m0. Then for any ξ ∈ R

p with ||ξ|| = 1,

n3/2p−1ξT (VUBS − Vn)ξ = n3/2p−1ξT [IA(β̂ − β)(β̂ − β)T − Vn]ξ + OP (pn−1/2)).
(3.2)

Notice that typically (β̂ − β) = OP ((n/p)−1/2). The leading term in (3.2)
is of the form n−1/2∑n

i=1(Zi − EZi) for some standardized random variables
Zi (see (5.7) in the section on proofs for details on the random variables Zi)
plus some remaining terms which are OP (pn−1/2). Suppose we assume that
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E[ξT (β̂ −β)]4 < ∞. This simultaneously ensures that the indicator on the set A
can be ignored, and that the variance of (n/p)−1/2(β̂ −β), that is np−1ξT Vnξ, is
consistently estimated by np−1ξT VUBSξ in the sense that np−1ξT (VUBS−Vn)ξ →
0 in probability.

Chatterjee (1998) has shown that the conditions on the weights are satisfied
by the delete-d jackknives. If {w1, . . . , wn} is taken to be a random sample
from Multinomial(n; 1/n, . . . , 1/n), we get the paired bootstrap. The moment
conditions on these weights can be easily verified by direct calculation. Through
the following proposition we show that condition (2.4) is also satisfied with m0 =
n/3. One important advantage of using a generalised bootstrap scheme in place
of paired bootstrap or the jackknives is that calculations may be simpler and
faster with undiminished accuracy.

Proposition 3.1. Suppose (X1, . . . ,Xn) is Multinomial(n; 1/n, . . . , 1/n). If
{mn} is such that mn/n < 1/3, then the probability that at least mn of the X’s
are positive is greater than 1 − e−αn, for some constant α > 0.

4. Some Simulation Results

To gauge how the different UBS schemes perform, especially when we have
random regressors and/or dependent errors, we carried out a small simulation
experiment. We chose the following five UBS schemes:
(a) the Multinomial(n; 1/n, . . . , 1/n) bootstrap(MB);
(b) the Dirichlet(n; 1/n, . . . , 1/n) bootstrap(DB);
(c) the Uniform(1/2, 3/2) bootstrap(UB);
(d) the Beta(2, 7) bootstrap(BB1);
(e) the Beta(7, 2) bootstrap(BB2).
Note that the first choice corresponds to the case of the paired bootstrap and the
second one corresponds to the case of the Bayesian bootstrap with a Dirichlet
process prior. For the last three choices, a sample of size n is generated from the
given distribution and used for resampling. The last two schemes were considered
to see how asymmetry of the generating distribution affects the performance of
the resampling method. Computationally, the third choice is the easiest and
fastest.

We considered three models with p = 1. The first model is the simple
one of estimating the variance of the sample mean. This is intended to serve
as a benchmark. The second model is the autoregressive (AR) model of order
one with IID innovations. This is a well-known model in time series and the
results obtained for this model are an indication of what is to be expected in
similar models such as the AR of order p > 1. The third model is also the
autoregressive model but here the errors, instead of being IID are assumed to have
an ARCH (autoregressive conditional heteroscedastic) structure. The ARCH
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model is widely used in econometrics to model financial time series data, see
Bera and Higgins (1993) for a review.

We now give a precise description of the three models.

Experiment 1. Xt = β + εt. In this case β̂ = n−1∑n
t=1 Xt/n and Vn = n−1.

For simulations we fix β = 7.0 and take the errors εt to be an i.i.d. sequence
from Normal(0, 1). This is the simplest example when Model 1 conditions are
satisfied.

Experiment 2. Xt = βXt−1 + εt. and X0 = 0. Here β̂ = (
∑n

i=1 X2
i−1)

−1∑n
i=1 XiXi−1 and it is known that if |β| < 1 then n1/2(β̂ − β) → N(0, 1 − β2).

For simulation, the innovations εt are taken to be i.i.d. Normal(0, 1). The process
has an explosive behaviour if |β| > 1, in which case normal limits are not obtained
for the least squares estimate. With this in mind, we choose two different values
of β as follows.

Experiment 2(a). We take β = −0.5. Note that this is well within the safe
zone.

Experiment 2(b). We take β = 0.9. This value is close to the boundary and
here the usual bootstrap is not expected to perform well.

Experiment 3. Xt = βXt−1 + εt. where X0 = 0 and εt is an ARCH process
satisfying ε1 ∼ N(0, γ2) and [εt|εs, s ≤ t] ∼ N(0, γ2

t ) where γt is in general a
polynomial in εs, s ≤ t. We choose γ2

t = α+βε2
t−1. In this case, the (conditional)

least squares estimate of β is given by β̂ = (
∑n

i=1 X2
i−1)

−1∑n
i=1 XiXi−1. If

γ2 = α/(1 − β), then it is known that n1/2(β̂ − β) → N(0, γ2(1 − β2)). For
our simulation we take α = 0.5, β = 0.4 and γ2 = 5/6. As earlier, we work
with two different values of β. In Experiment 3(a) we take β = −0.5 and in
Experiment 3(b) we take β = 0.9.

In each case we fix n, the size of the data, then randomly generate a data
set satisfying the assumed conditions and use resampling on it. In all three
experiments we first compute the least squares estimate of β, and then resample
for the variance of this estimator. Since in all experiments we consider, the
least squares estimator has a limiting normal distribution, the different bootstrap
variance estimates are compared with the appropriate asymptotic variance.

Results are presented in Tables 1, 2, 3, 4 and 5 respectively. We use the
notation av for the asymptotic variance. The resample size was 5000 for Exper-
iment 1 and 10000 for Experiment 2(a), 2(b), 3(a), 3(b). As the table entries
show, UBS using Beta(2, 7) and Beta(7, 2) weights lead to slight underestima-
tion and overestimation of the variance, possibly due to the difference in higher
order terms. The results from the other resampling schemes are almost identical.
UBS with i.i.d. uniform weights is recommended.
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The starred figures are scaled up 1000 times.
Table 1. Experiment 1.

n β̂ av.∗ MB DB UB BB1 BB2

βB V∗
B βB V∗

B βB V∗
B βB V∗

B βB V∗
B

30 6.88 61.30 6.88 61.92 7.01 80.79 6.88 61.55 6.88 51.99 6.88 82.23

40 6.94 17.99 6.94 17.90 7.00 20.13 6.94 18.14 6.94 15.51 6.95 23.27

100 7.01 10.22 7.01 10.24 6.99 10.93 7.01 10.46 7.01 8.99 7.01 13.21

200 6.99 4.95 6.99 4.90 6.99 5.08 6.99 4.90 6.99 4.30 6.99 6.49

600 6.99 1.66 6.99 1.64 6.99 1.64 6.99 1.67 6.99 1.43 6.99 2.14

1000 6.95 1.10 6.95 1.07 6.95 1.10 6.95 1.11 6.95 0.96 6.95 1.42

2000 7.01 0.47 7.01 0.47 7.01 0.47 7.01 0.48 7.01 0.40 7.01 0.61

Table 2. Experiment 2(a).

n β̂ av.∗ MB DB UB BB1 BB2

βB V∗
B βB V∗

B βB V∗
B βB V∗

B βB V∗
B

30 -0.60 21.40 -0.61 16.44 -0.61 16.19 -0.60 15.32 -0.60 13.83 -0.60 20.32

50 -0.59 13.03 -0.59 12.76 -0.59 11.90 -0.59 12.05 -0.59 10.47 -0.59 15.18

100 -0.52 7.24 -0.53 6.31 -0.52 6.08 -0.52 6.26 -0.53 5.25 -0.53 7.96

200 -0.45 3.99 -0.45 3.71 -0.45 3.54 -0.45 3.70 -0.45 3.16 -0.45 4.76

500 -0.54 1.41 -0.54 1.21 -0.54 1.21 -0.54 1.21 -0.54 1.08 -0.54 1.62

1000 -0.51 0.73 -0.51 0.70 -0.51 0.69 -0.51 0.72 -0.51 0.62 -0.51 0.91

2000 -.50 0.38 -0.50 0.36 -0.50 0.36 -0.50 0.36 -0.50 0.31 -0.50 0.48

Table 3. Experiment 2(b).

n β̂ av.∗ MB DB UB BB1 BB2

βB V∗
B βB V∗

B βB V∗
B βB V∗

B βB V∗
B

30 0.96 2.85 0.93 2.76 0.93 2.66 0.96 3.92 0.96 3.71 0.96 5.50

50 0.92 3.15 0.91 2.66 0.91 2.51 0.92 3.22 0.92 2.79 0.92 4.26

100 0.87 2.49 0.87 2.70 0.87 2.62 0.87 2.81 0.88 2.49 0.88 3.96

200 0.81 1.68 0.81 1.94 0.81 1.87 0.81 1.90 0.81 1.64 0.81 2.51

500 0.85 0.56 0.85 0.58 0.85 0.57 0.85 0.58 0.85 0.50 0.85 0.76

1000 0.91 0.17 0.91 0.17 0.91 0.16 0.91 0.17 0.91 0.15 0.91 0.21

2000 0.91 0.09 0.91 0.09 0.91 0.09 0.91 0.09 0.91 0.08 0.91 0.11

Table 4. Experiment 3(a).

n β̂ av.∗ MB DB UB BB1 BB2

βB V∗
B βB V∗

B βB V∗
B βB V∗

B βB V∗
B

30 -0.57 22.39 -0.59 17.12 -0.58 15.52 -0.57 16.65 -0.57 14.19 -0.57 21.78

50 -0.68 10.84 -0.65 36.96 -0.66 27.97 -0.68 47.62 -0.68 39.14 -0.68 61.14

100 -0.68 5.43 -0.67 7.43 -0.67 7.03 -0.68 7.02 -0.68 6.02 -0.68 9.45

200 -0.49 3.80 -0.49 5.43 -0.49 5.25 -0.49 5.37 -0.49 4.81 -0.49 7.14

500 -0.54 1.41 -0.54 1.91 -0.54 1.88 -0.54 1.92 -0.54 1.64 -0.54 2.44

1000 -0.55 0.70 -0.55 2.02 -0.55 1.95 -0.55 2.03 -0.55 1.77 -0.55 2.70

2000 -0.50 0.37 -0.50 0.83 -0.50 0.83 -0.50 0.84 -0.50 0.72 -0.50 1.05
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Table 5. Experiment 3(b).

n β̂ av.∗ MB DB UB BB1 BB2

βB V∗
B βB V∗

B βB V∗
B βB V∗

B βB V∗
B

30 0.93 4.42 0.91 3.42 0.91 3.35 0.93 5.13 0.93 4.51 0.93 6.76

50 0.94 2.31 0.92 2.84 0.92 2.65 0.94 4.14 0.94 3.54 0.94 5.44

100 0.95 1.05 0.94 1.28 0.94 1.25 0.95 1.68 0.95 1.50 0.95 2.19

200 0.92 0.76 0.92 0.86 0.92 0.84 0.92 0.88 0.92 0.76 0.92 1.15

500 0.91 0.33 0.91 0.38 0.91 0.38 0.91 0.39 0.91 0.35 0.91 0.51

1000 0.90 0.18 0.90 0.24 0.90 0.23 0.90 0.24 0.90 0.21 0.90 0.31

2000 0.88 0.11 0.88 0.16 0.88 0.16 0.88 0.17 0.88 0.14 0.88 0.21

5. Proofs

There are two important conclusions to be derived from the above model
conditions. For Model 1 they are

max
i

(Px)ii = O(p/n), (5.1)

||
n∑

i=1

xiei|| = OP (p1/2n1/2). (5.2)

These are quickly verified as follows:

max
i

(Px)ii = max
i

xT
i (XTX)−1xi ≤ n−1 max

i
||xi||2[λmin(n−1XTX)]−1

≤ cn−1 max
i

||xi||2 = O(p/n),

and

E||
n∑

i=1

xiei||2 = E
n∑

i=1

e2
i x

T
i xi =

n∑
i=1

τ2
i ||xi||2 ≤ c

n∑
i=1

||xi||2 = O(pn).

For Model 2 the equivalent conclusions are

max
i

(Px)iiIA = OP (p/n), (5.3)

||
n∑

i=1

xiei|| = OP (p1/2n1/2). (5.4)

These are also easily verified by using similar arguments as earlier.
Note that X is an n × p matrix of rank p. Let X = PDQT be the singular

value decomposition of X. That is, D is a p × p diagonal matrix with positive
diagonal elements, P is an n × p matrix such that PTP = I and Q is a p × p

orthogonal matrix. The spectral representation of XTX is given by XTX =
QD2QT . Let Λ = n−1D2. Note that the minimum eigenvalue of the diagonal
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matrix Λ is bounded away from zero, so that the maximum eigenvalue of Λ−1 is
bounded above. The notation Λ1/2 is sometimes used for n−1/2D. Note that the
diagonal entries of D are all positive.

Let WD be the n × n diagonal matrix with ith diagonal element wi. Let us
also use the notation Wi = (wi − 1)/σn, and W(n×n) = Diag(w1, . . . , wn).

Since our two theorems state almost the identical result under two different
models, we use an approach that proves both results simultaneously. Note that
under Model 1 the set A is the entire sample space.

We first prove that with a high probability a condition like (1.5) is also true
for the bootstrap design matrix.

Lemma 5.1. Assume Model 1. Also assume condition (1.17) for an appropriate
choice of m0 > p. Then under the set W ∩ A, all eigenvalues of the matrix
n−1XTWDX are greater than k > 0, where k is a constant.

Proof of Lemma 5.1. Let λ1 ≤ λ2 ≤ · · · ≤ λp be the eigenvalues of XTWDX.
We have to show a positive lower bound for λ1/n under W ∩ A. Note that we
get λ1 by minimizing ξTXTWDXξ/ξT ξ with respect to all vectors ξ ∈ R

p. Now
note that

min
ξ∈Rp

ξTXTWDXξ

ξT ξ
= min

ξ∈Rp
min
η=Dξ

ηT PTWDPη

ηT η

ξTD2ξ

ξT ξ

≥ min
ξ∈Rp

min
η∈Rp

ηTPT WDPη

ηT η

ξTD2ξ

ξT ξ
.

By condition (1.5), on the set A we have n−1 times the second term bounded
below by a positive constant. Thus in order to complete the proof, we need to
show that ηT PTWDPη/ηT η has a positive lower bound, as η varies. First observe
that the model condition (1.17) says that on A, for all m > an appropriate m0 if
Im = {i1, . . . , im} is a subset of {1, . . . , n}, and if X∗ is the m × p matrix whose
jth row is xT

ij
, then m−1XT∗X∗ > k1I. If P∗ is the submatrix of P corresponding

to X∗, this implies P∗TP∗ =
∑

{i∈Im} pipT
i > k1

m
n I ≥ k1

3 I.
Suppose S is the set of indices of weights that are greater than some fixed

k2. Under W, S has m elements, where m ≥ m0. Thus the same set of indices S
is also an Im for which (1.17) holds. Therefore under the set W ∩A,

PT WDP =
n∑

i=1

wipipT
i > k2

∑
{wi∈S}

pipT
i >

k2k1

3
I.

This completes the proof.

Let UB = PT WDP. Then Lemma 5.1 allows us to conclude that

λmax(U−1
B )IW∩A < k < ∞. (5.5)



510 SNIGDHANSU CHATTERJEE AND ARUP BOSE

Using (5.5) we have a more precise statement about the nature of the matrix
U−1

B .

Lemma 5.2. On the set W ∩A
U−1

B = I + σnRW , (5.6)

where λamax(EBR2
W IW∩A) = O(p2n−1).

Proof of Lemma 5.2. Since UB = PT WDP, we have UB = I + σnPTWP =
I+σnRB , say. Then it is easily seen that tr(R2

B) = tr(WPxWPx). ¿From (5.1)
it now follows that trEB(R2

B) = O(p2/n), thus eventually all the eigenvalues of
EBRB are less than 1, and also λmax(EBR2

B) = O(p2n−1). This means that by
taking an inverse we can write U−1

B = I + σnRB
∑

k≥0 σk
nR

k
B = I + σnRW , say,

then λmax(EBR2
W IW∩A) = O(p2n−1).

Proof of Theorem 3.1. Note that

β̂B − β̂

= [(XT WDX)−1XTWDe − (XTX)−1XT ]IW∩Ae

= (XTX)−1XT (WD − I)eIW∩A + [(XT WDX)−1 − (XT X)−1]XTWDeIW∩A
= (XTX)−1XT (WD−I)eIW∩A+[(XT WDX)−1−(XTX)−1]XT (WD−I)eIW∩A

+[(XTWDX)−1 − (XT X)−1]XT eIW∩A
= σn(XTX)−1XTWeIW∩A + σn[(XT WDX)−1 − (XT X)−1]XT WeIW∩A

+[(XTWDX)−1 − (XT X)−1]XT eIW∩A
= σnCnIW∩A + σnT1nIW∩A + T2nIW∩A (say),

and thus

σ−1
n (β̂B − β̂) = CnIW∩A + T1nIW∩A + σ−1

n T2nIW∩A.

Recall that VUBS = σ−2
n EB(β̂B − β̂)(β̂B − β̂)T . We show that the contributing

term in the representation of the bootstrap variance estimate comes from Cn, and
the other terms are negligible. We need to compute ξT VUBSξ for all {ξ ∈ R

p :
||ξ|| = 1}. But since Q is an orthogonal matrix, we may as well write ξ = Qc, and
varying ξ over the unit sphere in R

p is equivalent to taking all {c ∈ R
p : ||c|| = 1}.

We show the following:

IAEBξT CnCT
n ξ = OP (pn−1), (5.7)

IAEBξT CnCT
n ξIWC = OP (p2n−2), (5.8)

IAEBξT T1nT T
1nξIW = OP (σ2

np2n−2), (5.9)
IAσ−2

n EBξT T2nT T
2nξIW = OP (p2n−2), (5.10)

σ−1
n IAEBξT CnT T

2nξIW = OP (p2n−2), (5.11)
IAEBξT CnT T

1nξIW = OP (p2n−2). (5.12)
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The first term (5.7) is actually IA[ξT (β̂ − β)]2 + OP (p2n−2). For Model 1 since
A is the entire sample space, this implies

EBξT CnCT
n ξ − ξTVnξ = OP (pn−3/2) (5.13)

is the leading term, with all other terms negligible. We now proceed to check
(5.7)-(5.13).

Proof of (5.7) and (5.13). With an elementary simplification using the sin-
gular value decomposition of X, we have

EBξT CnCT
n ξ = EBn−1cT Λ−1PT WeeTWPΛ−1c. (5.14)

Recall that Tn =diag(e2
i ). Now define the following: M=n−1cTΛ1/2PT TnPΛ1/2c,

M1 = c11n
−1cT Λ1/2PTeeTPΛ1/2c, M2 = c11n

−1cT Λ1/2PTTnPΛ1/2c. From
(5.14) it can be easily seen that EBξT CnCT

n ξ = M + M1 − M2. In proving
the results we first note that Px = PPT . If we define ηb =

∑p
a=1 caPbaλ

−1/2
a ,

where the ath element of the vector c is ca and the ath diagonal entry in the
diagonal matrix Λ is λa, then on A we have η2

b ≤ khmax, where hmax is the max-
imum diagonal entry of Px, known to be O(p/n) from (5.1), and k is some posi-
tive constant. Now note that M = n−1∑n

b=1 e2
bη

2
b , M1 = c11n

−1(
∑n

b=1 ebηb)2,
M2 = c11n

−1∑n
b=1 e2

bη
2
b . Hence we can conclude IAM1 = OP (p2n−2) and

IAM2 = OP (pn−2) after some algebra involving (2.5), (1.5), (1.4), (5.1) and (5.2).
Similarly, IAM2 = OP (p2n−2), and note also that EM = ξT Vnξ. This proves
(5.7). For (5.13) we have under Model 1, M − ξT Vnξ = n−1∑n

b=1(e
2
b − τ2

b )η2
b =

OP (pn−3/2).

Proof of (5.8). We only need to look at IAEBMIWC , since the other terms are
of smaller order. Now IAEBMIWC = [IAEBM2]1/2[1−PB(W)]∞/∈ = OP (p2n−2)
follows immediately from the proof of (5.7) and Assumption (2.4).

Proof of (5.9). Note that T1n = −σn(XTWDX)−1XTWX(XTX)−1XTWe, so
ξT T1nIW∩A = −σnn−1/2cT Λ−1/2U−1

B PTWPPT We and thus

ξT T1nT T
1nξIW∩A (5.15)

= σ2
nn−1eTWPxWPU−1

B Λ−1/2ccT Λ−1/2U−1
B PTWPxWeIW∩A (5.16)

≤ σ2
nn−1eTWPxWPU−1

B Λ−1U−1
B PTWPxWeIW∩A (5.17)

≤ kσ2
nn−1eTWPxWPU−2

B PTWPxWeIW∩A (5.18)

≤ σ2
nn−1eTWPxWPxWPxWeIW∩A (5.19)

≤ σ2
nn−1eTWPxWPxWPxWeIA. (5.20)

The steps involved in the above reduction are as follows: (5.17) follows from (5.16)
since ccT < I; (5.18) follows from (5.17) since Λ−1 < kI on A from condition
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(1.5); (5.19) follows from (5.18) since, from Lemma 5.1, U−1
B < kI on the set

W ∩ A. The last inequality is obvious. Now routine but lengthy algebra shows
that the bootstrap expectation of the expression in (5.20) is OP (σ2

np2n−2).

Proof of (5.10). The proof of this part is similar to that of (5.9). We have
σ−1

n T2n = −(XTWDX)−1XTWX(XTX)−1XTe, and hence σ−1
n ξT T2nIW∩A =

−n−1/2cT Λ−1/2U−1
B PTWPPT eIW∩A and thus

σ−2
n ξT T2nT T

2nξIW∩A ≤ n−1eTPxWPxWPxeIA (5.21)

by following similar steps as in the previous part of the proof. Now again rou-
tine algebra shows that the bootstrap expectation of the expression in (5.21) is
OP (p2n−2).

Proof of (5.11). We have to show σ−1
n EBξTCnT T

2nξIW∩A = OP (p2n−2). Us-
ing σ−1

n ξT T2nIW∩A = −n−1/2cT Λ−1/2U−1
B PT WPPT eIW∩A, and ξT CnIW∩A =

n−1/2cT Λ−1/2PT WeIW∩A, we have σ−1
n ξT CnT T

2nξIW∩A = n−1cT Λ−1/2PTWeeT

PxWPU−1
B Λ−1/2cIW∩A = n−1cT Λ1/2PT WeeTPxWPΛ−1/2cIW∩A + σnn−1cT

Λ−1/2PTWeeTPxWPRW Λ−1/2cIW∩A, where Lemma 5.2. states the nature of
the matrix RW . Thus we have

EBσ−1
n ξT CnT T

2nξIW∩A
≤ IAEBn−1cT Λ−1/2PT WeeTPxWPΛ−1/2c (5.22)

+σnn−1EBcT Λ−1/2PT WeeTPxWPRW Λ−1/2cIW∩A. (5.23)

Consider (5.22) first:

EBn−1cT Λ−1/2PT WeeTPxWPΛ−1/2c ≤ kn−1EBeTPxWPxWe

= M3 + M4, (5.24)

where M3 = (1− c11)kn−1eTPxM5e, M4 = c11kn−1eTPxe, M5 = diag((Px)ii).
The reduction to (5.24) follows from techniques similar to those used earlier, for
example in case of (5.21). Now it is easily verified that IAM4 is OP (pn−2). A
direct computation using (1.8)-(1.10) shows that IAM3 = OP (p2n−2).

Now consider (5.23):

σnn−1|EBcT Λ−1/2PT WeeTPxWPRW Λ−1/2cIW∩A|
≤σnn−1[EB||RW Λ−1/2cIW∩A||2]1/2[EB||PT WPxeeTWPΛ1/2cIW∩A||2]1/2.

(5.25)

Now EB||RW Λ−1/2cIW∩A||2 = cT Λ−1/2EBR2
W IW∩AΛ−1/2c

≤ λmax(EBR2
W IW∩A)||Λ−1/2cIA||2 = O(p2n−1) and

EB||PT WPxeeTWPΛ−1/2cIW∩A||2
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= EB||PT WPxeeTWPΛ−1/2cIA||2
= EB[eT PxWPxWPxeIA][cT Λ−1/2PTWeeTWPΛ−1/2cIA]

≤ [EB(eTPxWPxWPxeIA)2EB(cT Λ−1/2PTWeeTWPΛ−1/2cIA)2]1/2

= OP (p3/2n−3/2) = OP (p2n−1).

The rates follow from routine calculations. This ensures that (5.25) is OP (p2n−2).

Proof of (5.12). We have to show EBξT CnT T
1nξIW∩A = OP (p2n−2). As in the

previous part of the proof, EBσ−1
n ξT CnT T

1nξIW∩A

≤ σnEBn−1cT Λ−1/2PTWeeTWPxWPΛ−1/2cIA (5.26)

+σ2
nn−1EBcT Λ−1/2PT WeeTWPxWPRW Λ−1/2cIW∩A. (5.27)

Consider (5.26) first: IAEBn−1cT Λ−1/2PTWeeTWPxWPΛ−1/2c

≤ kn−1IAEBeTPxWPxWPxWe = OP (p2n−2) by direct computation. For
(5.27), we have the following:

||eTWPxWPRW Λ−1/2c||2IW∩A
= eTWPxWPR−1

W Λ−1/2ccT Λ−1/2R−1
W PT WPxWeIW∩A

≤ keTWPxWPR−2
W PTWPxWeIW∩A

≤ kp2n−1eTWPxWPxWPxWeIA (by Lemma 5.2)

and this last is OP (p4n−2) from calculations as in (5.20). Therefore the quantity
in (5.27) is OP (σ2

np2n−2). This completes the proof of the theorem.

Proof of Proposition 3.1. We denote mn by m and note that Prob[ at least
m of the X’s are positive ] = 1− ∑m−1

i=0 Prob[ exactly i of the X’s are positive ].
We can exclude the case i = 0, since at least one of the X’s is always positive.
For j = 1, . . . ,m − 1,

Prob[ exactly j of the X’s are positive]

=
n!
nn

(
n

j

) ∑
a1+a2+···+aj=n−j,ai≥0

1
(a1 + 1)!(a2 + 1)! . . . (aj + 1)!

≤ n!j(n−j)

nn(n − j + 1)(n − j)!

(
n

j

) ∑
a1+a2+···+aj=n−j,ai≥0

(n − j)!
(a1)!(a2)! . . . (aj)!

1
jn−j

=
n!n!j(n−j)

nn(n − j + 1)!j!(n − j)!
.

The inequality in the middle comes from (a1+1)(a2+1) . . . (aj +1) ≥ 1+
∑j

i=1 ai,
since all the ai’s are non-negative, and then we use

∑j
i=1 ai = n − j.
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We can bound n!n!j(n−j)

nn(n−j+1)!j!(n−j)! above by n−1( j
n)n−2j jj

j! , and using an upper

bound in the Stirling’s approximation of jj

j! from Feller (1968, p.54), we see that

a further upper bound is n−1( j
n)n−2j ej√

2πj
, and across j = 1, . . . ,m − 1, this is

bounded above by n−1(m
n )n−2m em√

2π
. Now

m−1∑
i=0

Prob[ exactly i of the X’s are positive] ≤
m−1∑
i=0

n−1(
m

n
)n−2m em

√
2π

≤ (
m

n
)n−2m em

√
2π

≤ 1√
2π

cn−2c2n
2 ec2n (since m ≤ c2n ≤ n/2)

=
1√
2π

e−n[(1−2c2)∆−c2] (putting − log(c2) = ∆).

We only have to show that α = −(1− 2c2) log(c2)− c2 > 0, which is true if c2 is
small enough. An elementary computation shows that α = 0 near c2 = 0.34128,
and taking c2 = 1/3 yields α > 0.
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