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ARSTRACT. A vegular operator T on a Hilbert O -module is defined just like
a clesed operator on a Hilbert space, with the extra condition that the range
of (I +T*T) & dense. Semiregular operators are a slightly larger class of
operators that may not have this property. It is shown that, like in the case
of regular operators, one can, without any less in generality, restrict oneself
to semiregular operators on O -algebras. We then prove that for abelian C°-
algebras as well as for subalgebras of the algebra of compact operators, any
closed semiregular operator is antomatically regular. We also determine how
a regular operator and its extensions (and restrictions) are related. Finally,
using these results, we give acriterion for a semivegular operator on a liminal
C*-algebra to have a regular extension.
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1. INTRODUCTION

Hilbert C*-maodules were first studied by Kaplansky ([4]) for abelian C*-algebras,
and later for more general C*-algebras by Rieffel ([9]) and Paschke ([7]). Kasparov
developed the theory further, and wsed them to get deep and far-reaching results
([5]) in KK-theory. As the name suggests, Hilbert C*-modules are very similar
to Hilbert spaces, with C*-alppbra elements playing the role of scalars. With
the development of quantum groups and noncommutative geometry, the study of
Hilbert ™*-modules has assumed further importance. In noncommutative peome-
try, for example, the role of vector bundles on (noncommutative) spaces & played

by Hilbert C*-modules. For a loeally compact quantum group (7, the C*-algebra
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A = Col ) of “continuons vanishing-at-infinity functions” on & iz a Hilbert C™*-
module over itself. Analopues of bounded operators in the Hilbert C*-module
context are adjointable operators. For example, for any C*-alpebra considered
as a Hilbert C*-module over itself, adjointable operators are the elements of its
multiplier algebra. In various contexts that the Hilbert *-modules arise, one
also needs to study “unbounded adjointable operators”, or what are now known
as regular operators. These were first introduced by Baaj and Julg in (1], where
they pave a nice construction of Kasparov bimodules in KK-theory using regular
operators. Later they were rediscovered by Woronowicz ([11]) while investigat-
ing noncompact quantum groups. He considered C*-algebras rather than general
Hilbert C*-modules {we shall see in Section 3 that there is no loss in penerality
in doing this), and called them elements affiliated to the C*-algebra. “Coordi-
nate functions” on locally compact noncompact quantum groups are examples of
such objects. Representations of locally compact noncompact groups (quantum
as well as classical) are examples of regular operators on more general Hilbert
C*-modules. Lance gave a brief indication in his book ([6]) about the possible role
Hilbert modules might play in studying representations of quantum groups.

Let us quickly recall the definition of a regular operator. Let 4 be a %=
algebra. An operator T from a Hilbert A-module E to another Hilbert A-module
F iz said to be regular if

(a) T is closed and densely defined,
(b) itz adjoint T is also densely defined, and
{¢) range of T 4+ T*T is dense in F.

Note that if we set 4 = C, ie. if we take E and F to be Hilbert spaces, then
this is exactly the definition of a closed operator, except that in that case, hoth the
second and the third condition follow from the first one. In the Hilbert C*-module
context, one needs to add these extra conditions in order to get a reasonably good
theory. But when one deals with specific unbounded operators on concrete Hilbert
C*-modules, it is wually extremely difficult to verify the last condition, though
the first two conditions are relatively easy to check. So it would be nteresting
to find other more easily manapeable conditions that are equivalent to the last
condition above. In [11], Woronowicz gave a criterion based on the graph of an
operator for it to be regular, and to this date, this remains the only attempt in
thiz direction.

In the present paper, we will consider a somewhat larper class of operators
that we call semiregular operators, which are, roughly speaking, operators satisfy-
ing the first two conditions above. We then investigate the following two problems,

namely, under what conditions are they regular, and when do they admit regular
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extensions. We will assume elements of C*-alpebra theory as can be found for
example in Dixmier ([2]). For an account on the C*-module theory required, we

refer the reader to Lance ([6]).

Noramions. 'H will denote a complex separable Hilbert space. Bp(H) and
B{H) will respectively stand for the space of compact operators on M and the
space of all bounded operators on it. 4 denotes a C*-algebra, usually noounital,
and M{.A) is its multiplier algebra. The algebra 4 will always be assumed to be
separable. 7, with or without sub- (or super-) scripts will usually denote represen-
tations of the C*-alpebra under consideration, and H,; will be the Hilbert space on
which the representation acts. E and F will denote Hilbert C*-modules, generally
over a C*-algebra A. (E, E} will denote the linear span of {{z.y} :z,y € E} in
A. For a Hilbert C*-module E. K(E) and £(E) will denote respectively the space
of all *compact” operators on E and the space of all adjointable operators on E.
Operators on Hilbert modules or on Hilbert spaces will be denoted by 5,7 st
ete. For an operator T, G(T" will denote its graph and Dy or D(T") its domain.
For a topological space X, Cy( X)) (respectively C.( X)) will denote the algebra of
contimions functions on X vanishing at infinity (resp. with compact support).

Before we end this section, let us state here a Stone-Weierstrass type theorem
for *-algebras that will be very weful in studying regular operators on Hilbert

O -modules.

Tueorem 1.1, Let A be a separable O -algebra, A being its spectrum. Let
J be a right ideal in A such that w(.J) is dense inw(A) for all 7 € A. Then J is
dense in A,

Normally, in Stone-Weierstrass type results, the subspace J is assumed to
be a #-subalpebra, and the proof goes roughly like this: if J & not dense in 4,
one constructs a nonzero state on 4 that vanishes on J. The corresponding GNS
representation must also vanish on J. Using separability, one can now pet a point
7 € A that vanishes on J. Since this & not the case, one reaches a contradiction.
Thus the key step in the proof is the construction of the state, which is made
possible by the condition that J is closed under involution. In our case, J is not
necessarily #-closed; but as Lemma 2.9.4 in (2] tells us, the condition that it is a

right ideal is strong enough to guarantee that such a construction is still possible.
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2, SEMIREGULAR. OPERATORS

Let us start with the following definition.

DeFiviTion 2.1, Let E and F be Hilbert A-modules. An operator T : E' —
F iz called semiregular if
(i) Dr & a dense right submodule in E (ie. Dy A C Dy);
(i) T is closable;
(ii) T* is densely defined.

Observe that from (iii), it follows that T is A-linear. Any regular operator
is of course semiregular. But there are also many semiregular operators that are
not regular, as the following example illustrates.

Let A =C[0,1], and E = C[0,1] @ L2(0,1). Let

D = {f € La(0), 1) : f absolutely continous, f' € La(0, 1},
Dy ={f € La(0, 1) : f absolutely contimous, f' € La(0,1), f(0) = f(1)},
Doy = {f € La(0,1) : f absolutely continuous, f e La(0,1), flO) = f(1) = 0}.

Define T on D by Tf =if’. Let Ty = T|Dy. Now define an operator t on E as

follows:
Dit)={feE:fo€Dw, facDpforl<w< 1, 7 f, contimous},
(tf)(m) =ifs.

Prorosimion 2.2, The operator t defined above ts a closed semiregular non-
reqular operator,

Proof. Let us first of all show that

Dy ifw=10,

Dit), =
(®) {Dn if0<ag 1.

From the definition of Dit), it is clear that D{t)y C Dy and D(t), C Dy for
0 < 7« 1. To show the reverse inclusions, take f € Dy, Define g(w. z) = flz).
Check that g € D(t). Therefore D(t)y = Dyg. Next, fix some m € (0, 1] and take
f € Ly. This time, take g(m, z) = = f(x). Then g, = f and g € D(t), so that
D(t)x, = Dy.

It is easy to check that for f g € D{t), {tf, g} = {f.tg). Therefore t T t*.
From this and from the fact that €[0,1] ®u, Do © D{t), it & clear that t is
semirepular. To show that it is closed, take f, € D(t) such that f, comerpps to f
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and tf, converges to }: Then (fo.)x € Dit),, fr =lm(f.); and f, = lim{tf,) -
Since { fu)e € D{t)s, (tfu)r = i{fu),. Therefore by closedness of tx, fr € D{t),
iff = fn. T ifl = f, is contimons and hence f € Dit), _?= tf.

Finally, if t is regular, then {(I +t*t)f : f € D(t*t)} is dense in E, so that
for any =, {(I +t*t) f(z): f € D{t*t)} is dense in E,; = Ls(0},1). Now

{(I +t") f(0): f e D(t"t)} C {f— f": f € Doo, ' € Do}.

Notice that the right hand side is equal to ran(J + T37*). So its orthogonal
complement is given by ker(I + TT}) = ker(I + TT) = {f: fe Dy, f'eD, f=
1. Hence the function f: z — exp(z) + exp(l — z) € ker(f + TT}). Therefore
{d +t*t)f(0) : f € D{t*t)} can not be dense in L2(0,1), which means, t can not

be regular. 1

This operator t shares many features with repular operators. Here are two

of them.

Prorosimion 2.3, The operator t satisfies the following:
(1) t* is reqular;
(i) D{t*t) is a core for t.

Proof. (1) We will first show that D{t*),, = Dy for all 7. Take any f € D{t*").
Then for any g € D{t), {tg, f) = {g. t*fi. S0 {t g, fr) = {ga. (t*f)). This
means f; € Dit,*) and t.*f; = (t*f);. In our context, f € D, f; € Dy for
0 < 7= 1 Therefore D{t*)y C D, D(t*), C Dy for 0 < 7 £ 1. We have
already observed that t C t*. Hence D(t*), = Dy for 0 < 7 £ 1. Now choose an
f € D{t*). Then for any = € (0, 1],

(Lt7fi(m) =i(fx(1) — f2(0)) =0,
(L7 (0) = i(fo(1) — fo(0)).

By contimity, f(1) = fol0), ie. D(t*)y © Dy, To show the reverse inclusion,
take f e Dy Define f{m.'f::l = flz), h{m z) = if'(z). Then for any g € D(t), {tg,
.iF} = {g, h)(7). Therefore j?E D(t*). Since _ﬁj = f.we get Dy C D{t*),.

Let us denote t* by s in this paragraph. From what we have seen, s5,.* =5,
for all m. Hence D{s.*s;) = {f € Dy : f' € Dy}. Clearly D{s*s), C D(s,"s,).
Take any f € D{s;*s,). Define f{m z) = flz), him.z) = —f"(z). Then for
any g = Dis), {sg, sf} = {g,h). Therefore f e Dis*s) and s*sf = h. Since
_F,T = f, we have D{s*s), = D(s,%s,;). This implies {{I +s*s)g(7) : g € D(s*s)} =
{4+ 8.8, )f : f € D(s,"s,)}. Each s, is closed, so the right hand side is dense
in Ls(0,1). Consequently,{(I + s*s)g : g € D(s*s)} is dense in E (essentially by

Theorem 1.1), which means s is regular.



S46 Arupkusan PaL

(i) It is easy to see that

{feDy: ey} D<wgl,

lEhle = {{f € Doo: f' € Do} ifw=0.

For any f € Dy such that ' € Dy, the function g7, ) = f{z) can easily be seen
to be in D{t*t). Therefore in the second case above, we actually have equality. To
show that equality holds in the second case as well, choose an f € Dy for which
f' € Dy and define g{m.z) = Z-flz). One can then verify that g € D(t*t). S50 we
now have

D(£*t), = {{fe Dy:feby} f0<w<gl,
{f€Dpo:feDy} fm=0.
We now prove that D{t*t), is a core for t,; for all 7. Notice that for = = 0,
D(t*t), = D(T;?), and t, = T},. So the above assertion holds in this case. Suppose
7 =10. Take an f € Dyy = Dity) = D{T|Dyy). Choose g, € Dy such that

g""{{}:l = —f’{ﬂl Eﬁ!'{lj = _fj{]-:l-. ".Ef" " — 1l "g".f" — 1,
then f+ g. € Do, (f + gn)' € Doo C Dy, and

If + g0 = fll = lgnll = 0, I(f +ga) = £l = g’ = 0.

Thus Dit*t); is a core for ty.
We are now ready to show that D{t*t) is a core for t. Take an f € D(t).
Let = = 0 be any given number. Choose a partition =7y <m < ---< 7w, =1
of [0, 1] such that
fr—full <& Ifi—f'l <&

whenever 7 and 7' belong to the same subinterval. Choose by € D{t*t),, satisfying
"f:rr:' = h‘i" =& "f:rrgf_ Ft’g'j" < E.

Define g as follows:

Wi41 — T w— W

glm.z) = hylx)+ hilz), m 7S -

Wit — Wit1 — Ty

Then g., = hi, gy € Dy for all w, g, € Dy for all m > 0, gy € Dy and the maps
m— g and 7 — g are continnous. From these, one can now easily check that
g & D{t*t), and

lg= — fall < 5e, gk — £2ll < Be.
Henee we have ||g — f|| = sup g — fz| < 5z and |tg— tf]| =sup gl — fL] < 5=
Thus Dit*t) is a core for t.ﬂ [ | i



REGULAR OPERATORS ON HILEERT O -MODULES SaT

ReEmarks 2.4, (i) The example constructed above is very similar in spirit to
an example of a nonregular selfadjoint operator first constructed by Hilsum ([3]).

(i) Propositions 2.2 and 2.3 together imply that for a closed semiregular op-
erator, regularity of its adjoint does not ensure regularity of the original operator,
i.e. Corollary 9.6 in [6] is false.

4. SEMIREGULAR OPERATORS ON C*-ALOEBRAS

Let A be a C*-alpebra and E be a Hilbert A-module. Any regular operator on E
is uniquely determined by its z-transform (or the bounded transform) which is an

element z of £(E) satisfying the following two conditions:
(3.1) Iz €1, (1—2z*2)"%E dense in E.

The space K E) of compact operators on E is a C*-alpebra, and hence is a Hilbert
C*-module over itself. Any regular operator on this C*-algebra is uniquely deter-

mined by its z-transform w in C{K{E)) that obeys the following:
(3.2) lwl <1, (1—w*w)2K(E) dense in K{E).

Now, via the Bomorphism £( E) 2= C(K{ E)), the set of elements in £ F) satisfying
(3.1) can be identified with the set of elements in C{IC( E)) satisfying (3.2), which
means, regular operators on E can be identified with regular operators on K(E).
One can therefore deal with regular operators on C*-algebras without any loss
of generality. In this section, we will show that the smme is true for semiregular
operators as well. The main trouble in this case is that we do not have z-transforms
at our disposal any more.

Let us denote by R{E) the space of all regular operators on a Hilbert *-
module E. and by SR(E) the space of all semirepular operators on E. Define
two maps ¢ @ SR{E) — SR E)) and pa : SR{K(E)) — SR{E) as follows: let
S e SR(K(E)), T € SR(E). Let

D{p1(T)) := span {|z}{y| : z € Dr, y € E},
w1(T)|z)y| := |Tx){y|, [zHy| € Dip1(T));

DNpa(5)) :=span{az :a € Dg, z € E},
wpa(8)(az) := (Sa)r, ax € D{p2(S)).

From the semiregularity of § and T, it follows that (7)) and e (8) are well
defined and semiregular. Let us now list some properties of these two maps ¢

and .
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Lemma 3.1. Let 5,51,5: € SRIK(E)) and T,71,T5 € SR{E). Then we

have

T €T = ¢(Th) € ¢(T3),
51 € 52 = pa(51) € wa(Sa).
Proof. Straightforward. 1

Lemma 3.2 Let § € SR{K(E)), T € SR{E). Then

21(T) € (T,
wa(S) € w2(5) C wa(S).

Proof. The first inclision in both cases follows from the previous lemma.
For the second inchision, take 3 ;)| € D{g(T)), where the x;’s come from
Dz There exist ;r:E"] € Dy such that &, = |im;r:g"] and Tz, = ]imT;r:E"].
Therefore 3 |:) (] = |imZ|$i-"] Huil, and o (THE lzidiml) = X [Tl =
lim o1 (T)(E |2 Wal). So (Xl (wil o1 T(E lid i) € G(er(T)). Thus

Glei(T)) € Gl (T)), ie. p1(T) € (7).
Next, take (az,p2(5)(az)) € G(p2(5)). Then a € Dg, so that there exist

i, € Dg such that a = lima, and Sa = lim Sa,,. Therefore az = lima,z, and
(Sa)z = Iim{';ﬂ,.:l;r ':Jin{:r:"ﬂ,.;?' €D, (5 ml{f:,ﬂg{ﬂ'j{ﬂﬂmj = (Sa, )z, it E:-l]m-m that
(az,(Sa)z) € G(p2(S)). Therefore p2(5) C wa(S). »

Lemma 3.3, Let § € SR(K(E)), T € SR(E). Then:

(1) w1(p2(5)) C 8. wr(pa(S))

(i) p2(e1(T)) €T, wa(.(T))

Proof. The first inclusion in both cases is trivial. The second inclusion follows

€5
s
from the first and the forepping lemma. 1

Lemma 3.4, Let § € SR(K(E)), T € SR(E). Let E be separable. Then:

(i) D{p1(2(S))) is @ core for §;
(1) D{pale(T) is a core for T

Proof. By definition,

D(s1(w2(5))) = span {|y}{z| : y € D{2(5)), z € E}
= span {a|z}{z| :a € Dg, z,z € E}.

Take (a,5a) € G(5). There exist a, € Dg such that a = ]mm.,“ Sa = |lIT1 Sg,.
Since E is separable, so & K(E). Hence by Proposition 1. TE in [2], there & an



REGULAR OPERATORS ON HILEERT O -MODULES 449

appraximate identity {p,} € span{|z}{z| : £,z € E} such that |bp,, —b converges
to zero for all b € K(E), and ||p.|| = 1. Hence |lawp, — 2l £ |lae — al |pe] +

[|lapy — al|, which implies a = lim a,, p,,. Therefore
e

|5 {@npn) — Sal |(San)pn — (Sa)pal + [|(Sa)p. — Sa|

<]
< ||Sa, — Sal + ||(Sa)p,, — Sal,

and consequently, Sa = limS(a,p,). Since aup. € D(p1(p2(5))), Dl (pa(5)))
is a core for §. ’

Next, take (z,Tz) € G(T). There exist {zn} € Dr such that z = limz,,,
and T = lim T'z,,. Now span{{y, z) : 9,z € E} & a dense two-sided ideal in {E, E.

Again, by Proposition 1.7.2 in [2], it admits an appradmate identity {£,} of (E, E)
with ||£.]| = 1. Check that r = lim z,.£,. Since

D{wa(1(T))) =span{az:a € D(,(T)),z € E}
=span{|z}{y|z :z € Dr, y,z € E}
=span{z{y,z): z € Dy, y.z € E},

Tnkn is in D{pa(1(T))) for all n. Therefore Tz = LimTz, = im(Tz,)&, =

lim Tz, £, ). Thus Dipa{p (1)) is a core for T, 1

Let uws call two semiregular operators T and Ts equivalent if their closures
are equal. In such a case we will write T} ~ T5. Clearly this is an equivalence
relation.

Lenma 3.5, Let 55,52 € SRIK(E)) and T, 71,7 € SR{E). Then one
has
(i) wrp2(S) ~ 8, papn(T) ~T;
(ii) Ty ~ T2 = 21 (T1) ~ g (T2);
(iii) 51 ~ 82 + pa(S1) ~ wa(S5).

Proof. (1) is a consequence of Lemma 3.3 and Lemma 3.4,

For (ii), assume T} ~ Ty, ie. Ty = Ts. Then & (Th) = ¢1(T2). By

Lemma 3.2, ¢(TY) € ¢1(T) € @1(Th). Therefore (1)) = 1 (T1). Similarly
w1(Ty) = 1(T32). Hence o (Ty) = o1(Ts). Conversely, if o(T1) = 1(T:), one

has wa(e1(11)) = wa(1(12)). By Lemma 3.2

wapi(Ti) Cpalpi(Th)) Cypepn(Ty), i=12.

Hence by (i), T; = wa2(p1(T0)), i = 1,2, which now implies Ty = Ta.
Proof of (iii) is exactly similar. 1
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If we denote by sr(E) (respectively sr{f{E))) the space of all semirepular
operators on E (resp. K{ E)) modulo the above equivalence relation, then the above
lemma tells us that the maps @ @ s E) — ar(K(E)) and o @ s0{ K E)) — s E)
are one-one, onto and are inverses of each other. Therefore we can identify a
semirepular operator T on E with its image (7)) on K{E). Also, from the
definitions of ¢ and pe it follows easily that if T (respectively 5§) & regular

on £ (resp. K(E)) with z-transform zp (resp. zg), then o (T (resp. a(8)) is
repular on K(E) (resp. E) with the same z-transform. Thus the identification of
semirepular operators that we are making & compatible with the identification of
repular operators on the two spaces that we have already made in the beginning

of this section using their z-transforms.

4. ABELIAN C*-ALGEBRAS

In this section, we will prove that on C*-algebras of the form Cy{ X)), where X is
a locally compact Hausdorff space, any semiregular operator is given by multipli-

cation by a continnous function, thereby implying that it & regular.

Prorosimion 4.1, Let X be a locally compact Hawsdorff space, and let T he
a closed semireqular operator on Cp( X)), Then T is reqular.

Proof. The proof is quite elementary. The key observation in the proof is the
fact that the Pedersen ideal of Cy(X) & CL( X)), that is, any dense ideal in Cy(X)
contains C.(X) (see 5.6.3, p. 176, [8]). Let A be the set {K C X : K compact}
ordered by inclusion. For each K € A, choose a fiy € C.(X) such that 0 =
frlz) < 1 for all z, and fr(z) =1 for all z in K. We have already observed that
Co( X)) C Dy, so that each fy is in the domain of T. Owur claim now i that the net
{T fr } ke converges pointwise to a continuons function f on X. First, let usshow
that for any = € X, the net {Tfr(x)}ker converges. Let Ky = supp fi}. Then
for any K 2 Ko, fxfiey = fiz)- Therefore T, = (T'fx)f{.). Ewaluating at
the point x, we get (T'fx)(z) = (T'f(.)(z) whenever Ky C K. So {T fr(z) }icen
comverges. Define fiz) = ]i;gl T fr(x). Take any compact subset K of X. Let S
be the support of fre. Then for any Ko 2 Si, Tfx, (z) = Tfx(z) for all z € K.
Hence f(z) = Tfi(x) for all x € K. Since T fy € Ch(X), f is continmons on K.
This being true for any compact subset K of X, f is continnows on X,

Next observe that T'g = fg for all g £ CL(X). Indeed, if K = suppyg, then
g = fig. Therefore Tg = (T fi1g. Since Tfy = fon K| and g = ) outzside K, we
have Tg = fg. If we denote by Ty the operator g — fg on Cp(X) (with maximal
domain), then T} is regular, Ty|C(X) = T|C.(X). Let D = (1 + |fP)12C(X).
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It is easy to see that D i dense in ((X). Therefore Co(X) = (14 |f1*)"Y2D is
a core for Ty, So Ty = Ty|Ce(X) = T|C(X). Since T' is closed, this implies

(4.1) TR,

and hence T C T} ", Since Dr- is a dense kleal in Cy( X)), we get Co(X) € Dr-.
So T*|C(X) = Ty*|Ce( X). Now, Ty* is just multiplication by f and C.(X) is a
core for T;". Therefore T;* = T, |C (X)) = T*|C (X)) C T*. Since T} is regular,
this implies T** C Ty™" = Ty, and consequently, T' € Ty. This, along with (4.1),
implies T' = Ty, Thus T is regular. 1

ReEmark 4.2, Let 4 be a unital C*-alpgebra. Observe that O (X)) ® .4 can
be identified with the space Ch(X, . A) of A-valuied continuous functions on X
that vanish at infinity, with its usual norm. Notice also that Tietze's extension
theorem continues to hold for A-valued contimous functions. Using this, it is not
too difficult to show that if D & a dense right ideal in Ch (X, 4), then it must
contain C.( X, A), the space of all compactly supported A-valued functions on X.
Having proved this, notice now that the proof of Proposition 4.1 remains valid if
one replaces Cp( X)) by Co(X,.A) and C (X)) by Co( X, A). Thus Proposition 4.1
contimes to hold for semiregular operators on C*-alpebras of the form Oy (X )@ A

as well

5. SUBALGEBRAS OF By(H)

We will deal with non abelian C*-algebras in this section. The simplest case of
course is the algebra By(H) of compact operators on a Hilbert space. We have
seen in Section 3 that semiregulars on By(H) are, up to taking closures, same as
semirepular operators on H. Therefore it &5 natural to expect that in this case,
all semiregular operators are regular. The following proposition says that this is

indeed the case.

Prorosimion 5.1, Let 'H be a compler separable Hilbert space. Then any
closed semireqular operator on By(H) s regular.,

Proof. This is a straight forward consequence of the results in Section 3. Let
T be a closed semirepular operator on By(H). Then a(T") is a semirepular operator

on ‘M, which simply means that it is closable and densely defined. Therefore its

closure a7 is a regular operator on ‘H. From the remarks following Lemma 3.5,

wilwa(T) is a repular operator on By(H). By Lemmas 3.3 and 3.5, we now obtain
wral(T) € o1a(T) € gra(T) = T = T. Hence T = p1(ip2(T)). But since
walT) & regular, 50 is g (wa(T)). Thus T is regular. 1
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Let us now consider the next simplest class of C*-alpebras, namely, the sub
C*-alpebras of By(H).

Let A be a C*-algebra. Denote by A its spectrum, ie. the space of all
irreducible representations of 4, equipped with its usual hull-kernel topology. Let

T be a semiregular operator on A with domain D{T"). Since D(T") i a dense right

ideal in A4, for any 7 £ A, D{T); :== {m({a) : a € D(T)} & a dense right ideal in
the C*-alpebra w(4). Define an {:-pf,mmr T on D{T), by the prescription
(5.1) Temla) r=m(Ta), aecD(T).

To see that this is well defined, notice that if w{a) = 7(b), then for any ¢ € D{T*),
{m(Ta) — 7 (TH), wle)) = {mla) — 7(b), 7 (T"c)) = 0.
Since D{T™*) is dense in A, 7(Ta) = 7(Th). The equality
{w(Ta),w(c)} = {w(a),x(T7c)), VaecD(T),ceD(T)

shows that T is closable and (T*), C (T;)*, therby implying that T.% is densely
defined. Thos T is a semiregular operator on (4.

Lemuma 5.2, If T is reqular, then each T, is regular.

Proof. All we need to show is that ran (I + 7,77, ) = 7(A). Take any b e A,
By regularity of T, there is ana € D{T*T) C D(T") such that (I +T*Ta = b But

then

(I + 1" 15 )m(a)

mla) + T, Tem{a) = wla) + T, "w{Ta)
mla) + (T 7 (Ta) = wla) + 7(T"Ta)
(
]

(I +T*Ta) = w(b).
Thus ran (I + T,.°T,) = 7. A).

Lemma 5.3, Let § and T be semiregular operators on A, Then for each
me A,

[ SCT =5 STy

(i) D(S*5), C D(5"25:) € D(5:755);

(i) if D(5*8) is a core for §, then D(5*5); is a core for 5;.

Proof. Proof of the first two parts are trivial. For (iii), take (7w{a), 5, 7(a)) €
G(5,). Choose ag € D{S) such that

[(m{aqa), Sam{aa)) — (mla), Sem{a))|| < e

Since D(5*S) is a core for S, there is an a; € D{5*8) such that ||(a,, Say) —
(ag, Sag)|| < =. But then ||(w{ay ), 7{Saq)) — (7{ap), m{Sag))|| < =, so that

I(m(a1), Sxm(ar)) — (w(a), Sym(a)) | < 2e.
Thus D{5*85), is a core for 5. 1
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ProrosiTion 5.4. Let § be a closed semireqular operator on A. If each S,
is reqular, and D{S*8), is a core for 5,8, for allw € A, then § is regular.

Proof. The pgiven comdition implies that any element of the form
{4+ 5:"5;)w(a) can be approximated by an element of the form (I + 5.7 5 i7(b)
where b € D(5*5), which, in turn, implies that ={(f + 5*S)b: b € D(5*5)} is
dense in w(.A) for all # € 4. By Theorem 1.1, ran ({ + §*5) is dense in A. 1

LEMMA 5.5. Assume that A is separable or GCR, and A has discrete topol-
agy. Then for any a € A and m € A, there is a unique element ain € A such

that
ﬂj{ﬂ:n]) = {

FProof. Let J= [ kerw'. If J C kerm, then = will belong to the closure of
wiEn
{m}°. But {7} is open. Hence J & ker . Therefore w|.J is nonzero, and since .J

0 i £

mia) ifw’ =m

is an ideal, 7|J & actually irreducible. From the assumptions, it follows that 4 is
liminal; therefore we get m{J) = Bo(H=) = 7(.A). 5o there is an element aq € J

such that w(a ;) = w(a). Obviously 7'(a,,) = 0 for all other ='. Uniqueness is

)

now obvious. 1

Lemma 5.6, Under the same asswmptions as in the previous lemma, we
hawe:
(1) (ab)ix) = a- by,

(ii) w(a) = limm(a'™) = ap = lima'™!;

(=)

(iii) if S is a closed semiregular operator on A, then a € D(S) implies a., €
D(S) and Sag,, = (Sa), for allT € A.

Proof. (1) and (ii) are obviows. For (iii), choose an approdmate identity
{el™1 ) in A. It is easy to verify that ﬂFE:; COnverges to ag ) and S{aﬁﬁ:h CONVET Ees.

The result follows by closedness of 5. 1

Lemama 5.7, Let A be as above, and let § be a closed semiveqular operator
on A, Then:
(1) 55 is closed;
(1) 5;% = (5%, and
(iii) (5"5)x = 52" 5x.
Proof. (i) Take w(a) € D(S,). There exist a'™ € D(S) such that w(a™!)
converges to w(a) and S, w(a'™) converges. By the previous lemma, GE:% CONVET Pes

to a.y, and (Sal"h (n) converges. By closedness of 5, we conclude that a ) € D(5)
and Sag . = Iim{Sﬂ':"]:I,:,T]. Therefore w(a) = mlag.) € D(S)- = D(5:).
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(i) We only have to show the inclusion 5,% C (5*%),. Take w{a) € D{5. 7).
For any b € D(8) and 7' € A, #' # 7, we have 7' ({Sh, o)) = T (Sh) ' (a; ) =0,

and
({5, a;z)) = 7(Sh) mlayy) = (Saw(b), wla)} = (x(b), S:"w(a)).

Since S we) € 7(A), S:"wla) = w(c) for some ¢ € A Hence a({S5h,am}) =
{(w(b), m(c)} = w({b,c}). Therefore ='({Sh.ai,}) = 7' ({bey)) for all 7', ie
{Sb,apm ) = (b, epmy). This implies a;yy € D{5*) and consequently wia) = 7o) €
D{5* )%

(i) Apain, the inchsion D{S*85), C D{5,%5,) is obvious. To show the
reverse inclusion, take wia) € D{5;"5;). Then w(a) € D(S;) = D{5),;, and
Samia) € D(5:") = D{5*)». This means a;xy € D(5), and (Sa)ix = Saip €
D{5*), i.e. ag;y € D(S*S). Hence wla) =mla;,)) € D{5*S).. 1

As a consequence of the above results, we now obtain the following:

Tueorem 5.8, Let M be a compler separable Hilbert space.  Any closed
semiregular operator on a C*-subalgelbra of By(H) s regular.

Proof. Follows from Proposition 5.4 and Lemma 57. 1

Let (G be a campact quantum group ([10]), and let G denote its Pontryagin
dual. Then the C*-algebra () has discrete spectrum. Therefore in this context,
we can rephrase the previous result as follows.

Prorosimion 5.9, Let (¢ be a compact quantum group. Any closed semireg-

wlar operator on O] is regular.

. EXTENSIONS OF SEMIREGULAR OFERATORS

We will be concerned with more peneral classes of C*-alpebras in this section.
As the example in Section 2 sugpests, we can not possibly expect results like
Theorem 5.8 to hold once we go beyond subalgebras of By(H). However in many
cases, it s possible to get regular extensions of semirepular operators. But before
we go to extensions of semiregular operators, let us find out how a repular operator

is related to its extensions and restrictions.
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Prorosimion 6.1, Let T be a regular operator on a O -algebra A with z-
transform z. Let w be an isometry in M A) obeying the following condition:

(6.1) (w*(I — 2*2)u)'? = (I —z*2)' P

Then zg := zu is the z-transform of a regular restriction § of T

Proof. Since z is the z-transform of a regular operator, (I—2*z)'2 4 is dense
in A, and u is an sometry. So v*( — 2*2)'24 & also dense in A. Now from the

given conditions, we pet
(I—z :3]1"“21:, =u"(]— :“;:I”'.

Therefore (I — z*z)'2uA is dense in A. It follows then that (u*(] — z*z)u) A =
(I —z5%z5).A is dense in A. This means (] —z3%z5)"/%.4 is also dense in 4. Clearly
[zs]| = 1. Hence there is a mimique regular operator § whose z-transform is zg.

To show that § is a restriction of T, it is enough to prove that § = T on
(I —zg%zg)A, since this is a core for 5. We will prove that:

(i) (I — z5*25) A C (I — z*2)'/2.4, and
(i) if (I —zg5*z5)a = (I — z*2)'2h, then zg(I — z3*2z5)"?%a = zh.

(1) is a direct consequence of (6.1). For (i), assume that (I — z5%z5)a =
(I — z*2)%2b. This means (u*(I — z*z)u)a = (I — z*2)"2h, which, together with
(6.1) and injectivity of the operator (I —z*z)~ /2, implies that u{f—"‘ 11240 = b
Therefore zb = zu(l — z*2)" 2ua = z5(1 — 2*2) 2 ua = zg(I — 25%25)"%a. 1

Prorosimion 6.2, Let T be a requlor operator on A with z-transform z. A
reqular operator § with z-transform zg is a restriction of T of and only if z5 = zu
for some isometry woin M({A) obeying Eguation (G.1).

Proof. We have seen that if ¢ is such an isometry, then zg = zu defines
a regular restriction of T. Now {J[}I'I‘-’{-"I‘it-‘h suppose 5 is a regular restriction of
T. Since D(S) € D(T), we have (I — z5%25)"? A C (I — 2*2)Y2A. Therefore
the operator wgr = (I — z*2)" V(I — 25*25)Y? is everywhere defined on 4.
(I — z5%z5)Y? is bounded, (I — z*2)~ 12 is closed; so wg o is also closed. Hence

wg.r is bounded. Observe next that for any a.b e A,
{(wgra, (I —2*2)"2b) = (I — 25"25)"%a,b) = {a, (I — z5"25)"2b).

This implies D{T) € D{wgr*), i.e. wsr" is densely defined. Together with the

boundedness of wg r, this means it is adjointable.
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For any a € A, (I — z5%25) 2a = (I — 2°2)"?wgra € D(5) C D(T). Since
S =T on D(5), we have zga = zwgra for all a € A So z5 = zws . Next, take
any a,be A Then

{wer*(I — z*z)ws ra, by = {{I - 22 2wy ra, (I — 2*2) Y 2ws b

Therefore wg r*(I — z*z)wsr = I — z5%z5. It now follows immediately that

wyr*wsr = I, and {1:}5_]-"*{1 —:*:jﬂ:},q:r:]t'ﬂ = (I —z*2)"%wgr. 1

Prorosimion 6.3, Let T be a requlor operator on A with z-transform z. A
reqular operator § with z-transform zg is an extension of T if and only if 25 = u=
for some cotsometry w satisfying the following equation:

(6.2) (u(d — ::“:Iu*:ll'm =u(l — z:*jlﬂ.

Proof. Use the previous proposition and the fact that § & an extension of T'

if and only if 5* is a restriction of T*. 1

Let 5§ be a closed semiregular operator on a € -algebra A, For any 7 € A, if
we define S, by Equation (5.1), with § replacing T', then 5§, is a closed semiregular

operator on (. 4). Construct an operator 5§ on 4 as follows:

(6.3) D(5)={ac A:7(a) e D(5;)¥7 € A, Ibe A3 n(b) = Symla) V7 € A},
& Sa = b.

LEMMA 6.4. S is a closed semiregular extension of 5.

Proof. From the definition of D{ﬁ] and the fact that A separates points of
A, it follows that S is well defined. To show it is closed, take a,, € D(5) such that
i, converges to o and Sa, converges to d. Then for each 7 € A, i, ) converpes
to wla) and :'r{ﬁa,,:l comverges to w(d). But ﬂ{ﬁﬂ"j = Sywla,). Therefore by
closedness of 5, 7(c) € D(5,) and 5, 7(c) = m(d). This means ¢ is in D(5) and
Se = d, 1.e. S i closed. The inclusion § = S is obvious. So § is densely defined.

Using the same arpuments for 5%, we see that {-LE;‘_-:I is densely defined. It

s

is routine to check that for any a € D{ﬁ] and b € D{{5%)), one has {gﬂ.,b} =

{a, {:‘:}T“F:IbL s0 that {-L"'.-q::‘:l C (5)*. Hence {§)* is densely defined.

Thus 5 is a closed semiregular extension of . 1

Next we compute the adjoint of 5.
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s

LEMMA 6.5 Let S be as above. Then (8)* = (5*).

Proof. Define an operator S, by the prescription

D(S.) = {a € A:m(a) € D(S;*), Ibe A3 n(b) = S, w(a) ¥7 € A},

We claim that

The first inclision follows from the inclusion (5*); € 5,%. The second inchsion
follows from the observation that for any a € D(5) and b € D(S,), one has
m({5a, b)) = w( {a,5.b)) for all m € A. Now, we also have, by the previous lemma,

§CSamd §*C {5*). Thus we have the chain of inclusions

e A

(8%) €8, C(8)*cs (8,

which proves the lemma. 1§
Lemma 6.6. If § is regular, then so is §, and § = 8.

Proof. Let v denote the operator a8 b— b& (—a) on A $.4. Then for any
operator T, 7(G(T*)) € G(T)*. Hence 7(G((5)*)) € G(S)*. Now G(S) C G(S),

so that G(5)L C G(S)L. Sinee § is regular, we have, using the previous lemma,
7(G((8)) € G(S)" CG(8)* = 7(G(S")) € T(G(5)) =T(G((5)")).

So we actually have equality everywhere. Hence 4 & 4 = G(5) & G(§)* C
G(S) @ G(S5)*. This implies G(5) @& G(5)*+ = A% A. Consequently S is regular,
and §= 8§ =(5)**=5. 1

Now we are ready for the main result in this section. Let § be a semiregular
operator on a liminal *-algebra 4. Since w{4) = By(H,), by Proposition 5.1,
each 5 is regular. Let z; be the corresponding z-transform.

TueoreMm 6.7. Let § and z; be as above. Suppose {““}nej.‘ is a family of

coisometries, where u, € B{H; ), such that
2
{un{f - :,Tzn*:lu,*:l W ?L,I[f - :,T:,T*?]lm.,

and there exists an element z € M(A) for which 7(z) = uxzx for all m € A, Then

5 admits a regular extension.
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Proof. Let us first of all show that = is indeed the z-transform of a regular
operator. Clearly || z]| £ 1. By Proposition 6.3, each 7(z) is the z-transform of a
regular operator on w(.4). Therefore (I — w(z)*7(z))Y?H, is dense in H,. Since
(I — z*2)Y?) = (I — w(2)*xw(2))'/2, it follows from Proposition 2.5 in [11] that
(I —z*2)'/% A is dense in A. Thus z is the z-transform of a regular operator, say, T.

Our next job is to show that T is an extension of 5. It is easy to see
that T, defined by (5.1) on w(A), is a regular operator with z-transform w{z).
Proposition 6.3 tell us that §; € T,. From the definition of 5 it follows that
SCT. But by Lemma 6.4, § C 5 and by Lemma 6.6, T = T. Therefore T is an
extension of 5. 1

ReEmark 6.8, From the proof of the above theorem, it & clear that if § is
a semiregular operator on any C™*-algebra 4 (not necessarily liminal) such that
the closure of each fibre S5, is regular with z-transform z,, and there is one single

element z in M{.A4) such that 7(z) = z,; for all 7, then § iz a regular operator.

It is now easy to see why the example in Section 2 fails to be regular. Each
of the fibres t's is regular, acting on the same Hilbert space Ls(0,1). But while
all the t.’s are equal for 7 = 0, tg is different. The same is therefore true for their
z-transforms z;'s. Hence clearly there can not be any element in £(E) (which
are preciely the B({Ls(0,1))-valued functions on [0, 1] that are both strong and
strong®-continuous)] whose w-image is the z-transform of t,; for all 7.

As a consequence of Theorem 6.7 and Remark 6.8, we now have the following

proposition.

Prorosimion 6.9, Let 8 be a semiregular operator on a C*-algebra A, Sup-
pose there exists a mp € A, a reqular operator t on m(A). and a family {U”}nej.
of unitary operators

Ue i Hay i Hey wed,

satisfying the following conditions:
(i) Upy = 1;
(i) 5; CUAU," for all w;
(i) for any a € B(H,, ), there is an element b € M A) such that =(b) =
UsalU,* for all w e A.
Then § admits a regular extension.

Proof. Define operators T, on w(4) as follows:

D{T:) = U:D(t)U5", T = Ut U7
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It iz routine to verify that each T, is regular,
D{Tn“:l = U”D{t¥:|rjrﬂ¥1 l1-‘:IT“ =1 LT:rrt¥ L'T:rr*\

and if w is the z-transform of t, then the z-transform of T, is U, w/,". Condi-
tion (iii) now ensures the exdstence of an element z m M{4) such that 7(z) =
U w " for all w. By Remark 6.8 above, it follows that T constructed out of
these T, 's by the prescription (6.3) (with T replacing 8 is regular. Ako, a direct

consequence of condition (i) above and the definition of T'is that ST T. 1
As an immediate corollary of the above proposition, we can deduce the fol-
lowing:

CorLLaRry 6.10. Let E = C[0,1] @H, t a closed operator on H, and {U; }+
a strongly continuwous family of unitaries on H. Let T, = Ut U, 7. Let

DT) ={feE: f, e DT, ) ¥m, m— Ty fr continuous},

(Tf)x = Tafa
Then T is a reqular operator on E.
FProof. Here K(E) = C[0,1] ® By(H) is the relevant C'*-algebra. All we need

to check is that the condition (iii) in the foregoing proposition is fulfilled. For
any u € M, 7 — U u & contimous. Hence for any finite-rank operator § on M,
the function 7 — [, 5U." is continions in the norm topology. By approximating
a compact operator by finite-rank operators, one can show that = — U S0.°
is norm continmous for compact § also. Next, take any § € B{H). From the
strong contimuity of {{/;} and {U."}, it follows that for any By(H)-valued norm
contimous function 7 — R, the maps 7 — U, SU "R, and 7— R U SUL" are
both norm continnous. This implies that the function 7 — L8507 is an element
of the multiplier algebra M{C[0,1] @ By(H)). If we call it b, then w(b) = U, 5U,".
The third condition in Proposition 6.9 is thus satisfied. So T'is regular. 8

We shall now apply the above result to a specific example.

ExampPLE 6.11. Let E = C[0,1] @ L2(0,1), D be as in Section 2 and let T

be an operator on E defined as follows:
D(T) = {f € E: fx € D, fa1) = €” f+(0), 7~ f; continuous},
(Tf)x = £} +infn.
Then T iz regular.

Proof. Just take U, to be multiplication by the function z — &7, t to he

the operator T in Section 2, and apply the previous result. |
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More penerally, Let g £ E obey the following properties:
(i) gy = glw, -] is absolutely continmous;

(ii) g, € La(0, 1);

(ii) g(0,z) =0 for all z, and

(iv) m — g\, is continuous.

Then the operator T on £ given by the following prescription is regular:
D(T)={f€E: fr€D, f-(1)=exp(i(g(w,1)— g(m,0))) f=(0), 7 f, continuous},
(Tf)x = fn—ighfs

In this case one has to take [V to be multiplication by the function explig(mT,-)).

Acknowledgements. | would like to thank Debashish Goswami for many useful con-
versations and also for initiating the seminar series that eventually led to this paper.
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